Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 3/2018

20-02-2018

Tensile Deformation Temperature Impact on Microstructure and Mechanical Properties of AISI 316LN Austenitic Stainless Steel

Authors: Yi Xiong, Tiantian He, Yan Lu, Fengzhang Ren, Alex A. Volinsky, Wei Cao

Published in: Journal of Materials Engineering and Performance | Issue 3/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Uniaxial tensile tests were conducted on AISI 316LN austenitic stainless steel from − 40 to 300 °C at a rate of 0.5 mm/min. Microstructure and mechanical properties of the deformed steel were investigated by optical, scanning and transmission electron microscopies, x-ray diffraction, and microhardness testing. The yield strength, ultimate tensile strength, elongation, and microhardness increase with the decrease in the test temperature. The tensile fracture morphology has the dimple rupture feature after low-temperature deformations and turns to a mixture of transgranular fracture and dimple fracture after high-temperature ones. The dominating deformation microstructure evolves from dislocation tangle/slip bands to large deformation twins/slip bands with temperature decrease. The deformation-induced martensite transformation can only be realized at low temperature, and its quantity increases with the decrease in the temperature.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference G.V. Prasad Reddy, R. Kannan, K. Mariappan, R. Sandhya, S. Sankaran, and K. BhanuSankaraRao, Effect of Strain Rate on Low Cycle Fatigue of 316LN Stainless Steel with Varying Nitrogen Content: Part-I, Cyclic Deformation Behavior, Int. J. Fatigue, 2015, 81, p 299–308CrossRef G.V. Prasad Reddy, R. Kannan, K. Mariappan, R. Sandhya, S. Sankaran, and K. BhanuSankaraRao, Effect of Strain Rate on Low Cycle Fatigue of 316LN Stainless Steel with Varying Nitrogen Content: Part-I, Cyclic Deformation Behavior, Int. J. Fatigue, 2015, 81, p 299–308CrossRef
2.
go back to reference G.V. Prasad Reddy, K. Mariappan, R. Kannan, R. Sandhya, S. Sankaran, and K. BhanuSankaraRao, Effect of Strain Rate on Low Cycle Fatigue of 316LN Stainless Steel with Varying Nitrogen Content: Part-II, Fatigue Life and Fracture, Int. J. Fatigue, 2015, 81, p 309–317CrossRef G.V. Prasad Reddy, K. Mariappan, R. Kannan, R. Sandhya, S. Sankaran, and K. BhanuSankaraRao, Effect of Strain Rate on Low Cycle Fatigue of 316LN Stainless Steel with Varying Nitrogen Content: Part-II, Fatigue Life and Fracture, Int. J. Fatigue, 2015, 81, p 309–317CrossRef
3.
go back to reference E.I. Poliak and J.J. Jonas, Initiation of Dynamic Recrystallization in Constant Strain Rate Hot Deformation, ISIJ Int., 2003, 43(5), p 684–691CrossRef E.I. Poliak and J.J. Jonas, Initiation of Dynamic Recrystallization in Constant Strain Rate Hot Deformation, ISIJ Int., 2003, 43(5), p 684–691CrossRef
4.
go back to reference S.L. Wang, M.X. Zhang, H.C. Wu, and B. Yang, Study on the Dynamic Recrystallization Model and Mechanism of Nuclear Grade 316LN Austenitic Stainless Steel, Mater. Charact., 2016, 118, p 92–101CrossRef S.L. Wang, M.X. Zhang, H.C. Wu, and B. Yang, Study on the Dynamic Recrystallization Model and Mechanism of Nuclear Grade 316LN Austenitic Stainless Steel, Mater. Charact., 2016, 118, p 92–101CrossRef
5.
go back to reference C.Y. Sun, Y. Xiang, Q.J. Zhou, D.J. Politis, Z.H. Sun, and M.Q. Wang, Dynamic Recrystallization and Hot Workability of 316LN Stainless Steel, Metals, 2016, 6(7), p 152–164CrossRef C.Y. Sun, Y. Xiang, Q.J. Zhou, D.J. Politis, Z.H. Sun, and M.Q. Wang, Dynamic Recrystallization and Hot Workability of 316LN Stainless Steel, Metals, 2016, 6(7), p 152–164CrossRef
6.
go back to reference T.S. Byun, N. Hashimoto, and K. Farrell, Temperature Dependence of Strain Hardening and Plastic Instability Behaviors in Austenitic Stainless Steels, Acta Mater., 2004, 52, p 3889–3899CrossRef T.S. Byun, N. Hashimoto, and K. Farrell, Temperature Dependence of Strain Hardening and Plastic Instability Behaviors in Austenitic Stainless Steels, Acta Mater., 2004, 52, p 3889–3899CrossRef
7.
go back to reference H.X. Pei, H.L. Zhang, L.X. Wang et al., Tensile Behaviour of 316LN Stainless Steel At Elevated Temperatures, Mater. High Temp., 2014, 31(3), p 198–203CrossRef H.X. Pei, H.L. Zhang, L.X. Wang et al., Tensile Behaviour of 316LN Stainless Steel At Elevated Temperatures, Mater. High Temp., 2014, 31(3), p 198–203CrossRef
8.
go back to reference G.E. Dieter, Mechanical Metallurgy, McGraw-Hill, New York, 1976 G.E. Dieter, Mechanical Metallurgy, McGraw-Hill, New York, 1976
9.
go back to reference W.G. Dobson and D.L. Johnson, Effect of Strain Rate on Measured Mechanical Properties of Stainless Steel at 4 K, Adv. Cryogenic Eng. Mater., 1984, 30, p 185–192CrossRef W.G. Dobson and D.L. Johnson, Effect of Strain Rate on Measured Mechanical Properties of Stainless Steel at 4 K, Adv. Cryogenic Eng. Mater., 1984, 30, p 185–192CrossRef
10.
go back to reference P. Behjati, A. Kermanpur, A. Najafizadeh, and H. SamaeiBaghbadorani, Microstructural Investigation on Deformation Behavior of High Purity Fe-Cr-Ni Austenitic Alloys During Tensile Testing at Different Temperatures, Mater. Sci. Eng., A, 2014, 618, p 16–21CrossRef P. Behjati, A. Kermanpur, A. Najafizadeh, and H. SamaeiBaghbadorani, Microstructural Investigation on Deformation Behavior of High Purity Fe-Cr-Ni Austenitic Alloys During Tensile Testing at Different Temperatures, Mater. Sci. Eng., A, 2014, 618, p 16–21CrossRef
11.
go back to reference W.S. Park, S.W. Yoo, M.H. Kim, and J.M. Lee, Strain-Rate Effects on the Mechanical Behavior of the AISI, 300 Series of Austenitic Stainless Steel Under Cryogenic Environments, Mater. Des., 2010, 31, p 3630–3640CrossRef W.S. Park, S.W. Yoo, M.H. Kim, and J.M. Lee, Strain-Rate Effects on the Mechanical Behavior of the AISI, 300 Series of Austenitic Stainless Steel Under Cryogenic Environments, Mater. Des., 2010, 31, p 3630–3640CrossRef
12.
go back to reference M. Botshekan, S. Degallaix, and Y. Desplanques, Influence of Martensitic Transformation on the Low-Cycle Fatigue Behaviour of 316LN Stainless Steel at 77 K, Mater. Sci. Eng., A, 1997, 234–236, p 463–466CrossRef M. Botshekan, S. Degallaix, and Y. Desplanques, Influence of Martensitic Transformation on the Low-Cycle Fatigue Behaviour of 316LN Stainless Steel at 77 K, Mater. Sci. Eng., A, 1997, 234–236, p 463–466CrossRef
13.
go back to reference J.G. Qin, C. Dai, G.J. Liao, Y. Wu, X.F. Zhu, C.J. Huang, L.F. Li, K. Wang, X.G. Shen, Z.P. Tu, and H. Ji, Tensile Test of SS 316LN Jacket With Different Conditions, Cryogenics, 2014, 64, p 16–20CrossRef J.G. Qin, C. Dai, G.J. Liao, Y. Wu, X.F. Zhu, C.J. Huang, L.F. Li, K. Wang, X.G. Shen, Z.P. Tu, and H. Ji, Tensile Test of SS 316LN Jacket With Different Conditions, Cryogenics, 2014, 64, p 16–20CrossRef
14.
go back to reference E. Nagy, V. Mertinger, F. Tranta, and J. Sólyom, Deformation Induced Martensitic Transformation in Stainless Steels, Mater. Sci. Eng., A, 2004, 378, p 308–313CrossRef E. Nagy, V. Mertinger, F. Tranta, and J. Sólyom, Deformation Induced Martensitic Transformation in Stainless Steels, Mater. Sci. Eng., A, 2004, 378, p 308–313CrossRef
15.
go back to reference A.K. Dey, D.C. Murdoch, M.C. Mataya, J.C. Speer, and D.K. Matlock, Quantitative Measurement of Deformation-Induced Martensite in 304 Stainless Steel by x-ray Diffraction, Scr. Mater., 2004, 50, p 1445–1449CrossRef A.K. Dey, D.C. Murdoch, M.C. Mataya, J.C. Speer, and D.K. Matlock, Quantitative Measurement of Deformation-Induced Martensite in 304 Stainless Steel by x-ray Diffraction, Scr. Mater., 2004, 50, p 1445–1449CrossRef
16.
go back to reference A. Das, S. Sivaprasad, M. Ghosh, P.C. Chakraborty, and S. Tarafder, Morphologies and Characteristics of Deformation Induced Martensite During Tensile Deformation of 304 LN Stainless Steel, Mater. Sci. Eng., A, 2008, 486, p 283–286CrossRef A. Das, S. Sivaprasad, M. Ghosh, P.C. Chakraborty, and S. Tarafder, Morphologies and Characteristics of Deformation Induced Martensite During Tensile Deformation of 304 LN Stainless Steel, Mater. Sci. Eng., A, 2008, 486, p 283–286CrossRef
17.
go back to reference H. Roy, A. Ray, K. Barat, C. Hochmuth, S. Sivaprasad, S. Tarafder, U. Glatzel, and K.K. Ray, Structural Variations Ahead of Crack Tip During Monotonic and Cyclic Fracture Tests of AISI, 304LN Stainless Steel, Mater. Sci. Eng., A, 2013, 561, p 88–99CrossRef H. Roy, A. Ray, K. Barat, C. Hochmuth, S. Sivaprasad, S. Tarafder, U. Glatzel, and K.K. Ray, Structural Variations Ahead of Crack Tip During Monotonic and Cyclic Fracture Tests of AISI, 304LN Stainless Steel, Mater. Sci. Eng., A, 2013, 561, p 88–99CrossRef
18.
go back to reference K. Barat, H.N. Bar, D. Mandal, H. Royc, S. Sivaprasad, and S. Tarafder, Low Temperature Tensile Deformation and Acoustic Emission Signal Characteristics of AISI304LN Stainless Steel, Mater. Sci. Eng., A, 2014, 597, p 37–45CrossRef K. Barat, H.N. Bar, D. Mandal, H. Royc, S. Sivaprasad, and S. Tarafder, Low Temperature Tensile Deformation and Acoustic Emission Signal Characteristics of AISI304LN Stainless Steel, Mater. Sci. Eng., A, 2014, 597, p 37–45CrossRef
19.
go back to reference G.L. Huang, D.K. Matlock, and G. Krauss, Martensite Formation, Strain Rate Sensitivity, and Deformation Behavior of Type 304 Stainless Steel Sheet, Metall. Mater. Trans. A, 1989, 20, p 1239–1246CrossRef G.L. Huang, D.K. Matlock, and G. Krauss, Martensite Formation, Strain Rate Sensitivity, and Deformation Behavior of Type 304 Stainless Steel Sheet, Metall. Mater. Trans. A, 1989, 20, p 1239–1246CrossRef
20.
go back to reference T.S. Byun, On the Stress Dependence of Partial Dislocation Separation and Deformation Microstructure in Austenitic Stainless Steels, Acta Mater., 2003, 51(11), p 3063–3071CrossRef T.S. Byun, On the Stress Dependence of Partial Dislocation Separation and Deformation Microstructure in Austenitic Stainless Steels, Acta Mater., 2003, 51(11), p 3063–3071CrossRef
21.
go back to reference J.H. Kim, W.S. Park, M.S. Chun, J.J. Kim, J.H. Bae, M.H. Kim, and J.M. Lee, Effect of Pre-straining on Low-Temperature Mechanical Behavior of AISI, 304L, Mater. Sci. Eng., A, 2012, 543, p 50–57CrossRef J.H. Kim, W.S. Park, M.S. Chun, J.J. Kim, J.H. Bae, M.H. Kim, and J.M. Lee, Effect of Pre-straining on Low-Temperature Mechanical Behavior of AISI, 304L, Mater. Sci. Eng., A, 2012, 543, p 50–57CrossRef
22.
go back to reference J.A. Jiménez and G. Frommeye, Analysis of the Microstructure Evolution During Tensile Testing at Room Temperature of High Manganese Austenitic Steel, Mater. Charact., 2010, 61, p 221–226CrossRef J.A. Jiménez and G. Frommeye, Analysis of the Microstructure Evolution During Tensile Testing at Room Temperature of High Manganese Austenitic Steel, Mater. Charact., 2010, 61, p 221–226CrossRef
23.
go back to reference J. Manjanna, S. Kobayashi, Y. Kamada, S. Takahashi, and H. Kikuchi, Martensitic Transformation in SUS 316LN Austenitic Stainless Steel at Room Temperature, J. Mater. Sci., 2008, 43, p 2659–2665CrossRef J. Manjanna, S. Kobayashi, Y. Kamada, S. Takahashi, and H. Kikuchi, Martensitic Transformation in SUS 316LN Austenitic Stainless Steel at Room Temperature, J. Mater. Sci., 2008, 43, p 2659–2665CrossRef
24.
go back to reference G.V. Prasad Reddy, R. Sandhya, S. Sankaran, P. Parameswaran, and K. Laha, Creep-Fatigue Interaction Behavior of 316LN Austenitic Stainless Steel with Varying Nitrogen Content, Mater. Des., 2015, 88, p 972–982CrossRef G.V. Prasad Reddy, R. Sandhya, S. Sankaran, P. Parameswaran, and K. Laha, Creep-Fatigue Interaction Behavior of 316LN Austenitic Stainless Steel with Varying Nitrogen Content, Mater. Des., 2015, 88, p 972–982CrossRef
25.
go back to reference S.S. Hecker, M.G. Stout, K.P. Staudhammer, and J.L. Smith, Effectsof Strain State and Strain Rate on Deformation-Induced Transformationin 304 Stainless-Steel. Part I. Magnetic Measurements and Mechanical Behavior, Metall. Trans. A-Phys Metall Mater. Sci., 1982, 13(4), p 619–626CrossRef S.S. Hecker, M.G. Stout, K.P. Staudhammer, and J.L. Smith, Effectsof Strain State and Strain Rate on Deformation-Induced Transformationin 304 Stainless-Steel. Part I. Magnetic Measurements and Mechanical Behavior, Metall. Trans. A-Phys Metall Mater. Sci., 1982, 13(4), p 619–626CrossRef
26.
go back to reference V. Shrinivas, S.K. Varma, and L.E. Murr, Deformation-Induced Martensitic Characteristics in 304- Stainless and 316-Stainless Steels During Room-Temperature Rolling, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 1995, 26(3), p 661–671CrossRef V. Shrinivas, S.K. Varma, and L.E. Murr, Deformation-Induced Martensitic Characteristics in 304- Stainless and 316-Stainless Steels During Room-Temperature Rolling, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 1995, 26(3), p 661–671CrossRef
27.
go back to reference N. Hashimoto, S.J. Zinkle, A.F. Rowcliffe, J.P. Robertson, and S. Jitsukawa, Deformation Mechanisms in 316 Stainless Steel Irradiated at 60°C and 300°C, J. Nucl. Mater., 2000, 283–287, p 528–534CrossRef N. Hashimoto, S.J. Zinkle, A.F. Rowcliffe, J.P. Robertson, and S. Jitsukawa, Deformation Mechanisms in 316 Stainless Steel Irradiated at 60°C and 300°C, J. Nucl. Mater., 2000, 283–287, p 528–534CrossRef
28.
go back to reference J.W. Brooks, M.H. Loretto, and R.E. Smallman, In Situ Observations of the Formation of Martensite in Stainless Steel, Acta Metall., 1979, 27, p 1829–1838CrossRef J.W. Brooks, M.H. Loretto, and R.E. Smallman, In Situ Observations of the Formation of Martensite in Stainless Steel, Acta Metall., 1979, 27, p 1829–1838CrossRef
29.
go back to reference J.W. Brooks, M.H. Loretto, and R.E. Smallman, Direct Observations of Martensite Nuclei in Stainless Steel, Acta Metall., 1979, 27, p 1839–1847CrossRef J.W. Brooks, M.H. Loretto, and R.E. Smallman, Direct Observations of Martensite Nuclei in Stainless Steel, Acta Metall., 1979, 27, p 1839–1847CrossRef
30.
go back to reference M. Eskandari, A. Najafizadeh, and A. Kermanpur, Effect of Strain-Induced Martensite on the Formation of Nanocrystalline 316L Stainless Steel After Cold Rolling and Annealing, Mater. Sci. Eng., A, 2009, 519, p 46–50CrossRef M. Eskandari, A. Najafizadeh, and A. Kermanpur, Effect of Strain-Induced Martensite on the Formation of Nanocrystalline 316L Stainless Steel After Cold Rolling and Annealing, Mater. Sci. Eng., A, 2009, 519, p 46–50CrossRef
31.
go back to reference B.K. Choudhary, Influence of Strain Rate and Temperature on Tensile Deformation and Fracture Behavior of Type 316L(N) Austenitic Stainless Steel, Metall. Mater. Trans. A, 2014, 45(1), p 302–316CrossRef B.K. Choudhary, Influence of Strain Rate and Temperature on Tensile Deformation and Fracture Behavior of Type 316L(N) Austenitic Stainless Steel, Metall. Mater. Trans. A, 2014, 45(1), p 302–316CrossRef
32.
go back to reference S. Sinha, J. Szpunar, N.A.P. KiranKumar, and N.P. Gurao, Tensile Deformation of 316L Austenitic Stainless Steel Using In Situ Electron Back Scatter Diffraction and Crystal Plasticity Simulations, Mater. Sci. Eng., A, 2015, 637, p 48–55CrossRef S. Sinha, J. Szpunar, N.A.P. KiranKumar, and N.P. Gurao, Tensile Deformation of 316L Austenitic Stainless Steel Using In Situ Electron Back Scatter Diffraction and Crystal Plasticity Simulations, Mater. Sci. Eng., A, 2015, 637, p 48–55CrossRef
33.
go back to reference Z.Z. Yuan, Q.X. Dai, X.N. Cheng, K.M. Chen, L. Pan, and A.D. Wang, In Situ SEM Tensile Test of High-Nitrogen Austenitic Stainless Steels, Mater. Charact., 2006, 56, p 79–83CrossRef Z.Z. Yuan, Q.X. Dai, X.N. Cheng, K.M. Chen, L. Pan, and A.D. Wang, In Situ SEM Tensile Test of High-Nitrogen Austenitic Stainless Steels, Mater. Charact., 2006, 56, p 79–83CrossRef
34.
go back to reference A. Sato, K. Soma, and T. Mori, Hardening Due to Pre-existing ϵ-Martensite in an Fe-30Mn-1Si Alloy Single Crystal, Acta Metall., 1982, 30, p 1901–1907CrossRef A. Sato, K. Soma, and T. Mori, Hardening Due to Pre-existing ϵ-Martensite in an Fe-30Mn-1Si Alloy Single Crystal, Acta Metall., 1982, 30, p 1901–1907CrossRef
35.
go back to reference V. Seetharaman and R. Krishnan, Influence of the Martensitic Transformation on the Deformation Behaviour of an AISI, 316 Stainless Steel at Low Temperatures, J. Mater. Sci., 1981, 16, p 523–530CrossRef V. Seetharaman and R. Krishnan, Influence of the Martensitic Transformation on the Deformation Behaviour of an AISI, 316 Stainless Steel at Low Temperatures, J. Mater. Sci., 1981, 16, p 523–530CrossRef
36.
go back to reference D. Goodchild, W.T. Roberts, and D.V. Wilson, Plastic Deformation and Phase Transformation in Textured Austenitic Stainless Steel, Acta Metall., 1970, 18, p 1137–1145CrossRef D. Goodchild, W.T. Roberts, and D.V. Wilson, Plastic Deformation and Phase Transformation in Textured Austenitic Stainless Steel, Acta Metall., 1970, 18, p 1137–1145CrossRef
37.
go back to reference T.S. Byun, E.H. Lee, and J.D. Hunn, Plastic Deformation in 316LN Stainless Steel-Characterization of Deformation Microstructures, J. Nucl. Mater., 2003, 321, p 29–39CrossRef T.S. Byun, E.H. Lee, and J.D. Hunn, Plastic Deformation in 316LN Stainless Steel-Characterization of Deformation Microstructures, J. Nucl. Mater., 2003, 321, p 29–39CrossRef
38.
go back to reference X.F. Li, J. Chen, L.Y. Ye, W. Ding, and P.C. Song, The Influence of Strain Rate on Tensile Characteristics of SUS304 Metastable Austenitic Stainless Steel, Acta Metall. Sin. (Engl. Lett.), 2013, 26(6), p 657–662CrossRef X.F. Li, J. Chen, L.Y. Ye, W. Ding, and P.C. Song, The Influence of Strain Rate on Tensile Characteristics of SUS304 Metastable Austenitic Stainless Steel, Acta Metall. Sin. (Engl. Lett.), 2013, 26(6), p 657–662CrossRef
39.
go back to reference X.F. Li, J.J. Li, W. Ding, S.J. Zhao, and J. Chen, Stress Relaxation in Tensile Deformation of 304 Stainless Steel, J. Mater. Eng. Perform., 2017, 26(2), p 630–635CrossRef X.F. Li, J.J. Li, W. Ding, S.J. Zhao, and J. Chen, Stress Relaxation in Tensile Deformation of 304 Stainless Steel, J. Mater. Eng. Perform., 2017, 26(2), p 630–635CrossRef
40.
go back to reference X.Y. Li, Y.J. Wei, L. Lu, K. Lu, and H.J. Gao, Dislocation Nucleation Governed Softening and Maximum Strength in Nano-Twinned Metals, Nature, 2010, 464, p 877–880CrossRef X.Y. Li, Y.J. Wei, L. Lu, K. Lu, and H.J. Gao, Dislocation Nucleation Governed Softening and Maximum Strength in Nano-Twinned Metals, Nature, 2010, 464, p 877–880CrossRef
Metadata
Title
Tensile Deformation Temperature Impact on Microstructure and Mechanical Properties of AISI 316LN Austenitic Stainless Steel
Authors
Yi Xiong
Tiantian He
Yan Lu
Fengzhang Ren
Alex A. Volinsky
Wei Cao
Publication date
20-02-2018
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 3/2018
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3234-9

Other articles of this Issue 3/2018

Journal of Materials Engineering and Performance 3/2018 Go to the issue

Premium Partners