Skip to main content
Top
Published in: Journal of Materials Science 23/2020

09-05-2020 | Energy materials

The preparation of graphite/silicon@carbon composites for lithium-ion batteries through molten salts electrolysis

Authors: Yichen Hu, Bing Yu, Xiaopeng Qi, Bimeng Shi, Sheng Fang, Zhanglong Yu, Juanyu Yang

Published in: Journal of Materials Science | Issue 23/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

High-specific-capacity materials are crucial for the high-energy-density lithium-ion secondary batteries as the automakers and customers are both eager to extend the cruising range of electric vehicles. The current commercial silicon/carbon composites are based on the mechanical mixture of silicon and graphite, but this weak combination is not suitable for the higher-capacity materials. Here, low-cost raw materials are used for the preparation of a graphite/silicon@carbon composite negative electrode material, which synergizes ball milling, molten salts electrolysis and carbon coating. Silica is in situ electrochemically reduced to silicon on the flaky graphite serving as the conducting substrate during the electrolysis process. It is found that ball milling increases the active sites on the basal plane of graphite, which is beneficial for the nucleation and growth of the silicon, and enhances the bonding of silicon particles and graphite. As for the electrochemical results of coin-type cells, this graphite/silicon@carbon composite material exhibits a better cycle performance than the commercial Si/C 650 silicon-based composite material.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Nishi Y (2001) Lithium ion secondary batteries; past 10 years and the future. J Power Sources 100:101–106CrossRef Nishi Y (2001) Lithium ion secondary batteries; past 10 years and the future. J Power Sources 100:101–106CrossRef
2.
go back to reference Zhang W-J (2011) A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources 196:13–24CrossRef Zhang W-J (2011) A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources 196:13–24CrossRef
3.
go back to reference Obrovac MN, Christensen L (2004) Structural changes in silicon anodes during lithium insertion/extraction. Electrochem Solid-State Lett 7:A93–A96CrossRef Obrovac MN, Christensen L (2004) Structural changes in silicon anodes during lithium insertion/extraction. Electrochem Solid-State Lett 7:A93–A96CrossRef
4.
go back to reference Obrovac MN, Krause LJ (2007) Reversible cycling of crystalline silicon powder. J Electrochem Soc 154:A103–A108CrossRef Obrovac MN, Krause LJ (2007) Reversible cycling of crystalline silicon powder. J Electrochem Soc 154:A103–A108CrossRef
5.
go back to reference McDowell MT, Lee SW, Nix WD, Cui Y (2013) 25th anniversary article: understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv Mater 25:4966–4985CrossRef McDowell MT, Lee SW, Nix WD, Cui Y (2013) 25th anniversary article: understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv Mater 25:4966–4985CrossRef
6.
go back to reference Wu H, Chan G, Choi JW, Ryu I, Yao Y, McDowell MT, Lee SW, Jackson A, Yang Y, Hu L, Cui Y (2012) Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control. Nat Nanotechnol 7:310–315CrossRef Wu H, Chan G, Choi JW, Ryu I, Yao Y, McDowell MT, Lee SW, Jackson A, Yang Y, Hu L, Cui Y (2012) Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control. Nat Nanotechnol 7:310–315CrossRef
7.
go back to reference Ohara S, Suzuki J, Sekine K, Takamura T (2004) A thin film silicon anode for Li-ion batteries having a very large specific capacity and long cycle life. J Power Sources 136:303–306CrossRef Ohara S, Suzuki J, Sekine K, Takamura T (2004) A thin film silicon anode for Li-ion batteries having a very large specific capacity and long cycle life. J Power Sources 136:303–306CrossRef
8.
go back to reference Domi Y, Usui H, Sugimoto K, Sakaguchi H (2019) Effect of silicon crystallite size on its electrochemical performance for lithium-ion batteries. Energy Technol 7:1800946CrossRef Domi Y, Usui H, Sugimoto K, Sakaguchi H (2019) Effect of silicon crystallite size on its electrochemical performance for lithium-ion batteries. Energy Technol 7:1800946CrossRef
9.
go back to reference Cui L-F, Ruffo R, Chan CK, Peng H, Cui Y (2009) Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett 9:491–495CrossRef Cui L-F, Ruffo R, Chan CK, Peng H, Cui Y (2009) Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett 9:491–495CrossRef
10.
go back to reference Sun L, Xie J, Jin Z (2019) Different dimensional nanostructured silicon materials: from synthesis methodology to application in high-energy lithium-ion batteries. Energy Technol 7:1900962CrossRef Sun L, Xie J, Jin Z (2019) Different dimensional nanostructured silicon materials: from synthesis methodology to application in high-energy lithium-ion batteries. Energy Technol 7:1900962CrossRef
12.
go back to reference Yu C, Chen X, Xiao Z, Lei C, Zhang C, Lin X, Shen B, Zhang R, Wei F (2019) Silicon carbide as a protective layer to stabilize Si-based anodes by inhibiting chemical reactions. Nano Lett 19:5124–5132CrossRef Yu C, Chen X, Xiao Z, Lei C, Zhang C, Lin X, Shen B, Zhang R, Wei F (2019) Silicon carbide as a protective layer to stabilize Si-based anodes by inhibiting chemical reactions. Nano Lett 19:5124–5132CrossRef
14.
go back to reference Shi M, Nie P, Fu R, Fang S, Li Z, Dou H, Zhang X (2019) Catalytic growth of graphitic carbon-coated silicon as high-performance anodes for lithium storage. Energy Technol 7:1900502CrossRef Shi M, Nie P, Fu R, Fang S, Li Z, Dou H, Zhang X (2019) Catalytic growth of graphitic carbon-coated silicon as high-performance anodes for lithium storage. Energy Technol 7:1900502CrossRef
16.
go back to reference Chang J, Huang X, Zhou G, Cui S, Chen J (2014) Multilayered Si nanoparticle/reduced graphene oxide hybrid as a high-performance lithium-ion battery anode. Adv Mater 26:758–764CrossRef Chang J, Huang X, Zhou G, Cui S, Chen J (2014) Multilayered Si nanoparticle/reduced graphene oxide hybrid as a high-performance lithium-ion battery anode. Adv Mater 26:758–764CrossRef
17.
go back to reference Wang J, Liao L, Lee HR, Shi F, Huang W, Zhao J, Pei A, Tang J, Zheng X, Chen W, Cui Y (2019) Surface-engineered mesoporous silicon microparticles as high-Coulombic-efficiency anodes for lithium-ion batteries. Nano Energy 61:404–410CrossRef Wang J, Liao L, Lee HR, Shi F, Huang W, Zhao J, Pei A, Tang J, Zheng X, Chen W, Cui Y (2019) Surface-engineered mesoporous silicon microparticles as high-Coulombic-efficiency anodes for lithium-ion batteries. Nano Energy 61:404–410CrossRef
18.
go back to reference Chen GZ, Fray DJ, Farthing TW (2000) Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature 407:361–364CrossRef Chen GZ, Fray DJ, Farthing TW (2000) Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature 407:361–364CrossRef
20.
go back to reference Jiao S, Zhu H (2006) Novel metallurgical process for titanium production. J Mater Res 21:2172–2175CrossRef Jiao S, Zhu H (2006) Novel metallurgical process for titanium production. J Mater Res 21:2172–2175CrossRef
21.
go back to reference Kongstein OE, Wollan C, Sultana S, Haarberg GM (2007) Electrorefining of silicon in molten calcium chloride. ECS Trans 3:357–361CrossRef Kongstein OE, Wollan C, Sultana S, Haarberg GM (2007) Electrorefining of silicon in molten calcium chloride. ECS Trans 3:357–361CrossRef
23.
go back to reference Zoval JV, Lee J, Gorer S, Penner RM (1998) Electrochemical preparation of platinum nanocrystallites with size selectivity on basal plane oriented graphite surfaces. J Phys Chem B 102:1166–1175CrossRef Zoval JV, Lee J, Gorer S, Penner RM (1998) Electrochemical preparation of platinum nanocrystallites with size selectivity on basal plane oriented graphite surfaces. J Phys Chem B 102:1166–1175CrossRef
24.
go back to reference Li W, Virtanen JA, Penner RM (1992) Nanometer-scale electrochemical deposition of silver on graphite using a scanning tunneling microscope. Appl Phys Lett 60:1181–1183CrossRef Li W, Virtanen JA, Penner RM (1992) Nanometer-scale electrochemical deposition of silver on graphite using a scanning tunneling microscope. Appl Phys Lett 60:1181–1183CrossRef
25.
go back to reference Kariuki JK, McDermott MT (1999) Nucleation and growth of functionalized aryl films on graphite electrodes. Langmuir 15:6534–6540CrossRef Kariuki JK, McDermott MT (1999) Nucleation and growth of functionalized aryl films on graphite electrodes. Langmuir 15:6534–6540CrossRef
26.
go back to reference Xing T, Li LH, Hou L, Hu X, Zhou S, Peter R, Petravic M, Chen Y (2013) Disorder in ball-milled graphite revealed by Raman spectroscopy. Carbon 57:515–519CrossRef Xing T, Li LH, Hou L, Hu X, Zhou S, Peter R, Petravic M, Chen Y (2013) Disorder in ball-milled graphite revealed by Raman spectroscopy. Carbon 57:515–519CrossRef
27.
go back to reference Yang J, Lu S, Kan S, Zhang X, Du J (2009) Electrochemical preparation of silicon nanowires from nanometre silica in molten calcium chloride. Chem Commun 22:3273–3275CrossRef Yang J, Lu S, Kan S, Zhang X, Du J (2009) Electrochemical preparation of silicon nanowires from nanometre silica in molten calcium chloride. Chem Commun 22:3273–3275CrossRef
28.
go back to reference Fang S, Wang H, Yang J, Yu B, Lu S (2016) Formation of Si nanowires by the electrochemical reduction of SiO2 with Ni or NiO additives. Faraday Discuss 190:433–449CrossRef Fang S, Wang H, Yang J, Yu B, Lu S (2016) Formation of Si nanowires by the electrochemical reduction of SiO2 with Ni or NiO additives. Faraday Discuss 190:433–449CrossRef
29.
go back to reference Zhang J, Fang S, Qi X, Yu Z, Wu Z, Yang J, Lu S (2020) Preparation of high-purity straight silicon nanowires by molten salt electrolysis. J Energy Chem 40:171–179CrossRef Zhang J, Fang S, Qi X, Yu Z, Wu Z, Yang J, Lu S (2020) Preparation of high-purity straight silicon nanowires by molten salt electrolysis. J Energy Chem 40:171–179CrossRef
31.
go back to reference Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57CrossRef Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57CrossRef
32.
go back to reference Cançado LG, Takai K, Enoki T, Endo M, Kim YA, Mizusaki H, Jorio A, Coelho LN, Magalhaes-Paniago R, Pimenta MA (2006) General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl Phys Lett 88:163106CrossRef Cançado LG, Takai K, Enoki T, Endo M, Kim YA, Mizusaki H, Jorio A, Coelho LN, Magalhaes-Paniago R, Pimenta MA (2006) General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl Phys Lett 88:163106CrossRef
33.
go back to reference Nohira T, Yasuda K, Ito Y (2003) Pinpoint and bulk electrochemical reduction of insulating silicon dioxide to silicon. Nat Mater 2:397–401CrossRef Nohira T, Yasuda K, Ito Y (2003) Pinpoint and bulk electrochemical reduction of insulating silicon dioxide to silicon. Nat Mater 2:397–401CrossRef
Metadata
Title
The preparation of graphite/silicon@carbon composites for lithium-ion batteries through molten salts electrolysis
Authors
Yichen Hu
Bing Yu
Xiaopeng Qi
Bimeng Shi
Sheng Fang
Zhanglong Yu
Juanyu Yang
Publication date
09-05-2020
Publisher
Springer US
Published in
Journal of Materials Science / Issue 23/2020
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04756-7

Other articles of this Issue 23/2020

Journal of Materials Science 23/2020 Go to the issue

Premium Partners