Skip to main content
Top
Published in: Meccanica 14/2019

30-10-2019

The role of the critical layer in the channel flow transition revisited

Authors: Andrea Palumbo, Matteo Chiatto, Luigi de Luca

Published in: Meccanica | Issue 14/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The focus of this paper is on the development of a novel and simple linear modeling to interpret the (asymptotic) instability conditions for laminar channel (Poiseuille) flow, thereby giving insight on the major length and time scales of the subsequent mean turbulent regime. Although this is an old problem, recently there has been a renewed effort to understand how information on the wall turbulence scalings can be obtained by studying the flow linear dynamics, among other approaches by using the resolvent analysis. Here the classic asymptotic stability analysis is reformulated by means of a pseudo two-fluid model, a central inviscid flow motion, and a wall viscous one, forcing each other on their common interface streamline. The best agreement with the results of the celebrated Orr–Sommerfeld equation is obtained for the interface located around the elevation of the base flow average value, equal to 2/3 times the maximum velocity (frequency scale). It is argued that, in the early stage of perturbations growth, while the mechanism leading to instability (and that is related to the extraction of energy from the base flow via the Reynolds stress), is located near the wall in the critical layer region (already known result for inner length scale), the central region around the flow average velocity (i.e., the outer length scale is of order \({\mathcal {O}}(h)\), with h being the channel half-height) is also deeply involved in the onset of the instability. The initial linear amplification of the wall viscous modes of the present analysis agrees with the major features of the wall functions driving the full turbulent profile, found by means of the resolvent analysis, in the subsequent nonlinear stage.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Drazin P, Reid W (1981) Hydrodynamic stability. Cambridge University Press, CambridgeMATH Drazin P, Reid W (1981) Hydrodynamic stability. Cambridge University Press, CambridgeMATH
2.
go back to reference Tollmien W (1931) The production of turbulence. Tech. Rep. NACA-TM-609 Tollmien W (1931) The production of turbulence. Tech. Rep. NACA-TM-609
3.
go back to reference Pekeris CL, Shkoller B (1969) Stability of plane Poiseuille flow to periodic perturbances of finite amplitude. J Fluid Mech 39:611–627ADSCrossRef Pekeris CL, Shkoller B (1969) Stability of plane Poiseuille flow to periodic perturbances of finite amplitude. J Fluid Mech 39:611–627ADSCrossRef
5.
go back to reference Stuart JT (1963) Hydrodynamic stability. In: Rosenhead L (ed) Laminar bondary layers. Oxford Clarendon Press, Oxford Stuart JT (1963) Hydrodynamic stability. In: Rosenhead L (ed) Laminar bondary layers. Oxford Clarendon Press, Oxford
6.
go back to reference Charru F (2011) Hydrodynamic instability. Cambridge University Press, CambridgeCrossRef Charru F (2011) Hydrodynamic instability. Cambridge University Press, CambridgeCrossRef
7.
go back to reference Lindzen RS (1988) Instability of plane parallel shear flow (toward a mechanistic picture of how it works). Pageoph 126:103–121CrossRef Lindzen RS (1988) Instability of plane parallel shear flow (toward a mechanistic picture of how it works). Pageoph 126:103–121CrossRef
9.
go back to reference Howard L, Maslowe S (1973) Stability of stratified shear flows. Bound Layer Meteorol 4:511–523ADSCrossRef Howard L, Maslowe S (1973) Stability of stratified shear flows. Bound Layer Meteorol 4:511–523ADSCrossRef
10.
go back to reference Drazin P (2002) Introduction to hydrodynamic stability. Cambridge University Press, CambridgeCrossRef Drazin P (2002) Introduction to hydrodynamic stability. Cambridge University Press, CambridgeCrossRef
15.
go back to reference McKeon BJ, Sharma AS, Jacobi I (2013) Experimental manipulation of wall turbulence: a system approach. Phys Fluids 25:031301ADSCrossRef McKeon BJ, Sharma AS, Jacobi I (2013) Experimental manipulation of wall turbulence: a system approach. Phys Fluids 25:031301ADSCrossRef
17.
go back to reference Mack LM (1976) A numerical study of the temporal eigenvalue spectrum of the Blasius boundary layer. J Fluid Mech 73(3):497–520ADSCrossRef Mack LM (1976) A numerical study of the temporal eigenvalue spectrum of the Blasius boundary layer. J Fluid Mech 73(3):497–520ADSCrossRef
18.
go back to reference Coppola G, de Luca L (2006) On transient growth oscillations in linear models. Phys Fluids 18(7):078104ADSCrossRef Coppola G, de Luca L (2006) On transient growth oscillations in linear models. Phys Fluids 18(7):078104ADSCrossRef
19.
go back to reference Orazzo A, Coppola G, de Luca L (2014) Disturbance energy growth in core-annular flow. J Fluid Mech 747:44–72ADSCrossRef Orazzo A, Coppola G, de Luca L (2014) Disturbance energy growth in core-annular flow. J Fluid Mech 747:44–72ADSCrossRef
20.
21.
go back to reference Schmid PJ, Henningson DS (2012) Stability and transition in shear flows. Springer, BerlinMATH Schmid PJ, Henningson DS (2012) Stability and transition in shear flows. Springer, BerlinMATH
23.
go back to reference Lee H, Wang S (2019) Extension of classical stability theory to viscous planar wall-bounded shear flows. J Fluid Mech 877:1134–1162ADSMathSciNetCrossRef Lee H, Wang S (2019) Extension of classical stability theory to viscous planar wall-bounded shear flows. J Fluid Mech 877:1134–1162ADSMathSciNetCrossRef
24.
go back to reference Salin D, Talon L (2019) Revisiting the linear stability analysis and absolute–convective transition of two fluid core annular flow. J Fluid Mech 865:743–761ADSMathSciNetCrossRef Salin D, Talon L (2019) Revisiting the linear stability analysis and absolute–convective transition of two fluid core annular flow. J Fluid Mech 865:743–761ADSMathSciNetCrossRef
25.
Metadata
Title
The role of the critical layer in the channel flow transition revisited
Authors
Andrea Palumbo
Matteo Chiatto
Luigi de Luca
Publication date
30-10-2019
Publisher
Springer Netherlands
Published in
Meccanica / Issue 14/2019
Print ISSN: 0025-6455
Electronic ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-019-01079-z

Other articles of this Issue 14/2019

Meccanica 14/2019 Go to the issue

Premium Partners