Skip to main content
Top
Published in: Metallurgical and Materials Transactions A 3/2021

25-01-2021 | Original Research Article

Texture Development During Cold Rolling of a β-Ti Alloy: Experiments and Simulations

Authors: Aman Gupta, Rajesh Kisni Khatirkar, Amit Kumar, Khushahal Sunil Thool, Nitish Bhibhanshu, Satyam Suwas

Published in: Metallurgical and Materials Transactions A | Issue 3/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Microstructure evolution and texture development during cold rolling of a Ti15333 alloy were systematically investigated in the present work. Texture was simulated using mean-field [Visco-Plastic Self-Consistent (VPSC) and Taylor] models. Evolution of crystallographic texture was also simulated using the Visco-Plastic Fast Fourier Transform (VPFFT) model. The as-received samples (in the hot-forged and hot-rolled condition) were cold rolled unidirectionally up to 20, 40, 60 and 80 pct thickness reductions. Increase in the cold-rolling reduction resulted in changes in the crystallographic texture as well as grain morphology. The initial hot-rolled sample consisted of in-grain shear bands that were aligned approximately ± 35 to 40 ° with respect to the sample rolling direction. Shear band density gradually increased with the increase in cold-rolling reduction, and these bands usually represent narrow zones of intense strain. α (RD//〈110〉) and γ (ND//〈111〉) fibers were observed in all the cold-rolled samples. The volume fraction of both these fibers was found to be highest for the 80 pct deformed sample. For mean-field simulations, the normalized difference of the texture index (normalized TIdiff) was found to be a good criterion to represent the match between the simulated and experimental texture. The affine model (VPSC) was found to give a good match with the experimental texture compared to the Taylor models. The γ-fiber and α-fiber were always overestimated in mean-field VPSC simulations. Extensive shear band formation could be the possible reason for mismatch between the simulated and experimental texture. For VPFFT simulations, the general texture evolution involved the intensification of the γ-fiber and α-fiber texture. Simulated texture was reasonably well predicted quantitatively with VPFFT, analyzed based on the volume fraction of the different texture fibers/components.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference G. Lütjering and J.C. Williams: Titanium, 2nd edn., Springer-Verlag Berlin Heidelberg, Hamburg, 2007. G. Lütjering and J.C. Williams: Titanium, 2nd edn., Springer-Verlag Berlin Heidelberg, Hamburg, 2007.
2.
go back to reference I. Weiss and S.L. Semiatin: Mater. Sci. Eng. A, 1998, vol. 243, pp. 46–65.CrossRef I. Weiss and S.L. Semiatin: Mater. Sci. Eng. A, 1998, vol. 243, pp. 46–65.CrossRef
4.
go back to reference A. Gupta, R.K. Khatirkar, A. Kumar, and M.S. Parihar: J. Mater. Res., 2018, vol. 33, pp. 946–57.CrossRef A. Gupta, R.K. Khatirkar, A. Kumar, and M.S. Parihar: J. Mater. Res., 2018, vol. 33, pp. 946–57.CrossRef
5.
go back to reference O.P. Karasevskaya, O.M. Ivasishin, S.L. Semiatin, and Y. V. Matviychuk: Mater. Sci. Eng. A, 2003, vol. 354, pp. 121–32.CrossRef O.P. Karasevskaya, O.M. Ivasishin, S.L. Semiatin, and Y. V. Matviychuk: Mater. Sci. Eng. A, 2003, vol. 354, pp. 121–32.CrossRef
6.
go back to reference A. Gupta, R.K. Khatirkar, T. Dandekar, J.S. Jha, and S. Mishra: J. Mater. Res., 2019, vol. 34, pp. 1–11.CrossRef A. Gupta, R.K. Khatirkar, T. Dandekar, J.S. Jha, and S. Mishra: J. Mater. Res., 2019, vol. 34, pp. 1–11.CrossRef
7.
go back to reference R. Khatirkar, B. Vadavadagi, S.K. Shekhawat, A. Haldar, and I. Samajdar: ISIJ Int., 2012, vol. 52, pp. 884–93.CrossRef R. Khatirkar, B. Vadavadagi, S.K. Shekhawat, A. Haldar, and I. Samajdar: ISIJ Int., 2012, vol. 52, pp. 884–93.CrossRef
8.
go back to reference S. Suwas and R.K. Ray: Crystallographic Texture of Materials, Springers, Manchester, UK, 2014.CrossRef S. Suwas and R.K. Ray: Crystallographic Texture of Materials, Springers, Manchester, UK, 2014.CrossRef
9.
go back to reference R. Khatirkar, L. Kestens, R. Petrov, and I. Samajdar: ISIJ Int., 2009, vol. 49, pp. 78–85.CrossRef R. Khatirkar, L. Kestens, R. Petrov, and I. Samajdar: ISIJ Int., 2009, vol. 49, pp. 78–85.CrossRef
10.
go back to reference G. Alireza, P.D. Hodgson, and M.R. Barnett: Key Eng. Mater., 2013, vol. 551, pp. 210–16.CrossRef G. Alireza, P.D. Hodgson, and M.R. Barnett: Key Eng. Mater., 2013, vol. 551, pp. 210–16.CrossRef
11.
go back to reference N.P. Gurao, A. Ali, and S. Suwas: Mater. Sci. Eng. A, 2009, vol. 504, pp. 24–35.CrossRef N.P. Gurao, A. Ali, and S. Suwas: Mater. Sci. Eng. A, 2009, vol. 504, pp. 24–35.CrossRef
12.
go back to reference H. Inoue, S. Fukushima, and N. Inakazu: Mater. Trans., 1992, vol. 33, pp. 129–37.CrossRef H. Inoue, S. Fukushima, and N. Inakazu: Mater. Trans., 1992, vol. 33, pp. 129–37.CrossRef
13.
go back to reference B.K. Sokolov, V. V. Gubernatorov, I. V. Gervasyeva, A.K. Sbitnev, and L.R. Vladimirov: Textures Microstruct., 1999, vol. 32, pp. 21–39.CrossRef B.K. Sokolov, V. V. Gubernatorov, I. V. Gervasyeva, A.K. Sbitnev, and L.R. Vladimirov: Textures Microstruct., 1999, vol. 32, pp. 21–39.CrossRef
14.
15.
go back to reference I.L. Dillamore, J.G. Roberts, and A.C. Bush: Met. Sci., 1979, vol. 13, pp. 73–7.CrossRef I.L. Dillamore, J.G. Roberts, and A.C. Bush: Met. Sci., 1979, vol. 13, pp. 73–7.CrossRef
16.
go back to reference M. Hatherly and F.J. Humphreys: Recrystallization and Related Annealing Phenomena, Pergamon: Elsevier, 2012. M. Hatherly and F.J. Humphreys: Recrystallization and Related Annealing Phenomena, Pergamon: Elsevier, 2012.
17.
go back to reference K. Murakami, M. Sugiyama, and K. Ushioda: IOP Conf. Ser. Mater. Sci. Eng., 2015, 89: 89.CrossRef K. Murakami, M. Sugiyama, and K. Ushioda: IOP Conf. Ser. Mater. Sci. Eng., 2015, 89: 89.CrossRef
18.
go back to reference P. Bate: Philos. Trans. R. Soc. Lond. Ser. A 1999, vol. 357, pp. 1589– 1601.CrossRef P. Bate: Philos. Trans. R. Soc. Lond. Ser. A 1999, vol. 357, pp. 1589– 1601.CrossRef
20.
go back to reference A. Molinari, G.R. Canova, and S. Ahzi: Acta Metall., 1987, vol. 35, pp. 2983–94.CrossRef A. Molinari, G.R. Canova, and S. Ahzi: Acta Metall., 1987, vol. 35, pp. 2983–94.CrossRef
21.
go back to reference R.A. Lebensohn and C.N. Tomé: Acta Metall. Mater., 1993, vol. 41, pp. 2611–24.CrossRef R.A. Lebensohn and C.N. Tomé: Acta Metall. Mater., 1993, vol. 41, pp. 2611–24.CrossRef
23.
go back to reference F. Wagner, G. Canova, P. Van Houtte, and A. Molinari: Textures Microstruct., 1991, vol. 14, pp. 1135–40.CrossRef F. Wagner, G. Canova, P. Van Houtte, and A. Molinari: Textures Microstruct., 1991, vol. 14, pp. 1135–40.CrossRef
25.
go back to reference S. M’Guil, W. Wen, S. Ahzi, and J.J. Gracio: Mater. Sci. Eng. A, 2011, vol. 528, pp. 5840–53.CrossRef S. M’Guil, W. Wen, S. Ahzi, and J.J. Gracio: Mater. Sci. Eng. A, 2011, vol. 528, pp. 5840–53.CrossRef
26.
go back to reference B. Hutchinson: Philos. Trans. R. Soc. London. Ser. A, 1999, vol. 357, pp. 1471–85.CrossRef B. Hutchinson: Philos. Trans. R. Soc. London. Ser. A, 1999, vol. 357, pp. 1471–85.CrossRef
28.
go back to reference F. Royer, A. Nadari, F. Yala, and P. Lipinski: Textures Microstruct., 1991, vol. 14–18, pp. 1129–34.CrossRef F. Royer, A. Nadari, F. Yala, and P. Lipinski: Textures Microstruct., 1991, vol. 14–18, pp. 1129–34.CrossRef
29.
go back to reference C. Adam, U. Lin, H. Thomas, and A.D. Rollet: Integr. Mater. Manuf. Innov., 2014, vol. 3, pp. 1–19.CrossRef C. Adam, U. Lin, H. Thomas, and A.D. Rollet: Integr. Mater. Manuf. Innov., 2014, vol. 3, pp. 1–19.CrossRef
30.
go back to reference H. Moulinec and P. Suquet: Comput. Methods Appl. Mech. Eng., 1998, vol. 157, pp. 69–94.CrossRef H. Moulinec and P. Suquet: Comput. Methods Appl. Mech. Eng., 1998, vol. 157, pp. 69–94.CrossRef
31.
go back to reference R.A. Lebensohn, M. Zecevic, M. Knezevic, and R.J. McCabe: Acta Mater., 2016, vol. 104, pp. 228–36.CrossRef R.A. Lebensohn, M. Zecevic, M. Knezevic, and R.J. McCabe: Acta Mater., 2016, vol. 104, pp. 228–36.CrossRef
32.
go back to reference R.A. Lebensohn, Y. Liu, and P.P. Castañeda: Acta Mater., 2004, vol. 52, pp. 5347–61.CrossRef R.A. Lebensohn, Y. Liu, and P.P. Castañeda: Acta Mater., 2004, vol. 52, pp. 5347–61.CrossRef
34.
go back to reference C. Paramatmuni and A.K. Kanjarla: Int. J. Plast., 2019, vol. 113, pp. 269–90.CrossRef C. Paramatmuni and A.K. Kanjarla: Int. J. Plast., 2019, vol. 113, pp. 269–90.CrossRef
35.
go back to reference S. Sinha, A. Ghosh, and N.P. Gurao: Philos. Mag., 2016, vol. 96, pp. 1485–4508.CrossRef S. Sinha, A. Ghosh, and N.P. Gurao: Philos. Mag., 2016, vol. 96, pp. 1485–4508.CrossRef
36.
go back to reference RK Sabat, MVSSDSS Pavan, DS Aakash, M Kumar, SK Sahoo (2018) Philos. Mag. 98, 2562–81.CrossRef RK Sabat, MVSSDSS Pavan, DS Aakash, M Kumar, SK Sahoo (2018) Philos. Mag. 98, 2562–81.CrossRef
37.
go back to reference A.S.M. Handbook: Metallography and Microstructures, ASM International, Materials Park, 2004. A.S.M. Handbook: Metallography and Microstructures, ASM International, Materials Park, 2004.
38.
go back to reference OIM: Anal. Version 7.2. User Manual, TexSEM Lab. Inc., Draper, 2013. OIM: Anal. Version 7.2. User Manual, TexSEM Lab. Inc., Draper, 2013.
39.
go back to reference P. Van Houtte: The ‘MTM-FHM’ Software System, Version 2 Manual . P. Van Houtte: The ‘MTM-FHM’ Software System, Version 2 Manual .
40.
go back to reference S. Ghosh, S. Keshavarz, and G. Weber: in Inelastic Behavior of Materials and Structures Under Monotonic and Cyclic Loading, H. Altenbach and M. Brünig, eds., Springer International Publishing, Cham, 2015, pp. 67–96. S. Ghosh, S. Keshavarz, and G. Weber: in Inelastic Behavior of Materials and Structures Under Monotonic and Cyclic Loading, H. Altenbach and M. Brünig, eds., Springer International Publishing, Cham, 2015, pp. 67–96.
41.
42.
go back to reference A. Gupta, R.K. Khatirkar, A. Kumar, K. Thool, N. Bibhanshu, and S. Suwas: Mater. Charact., 2019, vol. 156, p. 109884.CrossRef A. Gupta, R.K. Khatirkar, A. Kumar, K. Thool, N. Bibhanshu, and S. Suwas: Mater. Charact., 2019, vol. 156, p. 109884.CrossRef
43.
go back to reference V.D. Mote, Y. Purushotham, and B.N. Dole: J. Theor. Appl. Phys., 2012, 6: pp. 2–9.CrossRef V.D. Mote, Y. Purushotham, and B.N. Dole: J. Theor. Appl. Phys., 2012, 6: pp. 2–9.CrossRef
44.
go back to reference C.G. Oertel, I. Huensche, W. Skrotzki, W. Knabl, A. Lorich, and J. Resch: Mater. Sci. Eng. A, 2008, vol. 483–484, pp. 79–83.CrossRef C.G. Oertel, I. Huensche, W. Skrotzki, W. Knabl, A. Lorich, and J. Resch: Mater. Sci. Eng. A, 2008, vol. 483–484, pp. 79–83.CrossRef
45.
go back to reference A. Bhattacharyya, M. Knezevic, and M. Abouaf: Metall. Mater. Trans. A, 2014, vol. 46A, pp. 1085–96. A. Bhattacharyya, M. Knezevic, and M. Abouaf: Metall. Mater. Trans. A, 2014, vol. 46A, pp. 1085–96.
46.
go back to reference I.L. Dillamore, C.J.E. Smith, and T.W. Watson: Met. Sci. J., 1967, vol. 1, pp. 49–54.CrossRef I.L. Dillamore, C.J.E. Smith, and T.W. Watson: Met. Sci. J., 1967, vol. 1, pp. 49–54.CrossRef
47.
go back to reference R.K. Ray, J.J. Jonas, and R.E. Hook: Int. Mater. Rev., 1994, vol. 39, pp. 129–72.CrossRef R.K. Ray, J.J. Jonas, and R.E. Hook: Int. Mater. Rev., 1994, vol. 39, pp. 129–72.CrossRef
49.
go back to reference P.P. Date, S.K. Yerra, H. V Vankudre, and I. Samajdar: J. Eng. Mater. Technol., 2018, vol. 126, pp. 53–61. P.P. Date, S.K. Yerra, H. V Vankudre, and I. Samajdar: J. Eng. Mater. Technol., 2018, vol. 126, pp. 53–61.
50.
go back to reference B. Verlinden, J. Driver, I. Samajdar, and R.D. Doherty: Thermo-Mechanical Processing of Metallic Materials, Elsevier, New York, NY, 2007. B. Verlinden, J. Driver, I. Samajdar, and R.D. Doherty: Thermo-Mechanical Processing of Metallic Materials, Elsevier, New York, NY, 2007.
53.
54.
go back to reference S.N. Nasser, W.G. Guo, and J.Y. Cheng: Acta matter, 1999, vol. 47, pp. 3705–20.CrossRef S.N. Nasser, W.G. Guo, and J.Y. Cheng: Acta matter, 1999, vol. 47, pp. 3705–20.CrossRef
55.
go back to reference S.N. Nasser, W.G. Guo, V.F. Nesterenko, S.S. Indrakanti, and Y.B. Gu: Mech. Mater., 2001, vol. 33, pp. 425–39.CrossRef S.N. Nasser, W.G. Guo, V.F. Nesterenko, S.S. Indrakanti, and Y.B. Gu: Mech. Mater., 2001, vol. 33, pp. 425–39.CrossRef
56.
go back to reference S. Cicalè, I. Samajdar, B. Verlinden, G. Abbruzzese, and P. Van Houtte: ISIJ Int., 2002, vol. 42, pp. 770–8.CrossRef S. Cicalè, I. Samajdar, B. Verlinden, G. Abbruzzese, and P. Van Houtte: ISIJ Int., 2002, vol. 42, pp. 770–8.CrossRef
57.
58.
59.
go back to reference A. Kumar, R.K. Khatirkar, D. Chalapathi, N. Bibhanshu, and S. Suwas: Philos. Mag., 2017, vol. 97, pp. 1939–62.CrossRef A. Kumar, R.K. Khatirkar, D. Chalapathi, N. Bibhanshu, and S. Suwas: Philos. Mag., 2017, vol. 97, pp. 1939–62.CrossRef
61.
go back to reference V. Tari, A.D. Rollett, H. El Kadiri, H. Beladi, A.L. Oppedal, and R.L. King: Model. Simul. Mater. Sci. Eng., 2015, vol. 23, pp. 1–23.CrossRef V. Tari, A.D. Rollett, H. El Kadiri, H. Beladi, A.L. Oppedal, and R.L. King: Model. Simul. Mater. Sci. Eng., 2015, vol. 23, pp. 1–23.CrossRef
62.
go back to reference R. Pokharel, J. Lind, A.K. Kanjarla, R.A. Lebensohn, S.F. Li, P. Kenesei, R.M. Suter, and A.D. Rollett: Annu. Rev. Condens. Matter Phys., 2014, vol. 5, pp. 317–46.CrossRef R. Pokharel, J. Lind, A.K. Kanjarla, R.A. Lebensohn, S.F. Li, P. Kenesei, R.M. Suter, and A.D. Rollett: Annu. Rev. Condens. Matter Phys., 2014, vol. 5, pp. 317–46.CrossRef
63.
go back to reference O. Diard, S. Leclercq, G. Rousselier, and G. Cailletaud: Int. J. Plast., 2005, vol. 21, pp. 691–722.CrossRef O. Diard, S. Leclercq, G. Rousselier, and G. Cailletaud: Int. J. Plast., 2005, vol. 21, pp. 691–722.CrossRef
64.
go back to reference P. Van Houtte, J. Gawad, P. Eyckens, B. Van Bael, G. Samaey, and D. Roose: JOM, 2011, vol. 63, pp. 37–43.CrossRef P. Van Houtte, J. Gawad, P. Eyckens, B. Van Bael, G. Samaey, and D. Roose: JOM, 2011, vol. 63, pp. 37–43.CrossRef
Metadata
Title
Texture Development During Cold Rolling of a β-Ti Alloy: Experiments and Simulations
Authors
Aman Gupta
Rajesh Kisni Khatirkar
Amit Kumar
Khushahal Sunil Thool
Nitish Bhibhanshu
Satyam Suwas
Publication date
25-01-2021
Publisher
Springer US
Published in
Metallurgical and Materials Transactions A / Issue 3/2021
Print ISSN: 1073-5623
Electronic ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-020-06117-0

Other articles of this Issue 3/2021

Metallurgical and Materials Transactions A 3/2021 Go to the issue

Topical Collection: Innovations in High Entropy Alloys and Bulk Metallic Glasses

Some Unique Aspects of Mechanical Behavior of Metastable Transformative High Entropy Alloys

Premium Partners