Skip to main content
Top
Published in: Metallurgist 5-6/2022

29-09-2022

Technology for Producing Aluminum-Matrix Composite Material Reinforced with Multi-Wall Carbon Nanotubes

Authors: A. D. Romanov, E. A. Romanova, I. V. Vilkov, A. M. Ob’edkov, N. M. Semenov, B. S. Kaverin, R. S. Kovylin

Published in: Metallurgist | Issue 5-6/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper presents the results of studying the effect of the multi-wall carbon nanotube addition on physical and mechanical properties of aluminum alloy AMg5Mn obtained using the mechanical mixing technology. The analysis of the experimental and reference samples has shown that the use of microquantities of uniformly distributed multi-wall carbon nanotubes (0.1 wt.%) leads to an increase in tensile strength of the composite by at least 15%.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. R. Bakshi, D. Lahiri, and A. Agarwal, “Carbon nanotube reinforced metal matrix composites (a review),” Inter. Mater. Reviews, 55, No. 1, 41–64 (2010).CrossRef S. R. Bakshi, D. Lahiri, and A. Agarwal, “Carbon nanotube reinforced metal matrix composites (a review),” Inter. Mater. Reviews, 55, No. 1, 41–64 (2010).CrossRef
2.
go back to reference Y. F. Wu and G. Y. Kim, “Carbon nanotube reinforced aluminum composite fabricated by semi-solid powder processing,” J. Mater. Process. Technol., 211, 1341 (2011). Y. F. Wu and G. Y. Kim, “Carbon nanotube reinforced aluminum composite fabricated by semi-solid powder processing,” J. Mater. Process. Technol., 211, 1341 (2011).
3.
go back to reference Y. F. Wu, G. Y. Kim, and A. M. Russell, “Effects of mechanical alloying on an Al6061–CNT composite fabricated by semi-solid powder processing,” Mater. Sci. Eng., A 538, 164 (2012). Y. F. Wu, G. Y. Kim, and A. M. Russell, “Effects of mechanical alloying on an Al6061–CNT composite fabricated by semi-solid powder processing,” Mater. Sci. Eng., A 538, 164 (2012).
4.
go back to reference A. Esawi and K. Morsi, “Dispersion of carbon nanotubes (CNTs) in aluminum powder,” Composites, Part A 38, 646 (2007). A. Esawi and K. Morsi, “Dispersion of carbon nanotubes (CNTs) in aluminum powder,” Composites, Part A 38, 646 (2007).
5.
go back to reference Z. Y. Liu, S. J. Xu, B. L. Xiao, P. Xue, W. G. Wang, and Z. Y. Ma, “Effect of ball-milling time on mechanical properties of carbon nanotubes,” Composites, Part A 43, 2161–2168 (2012). Z. Y. Liu, S. J. Xu, B. L. Xiao, P. Xue, W. G. Wang, and Z. Y. Ma, “Effect of ball-milling time on mechanical properties of carbon nanotubes,” Composites, Part A 43, 2161–2168 (2012).
6.
go back to reference P. Dominique, G. Raynald, and A. L. D. Robin, “Structural characterization of a mechanically milled carbon nanotube/aluminum mixture,” Composites, Part A 40, 1482 (2009). P. Dominique, G. Raynald, and A. L. D. Robin, “Structural characterization of a mechanically milled carbon nanotube/aluminum mixture,” Composites, Part A 40, 1482 (2009).
7.
go back to reference H. J. Choi, J. H. Shin, and D. H. Bae, “The effect of milling conditions on microstructures and mechanical properties of Al/MWCNT composites,” Composites, Part A 43, 1061–1072 (2012). H. J. Choi, J. H. Shin, and D. H. Bae, “The effect of milling conditions on microstructures and mechanical properties of Al/MWCNT composites,” Composites, Part A 43, 1061–1072 (2012).
8.
go back to reference H. Kwon et al., “Investigation of carbon nanotube reinforced aluminum matrix composite materials,” Composites Sci. and Technol., 70, No. 3, 546–550 (2010).CrossRef H. Kwon et al., “Investigation of carbon nanotube reinforced aluminum matrix composite materials,” Composites Sci. and Technol., 70, No. 3, 546–550 (2010).CrossRef
9.
go back to reference J. Wu et al., “Mechanical and thermal properties of carbon nanotube/aluminum composites consolidated by spark plasma sintering,” Mater. & Design, 41, 344–348 (2012).CrossRef J. Wu et al., “Mechanical and thermal properties of carbon nanotube/aluminum composites consolidated by spark plasma sintering,” Mater. & Design, 41, 344–348 (2012).CrossRef
10.
go back to reference N. A. Bunakov, D. V. Kozlov, V. N. Golovanov, et al., Composite material based on aluminum with the addition of multi-walled carbon nanotubes: production, structure, properties,” Izv. Vuzov, Volga region, Fiz.-Mat. Nauki, No. 2 (38), 134–146 (2016); https://doi.org/10.21685/2072-3040-2016-2-11. N. A. Bunakov, D. V. Kozlov, V. N. Golovanov, et al., Composite material based on aluminum with the addition of multi-walled carbon nanotubes: production, structure, properties,” Izv. Vuzov, Volga region, Fiz.-Mat. Nauki, No. 2 (38), 134–146 (2016); https://​doi.​org/​10.​21685/​2072-3040-2016-2-11.
11.
go back to reference N. A. Bunakov, D. V. Kozlov, V. N. Golovanov, et al., “Microstructural features of the composite material “aluminum — multiwalled carbon nanotubes” after spark plasma sintering,” Izv. Vuzov, Volga region, Fiz.-Mat. Nauki, No. 3 (51), 120–130 (2019); https://doi.org/10.21685/2072-3040-2019-3-8. N. A. Bunakov, D. V. Kozlov, V. N. Golovanov, et al., “Microstructural features of the composite material “aluminum — multiwalled carbon nanotubes” after spark plasma sintering,” Izv. Vuzov, Volga region, Fiz.-Mat. Nauki, No. 3 (51), 120–130 (2019); https://​doi.​org/​10.​21685/​2072-3040-2019-3-8.
12.
go back to reference M. Rashad et al., “Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method,” Progress in Natural Sci.: Mater. Inter., 24, No. 2, 101–108 (2014).CrossRef M. Rashad et al., “Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method,” Progress in Natural Sci.: Mater. Inter., 24, No. 2, 101–108 (2014).CrossRef
13.
go back to reference H. H. Kim, J. S. S. Babu, and C. G. Kang, “Fabrication of A356 aluminum alloy matrix composite with CNTs/Al2O3 hybrid reinforcements,” Mater. Sci. Eng., A 573, 92 (2013). H. H. Kim, J. S. S. Babu, and C. G. Kang, “Fabrication of A356 aluminum alloy matrix composite with CNTs/Al2O3 hybrid reinforcements,” Mater. Sci. Eng., A 573, 92 (2013).
14.
go back to reference P. S. Kang, C. J. Jun, G. P. Jong, K. P. Hyoen, H. C. Yong, H. N. Dong, H. K. Dong, Y. J. Hye, B. Chandan, H. H. Chan, and H. L. Young, “SiC formation on carbon nanotube surface for improving wettability with aluminum,” Compos. Sci. Technol., 74, 6 (2013). P. S. Kang, C. J. Jun, G. P. Jong, K. P. Hyoen, H. C. Yong, H. N. Dong, H. K. Dong, Y. J. Hye, B. Chandan, H. H. Chan, and H. L. Young, “SiC formation on carbon nanotube surface for improving wettability with aluminum,” Compos. Sci. Technol., 74, 6 (2013).
15.
go back to reference S. I. Oh, J. Y. Lim, Y. C. Kim, J. Yoon, G. H. Kim, J. Lee, Y. M. Sung, and J. H. Han, “Fabrication of carbon nanofiber reinforced aluminum alloy nanocomposites by a liquid process,” J. Alloys Compd., 542, 111 (2012).CrossRef S. I. Oh, J. Y. Lim, Y. C. Kim, J. Yoon, G. H. Kim, J. Lee, Y. M. Sung, and J. H. Han, “Fabrication of carbon nanofiber reinforced aluminum alloy nanocomposites by a liquid process,” J. Alloys Compd., 542, 111 (2012).CrossRef
16.
go back to reference M. E. Turan, F. Aydin, Y. Sun, H. Zengin, and Y. Akinay, “Wear resistance and tribological properties of GNPs and MWCNT reinforced AlSi18CuNiMg alloys produced by stir casting,” Tribology Inter., 164, 107201 (2021).CrossRef M. E. Turan, F. Aydin, Y. Sun, H. Zengin, and Y. Akinay, “Wear resistance and tribological properties of GNPs and MWCNT reinforced AlSi18CuNiMg alloys produced by stir casting,” Tribology Inter., 164, 107201 (2021).CrossRef
17.
go back to reference M. Muhammad and S. Muhammad, “Carbon nanotube-reinforced aluminum composite produced by induction melting,” J. of Applied Research and Technol., 14, 4, 215–224 (2016).CrossRef M. Muhammad and S. Muhammad, “Carbon nanotube-reinforced aluminum composite produced by induction melting,” J. of Applied Research and Technol., 14, 4, 215–224 (2016).CrossRef
18.
go back to reference D. K. Lim, T. Shibayanagi, and A. P. Gerlich, “Synthesis of multi-walled CNT reinforced aluminum alloy composite via friction stir processing,” Mater. Sci. Eng., A 507, 194–199 (2009). D. K. Lim, T. Shibayanagi, and A. P. Gerlich, “Synthesis of multi-walled CNT reinforced aluminum alloy composite via friction stir processing,” Mater. Sci. Eng., A 507, 194–199 (2009).
19.
go back to reference Q. Liu, L. M. Ke, F. C. Liu, C. P. Huang, and L. Xing, “Microstructure and mechanical property of multi-walled carbon nanotubes reinforced aluminum matrix composites fabricated by friction stir processing,” Mater. Des., 45, 343 (2013).CrossRef Q. Liu, L. M. Ke, F. C. Liu, C. P. Huang, and L. Xing, “Microstructure and mechanical property of multi-walled carbon nanotubes reinforced aluminum matrix composites fabricated by friction stir processing,” Mater. Des., 45, 343 (2013).CrossRef
20.
go back to reference V. Chak, H. Chattopadhyay, and T. L. Dora, “A review on fabrication methods, reinforcements and mechanical properties of aluminum matrix composites,” J. of Manufacturing Processes, 56, Part A, 1059–1074 (2020). V. Chak, H. Chattopadhyay, and T. L. Dora, “A review on fabrication methods, reinforcements and mechanical properties of aluminum matrix composites,” J. of Manufacturing Processes, 56, Part A, 1059–1074 (2020).
21.
go back to reference M. Sohail et al., Carbon Nanotube-Reinforced Aluminum Matrix Composites, Advanced Eng. Mater. (2020). M. Sohail et al., Carbon Nanotube-Reinforced Aluminum Matrix Composites, Advanced Eng. Mater. (2020).
23.
go back to reference W. Zhou et al., “Interface and interfacial reactions in multi-walled carbon nanotube-reinforced aluminum matrix composites,” Carbon, 96, 919–928 (2016).CrossRef W. Zhou et al., “Interface and interfacial reactions in multi-walled carbon nanotube-reinforced aluminum matrix composites,” Carbon, 96, 919–928 (2016).CrossRef
24.
go back to reference K. V. Kremlev, A. M. Ob’edkov, N. M. Semenov, B. S. Kaverin, S. Yu. Ketkov, S. A. Gusev, P. A. Yunin, A. I. Elkin, and A. V. Aborkin, “Gas-phase synthesis of a new functional hybrid material based on multi-walled carbon nanotubes, decorated with faceted aluminum nanocrystals,” Pis’ma v ZhTF, 44 (19), 24–31 (2018). K. V. Kremlev, A. M. Ob’edkov, N. M. Semenov, B. S. Kaverin, S. Yu. Ketkov, S. A. Gusev, P. A. Yunin, A. I. Elkin, and A. V. Aborkin, “Gas-phase synthesis of a new functional hybrid material based on multi-walled carbon nanotubes, decorated with faceted aluminum nanocrystals,” Pis’ma v ZhTF, 44 (19), 24–31 (2018).
27.
go back to reference M. Estili and A. Kawasaki, “Engineering strong intergraphene shear resistance in multi-walled carbon nanotubes and dramatic tensile improvements,” Adv. Mater., 22 (5), 607–610 (2010).CrossRef M. Estili and A. Kawasaki, “Engineering strong intergraphene shear resistance in multi-walled carbon nanotubes and dramatic tensile improvements,” Adv. Mater., 22 (5), 607–610 (2010).CrossRef
28.
go back to reference M. Rashad et al., “Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method,” Progress in Natural Sci.: Mat. Int., 24, No. 2, 101–108 (2014).CrossRef M. Rashad et al., “Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method,” Progress in Natural Sci.: Mat. Int., 24, No. 2, 101–108 (2014).CrossRef
29.
go back to reference A. V. Aborkin, A. V. Sobol’kov, K. S. Khor’kov, et al., “Effect of the thermomechanical treatment conditions on the consolidation, the structure, and the mechanical properties of bulk Al–Mg–C Nanocomposites,” Russian Metallurgy (Metally), 2018, No. 7, 625–632 (2018); https://doi.org/10.1134/S0036029518070029.CrossRef A. V. Aborkin, A. V. Sobol’kov, K. S. Khor’kov, et al., “Effect of the thermomechanical treatment conditions on the consolidation, the structure, and the mechanical properties of bulk Al–Mg–C Nanocomposites,” Russian Metallurgy (Metally), 2018, No. 7, 625–632 (2018); https://​doi.​org/​10.​1134/​S003602951807002​9.CrossRef
30.
go back to reference A. V. Aborkin, A. I. Zalesnov, I. O. Scriabin, et al., “Structural-phase composition and microhardness of powder composites based on AMg2 and AMg10 alloys hardened by by micro-addition of hybrid structures Al/MWCNT,” Aktual’nye Voprosy Mashinovedeniya, 7, 297–299 (2018). A. V. Aborkin, A. I. Zalesnov, I. O. Scriabin, et al., “Structural-phase composition and microhardness of powder composites based on AMg2 and AMg10 alloys hardened by by micro-addition of hybrid structures Al/MWCNT,” Aktual’nye Voprosy Mashinovedeniya, 7, 297–299 (2018).
31.
go back to reference D. Sivkov, S. Nekipelov, O. Petrova, A. Vinogradov, A. Mingaleva, S. Isaenko, P. Makarov, A. Ob’edkov, B. Kaverin, S. Gusev, I. Vilkov, A. Aborkin, and V. Sivkov, “Studies of buried layers and interfaces of tungsten carbide coatings on the MWCNT surface by XPS and NEXAFS spectroscopy,” Applied Sci. (Switzerland), 10 (14) (2020); https://doi.org/10.3390/app10144736. D. Sivkov, S. Nekipelov, O. Petrova, A. Vinogradov, A. Mingaleva, S. Isaenko, P. Makarov, A. Ob’edkov, B. Kaverin, S. Gusev, I. Vilkov, A. Aborkin, and V. Sivkov, “Studies of buried layers and interfaces of tungsten carbide coatings on the MWCNT surface by XPS and NEXAFS spectroscopy,” Applied Sci. (Switzerland), 10 (14) (2020); https://​doi.​org/​10.​3390/​app10144736.
33.
go back to reference A. D. Romanov, E. A. Romanova, and E. A. Chernyshov, “Study of the specifics of liquid-phase oxidation of aluminum melt to obtain an aluminum-matrix composite,” Metallurg, No. 7, 75–80 (2021). A. D. Romanov, E. A. Romanova, and E. A. Chernyshov, “Study of the specifics of liquid-phase oxidation of aluminum melt to obtain an aluminum-matrix composite,” Metallurg, No. 7, 75–80 (2021).
34.
go back to reference Ye. A. Chernyshov, A. D. Romanov, B. S. Kaverin, et al., “Development of the technology for producing a composite based on aluminum reinforced with hollow ceramic microspheres,” Metallurg, No. 12, 50–53 (2018). Ye. A. Chernyshov, A. D. Romanov, B. S. Kaverin, et al., “Development of the technology for producing a composite based on aluminum reinforced with hollow ceramic microspheres,” Metallurg, No. 12, 50–53 (2018).
Metadata
Title
Technology for Producing Aluminum-Matrix Composite Material Reinforced with Multi-Wall Carbon Nanotubes
Authors
A. D. Romanov
E. A. Romanova
I. V. Vilkov
A. M. Ob’edkov
N. M. Semenov
B. S. Kaverin
R. S. Kovylin
Publication date
29-09-2022
Publisher
Springer US
Published in
Metallurgist / Issue 5-6/2022
Print ISSN: 0026-0894
Electronic ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-022-01376-1

Other articles of this Issue 5-6/2022

Metallurgist 5-6/2022 Go to the issue

Premium Partners