Skip to main content
Top
Published in: Structural and Multidisciplinary Optimization 5/2021

15-03-2021 | Research Paper

Topology optimization for blood flow considering a hemolysis model

Authors: Diego Hayashi Alonso, Emílio Carlos Nelli Silva

Published in: Structural and Multidisciplinary Optimization | Issue 5/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the past years, topology optimization has been studied for designing fluid flow devices, such as channels, valves and pumps, and also considering non-Newtonian fluid flows, such as blood. When considering blood flow devices, it is important to quantify and minimize the blood damage (given mainly by hemolysis). However, up to now, in topology optimization, hemolysis has been minimized in an indirect manner, by considering shear stress (or even energy dissipation) as the objective function to indirectly minimize hemolysis. This approach may give a general idea of where hemolysis may or may not appear, but the actual distribution of hemolysis can not be easily correlated. Therefore, a more direct measure may be better to evaluate hemolysis. The direct way to measure hemolysis is by considering the hemolysis index, which is given from a differential equation model (a “hemolysis model”). In this work, the hemolysis index computed though a hemolysis model is included in the topology optimization formulation. In order to illustrate this approach, the design of a 2D swirl flow device, which is based on an axisymmetric fluid flow with or without rotation around an axis, is considered. One relevant example in the field of blood flow devices is the design of blood pumps, which has been previously considered in topology optimization with the aim of indirectly reducing hemolysis. More specifically in terms of pump design for 2D swirl flow, the design of a Tesla-type blood pump is considered. A Tesla-type pump is a bladeless fluid flow device, in which the boundary layer effect is used for pumping the fluid. This principle of operation may lead to a smaller induction of blood damage. Together with the hemolysis index, the topology optimization is formulated by considering the relative energy dissipation for indirectly maximizing efficiency. The fluid is modeled considering a non-Newtonian fluid model, and the fluid flow is solved with the finite element method. In order to model the solid material to block the fluid flow, the traditional formulation of fluid topology optimization is augmented with the “Brinkman-Forchheimer model”. Also, an additional penalization is considered in the non-Newtonian viscosity. The optimization problem is solved with IPOPT (Interior Point Optimization algorithm).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abraham F, Behr M, Heinkenschloss M (2005) Shape optimization in steady blood flow: a numerical study of non-newtonian effects. Comput Methods Biomech Biomed Eng 8(2):127–137CrossRef Abraham F, Behr M, Heinkenschloss M (2005) Shape optimization in steady blood flow: a numerical study of non-newtonian effects. Comput Methods Biomech Biomed Eng 8(2):127–137CrossRef
go back to reference Alemu Y, Bluestein D (2007) Flow-induced platelet activation and damage accumulation in a mechanical heart valve: numerical studies. Artif Organs 31(9):677–688CrossRef Alemu Y, Bluestein D (2007) Flow-induced platelet activation and damage accumulation in a mechanical heart valve: numerical studies. Artif Organs 31(9):677–688CrossRef
go back to reference Alimohamadi H, Imani M, Shojaeizadeh M (2014) Numerical simulation of porosity effect on blood flow pattern and atherosclerotic plaques temperature. Int J Technol Enhance Emerg Eng Res 2(10):44–49 Alimohamadi H, Imani M, Shojaeizadeh M (2014) Numerical simulation of porosity effect on blood flow pattern and atherosclerotic plaques temperature. Int J Technol Enhance Emerg Eng Res 2(10):44–49
go back to reference Amestoy PR, Duff IS, Koster J, L’Excellent JY (2001) A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J Matrix Anal Appl 23(1):15–41MathSciNetMATHCrossRef Amestoy PR, Duff IS, Koster J, L’Excellent JY (2001) A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J Matrix Anal Appl 23(1):15–41MathSciNetMATHCrossRef
go back to reference Antaki JF, Ghattas O, Burgreen GW, He B (1995) Computational flow optimization of rotary blood pump components. Artif Organs 19(7):608–615CrossRef Antaki JF, Ghattas O, Burgreen GW, He B (1995) Computational flow optimization of rotary blood pump components. Artif Organs 19(7):608–615CrossRef
go back to reference Arora D, Behr M, Pasquali M (2004) A tensor-based measure for estimating blood damage. Artif Organs 28(11):1002–1015CrossRef Arora D, Behr M, Pasquali M (2004) A tensor-based measure for estimating blood damage. Artif Organs 28(11):1002–1015CrossRef
go back to reference Arora D, Behr M, Pasquali M (2006b) Hemolysis estimation in a centrifugal blood pump using a tensor-based measure. Artif organs 30(7):539–547CrossRef Arora D, Behr M, Pasquali M (2006b) Hemolysis estimation in a centrifugal blood pump using a tensor-based measure. Artif organs 30(7):539–547CrossRef
go back to reference Barthes-Biesel D, Rallison J (1981) The time-dependent deformation of a capsule freely suspended in a linear shear flow. J Fluid Mech 113:251–267MATHCrossRef Barthes-Biesel D, Rallison J (1981) The time-dependent deformation of a capsule freely suspended in a linear shear flow. J Fluid Mech 113:251–267MATHCrossRef
go back to reference Bear J (2018) Modeling phenomena of flow and transport in porous media, vol 31. Springer, BerlinMATHCrossRef Bear J (2018) Modeling phenomena of flow and transport in porous media, vol 31. Springer, BerlinMATHCrossRef
go back to reference Behbahani M, Behr M, Hormes M, Steinseifer U, Arora D, Coronado O, Pasquali M (2009) A review of computational fluid dynamics analysis of blood pumps. Eur. J. pure Appl. Math. 20:363–397MathSciNetMATH Behbahani M, Behr M, Hormes M, Steinseifer U, Arora D, Coronado O, Pasquali M (2009) A review of computational fluid dynamics analysis of blood pumps. Eur. J. pure Appl. Math. 20:363–397MathSciNetMATH
go back to reference Billett HH (1990) Hemoglobin and hematocrit. in: clinical methods: the history, physical, and laboratory examinations, 3rd edn. Boston, Oxford Billett HH (1990) Hemoglobin and hematocrit. in: clinical methods: the history, physical, and laboratory examinations, 3rd edn. Boston, Oxford
go back to reference Bird RB, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids, volume 1: fluid mechanics, 1st edn. Wiley, New York Bird RB, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids, volume 1: fluid mechanics, 1st edn. Wiley, New York
go back to reference Bludszuweit C (1995) Three-dimensional numerical prediction of stress loading of blood particles in a centrifugal pump. Artif Organs 19(7):590–596CrossRef Bludszuweit C (1995) Three-dimensional numerical prediction of stress loading of blood particles in a centrifugal pump. Artif Organs 19(7):590–596CrossRef
go back to reference Brinkman HC (1947) A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. J Appl Sci Res A1:27–34MATH Brinkman HC (1947) A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. J Appl Sci Res A1:27–34MATH
go back to reference Cho YI, Kenssey KR (1991) Effects of the non-newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: steady flows. Biorheology 28:241–262CrossRef Cho YI, Kenssey KR (1991) Effects of the non-newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: steady flows. Biorheology 28:241–262CrossRef
go back to reference Cimolin F, Discacciati M (2013) Navier–stokes/forchheimer models for filtration through porous media. Appl Numer Math 72:205–224MathSciNetMATHCrossRef Cimolin F, Discacciati M (2013) Navier–stokes/forchheimer models for filtration through porous media. Appl Numer Math 72:205–224MathSciNetMATHCrossRef
go back to reference Darcy HPG (1856) Les Fontaines publiques de la ville de Dijon. Exposition et application des principes à suivre et des formules à employer dans les questions de distribution d’eau, etc. V. Dalamont Darcy HPG (1856) Les Fontaines publiques de la ville de Dijon. Exposition et application des principes à suivre et des formules à employer dans les questions de distribution d’eau, etc. V. Dalamont
go back to reference De Wachter D, Verdonck P (2002) Numerical calculation of hemolysis levels in peripheral hemodialysis cannulas. Artif Organs 26(7):576–582CrossRef De Wachter D, Verdonck P (2002) Numerical calculation of hemolysis levels in peripheral hemodialysis cannulas. Artif Organs 26(7):576–582CrossRef
go back to reference Dodsworth L (2016) Operational parametric study of a prototype tesla pump. Master’s thesis, Dalhousie University Dodsworth L (2016) Operational parametric study of a prototype tesla pump. Master’s thesis, Dalhousie University
go back to reference Dorman FD, Murphy TE, Blackshear PL (1966) An application of the tesla viscous flow turbine to pumping blood: mechanical devices to assist the failing heart. national research council. In: National academy of science, pp 119–128 Dorman FD, Murphy TE, Blackshear PL (1966) An application of the tesla viscous flow turbine to pumping blood: mechanical devices to assist the failing heart. national research council. In: National academy of science, pp 119–128
go back to reference Evgrafov A (2004) Topology optimization of navier-stokes equations. In: Nordic MPS 2004. The ninth meeting of the nordic section of the mathematical programming society, vol 014. Linköping University Electronic Press, pp 37–55 Evgrafov A (2004) Topology optimization of navier-stokes equations. In: Nordic MPS 2004. The ninth meeting of the nordic section of the mathematical programming society, vol 014. Linköping University Electronic Press, pp 37–55
go back to reference Evgrafov A (2006) Topology optimization of slightly compressible fluids. ZAMM J Appl Math Mech/Zeitschrift für Angewandte Mathematik und Mechanik 86(1):46–62MathSciNetMATHCrossRef Evgrafov A (2006) Topology optimization of slightly compressible fluids. ZAMM J Appl Math Mech/Zeitschrift für Angewandte Mathematik und Mechanik 86(1):46–62MathSciNetMATHCrossRef
go back to reference Farrell PE, Ham DA, Funke SW, Rognes ME (2013) Automated derivation of the adjoint of high-level transient finite element programs. SIAM J Sci Comput 35(4):C369–C393MathSciNetMATHCrossRef Farrell PE, Ham DA, Funke SW, Rognes ME (2013) Automated derivation of the adjoint of high-level transient finite element programs. SIAM J Sci Comput 35(4):C369–C393MathSciNetMATHCrossRef
go back to reference Forchheimer P (1901) Wasserbewegung durch boden. Z Ver Deutsch Ing 45:1782–1788 Forchheimer P (1901) Wasserbewegung durch boden. Z Ver Deutsch Ing 45:1782–1788
go back to reference Fraser K, Taskin M, Zhang T, Griffith B, Wu Z (2010) Comparison of shear stress, residence time and lagrangian estimates of hemolysis in different ventricular assist devices. In: 26th southern biomedical engineering conference SBEC 2010, April 30–May 2, 2010. Springer, College Park, Maryland, USA, pp 548–551 Fraser K, Taskin M, Zhang T, Griffith B, Wu Z (2010) Comparison of shear stress, residence time and lagrangian estimates of hemolysis in different ventricular assist devices. In: 26th southern biomedical engineering conference SBEC 2010, April 30–May 2, 2010. Springer, College Park, Maryland, USA, pp 548–551
go back to reference Garon A, Farinas MI (2004) Fast three-dimensional numerical hemolysis approximation. Artif Organs 28(11):1016–1025CrossRef Garon A, Farinas MI (2004) Fast three-dimensional numerical hemolysis approximation. Artif Organs 28(11):1016–1025CrossRef
go back to reference Geertsma J (1974) Estimating the coefficient of inertial resistance in fluid flow through porous media. Soc Pet Eng J 14(05):445– 450CrossRef Geertsma J (1974) Estimating the coefficient of inertial resistance in fluid flow through porous media. Soc Pet Eng J 14(05):445– 450CrossRef
go back to reference Ghattas O, He B, Antaki JF et al (1995) Shape optimization of navier-stokes flows with application to optimal design of artificial heart components. Tech rep., Carnegie Institute of Technology, Department of Civil and Environmental Engineering Ghattas O, He B, Antaki JF et al (1995) Shape optimization of navier-stokes flows with application to optimal design of artificial heart components. Tech rep., Carnegie Institute of Technology, Department of Civil and Environmental Engineering
go back to reference Giersiepen M, Wurzinger L, Opitz R, Reul H (1990) Estimation of shear stress-related blood damage in heart valve prostheses-in vitro comparison of 25 aortic valves. Int J Artif Organs 13(5):300–306CrossRef Giersiepen M, Wurzinger L, Opitz R, Reul H (1990) Estimation of shear stress-related blood damage in heart valve prostheses-in vitro comparison of 25 aortic valves. Int J Artif Organs 13(5):300–306CrossRef
go back to reference Gill B, Cox CS Jr, Aroom KR (2009) Centrifugal pump. US 2009/0317271 A1 Gill B, Cox CS Jr, Aroom KR (2009) Centrifugal pump. US 2009/0317271 A1
go back to reference Goubergrits L (2006) Numerical modeling of blood damage: current status, challenges and future prospects. Expert Rev Med Devices 3(5):527–531CrossRef Goubergrits L (2006) Numerical modeling of blood damage: current status, challenges and future prospects. Expert Rev Med Devices 3(5):527–531CrossRef
go back to reference Grigioni M, Daniele C, Morbiducci U, D’Avenio G, Di Benedetto G, Barbaro V (2004) The power-law mathematical model for blood damage prediction: analytical developments and physical inconsistencies. Artif Organs 28(5):467–475CrossRef Grigioni M, Daniele C, Morbiducci U, D’Avenio G, Di Benedetto G, Barbaro V (2004) The power-law mathematical model for blood damage prediction: analytical developments and physical inconsistencies. Artif Organs 28(5):467–475CrossRef
go back to reference Grigioni M, Morbiducci U, D’Avenio G, Di Benedetto G, Del Gaudio C (2005) A novel formulation for blood trauma prediction by a modified power-law mathematical model. Biomech Model Mechanobiol 4 (4):249–260CrossRef Grigioni M, Morbiducci U, D’Avenio G, Di Benedetto G, Del Gaudio C (2005) A novel formulation for blood trauma prediction by a modified power-law mathematical model. Biomech Model Mechanobiol 4 (4):249–260CrossRef
go back to reference Gurtin ME (1981) An introduction to continuum mechanics, 1st edn. Academic Press, New YorkMATH Gurtin ME (1981) An introduction to continuum mechanics, 1st edn. Academic Press, New YorkMATH
go back to reference Hasinger SH, Kehrt LG (1963) Investigation of a shear-force pump. J Eng Power 85(3):201–206CrossRef Hasinger SH, Kehrt LG (1963) Investigation of a shear-force pump. J Eng Power 85(3):201–206CrossRef
go back to reference Hinghofer-Szalkay H, Greenleaf J (1987) Continuous monitoring of blood volume changes in humans. J Appl Physiol 63(3):1003–1007CrossRef Hinghofer-Szalkay H, Greenleaf J (1987) Continuous monitoring of blood volume changes in humans. J Appl Physiol 63(3):1003–1007CrossRef
go back to reference Huang H, Ayoub JA (2006) Applicability of the forchheimer equation for non-darcy flow in porous media. In: SPE annual technical conference and exhibition. Society of Petroleum Engineers Huang H, Ayoub JA (2006) Applicability of the forchheimer equation for non-darcy flow in porous media. In: SPE annual technical conference and exhibition. Society of Petroleum Engineers
go back to reference Izraelev V, Weiss WJ, Fritz B, Newswanger RK, Paterson EG, Snyder A, Medvitz RB, Cysyk J, Pae WE, Hicks D et al (2009) A passively-suspended tesla pump left ventricular assist device. ASAIO Journal (American Society for Artificial Internal Organs: 1992) 55(6):556CrossRef Izraelev V, Weiss WJ, Fritz B, Newswanger RK, Paterson EG, Snyder A, Medvitz RB, Cysyk J, Pae WE, Hicks D et al (2009) A passively-suspended tesla pump left ventricular assist device. ASAIO Journal (American Society for Artificial Internal Organs: 1992) 55(6):556CrossRef
go back to reference Jensen KE (2013) Structural optimization of non-newtonian microfluidics. PhD thesis, Technical University of Denmark, phD thesis Jensen KE (2013) Structural optimization of non-newtonian microfluidics. PhD thesis, Technical University of Denmark, phD thesis
go back to reference Jensen KE, Szabo P, Okkels F (2012) Topology optimizatin of viscoelastic rectifiers. Appl Phys Lett 100(23):234102CrossRef Jensen KE, Szabo P, Okkels F (2012) Topology optimizatin of viscoelastic rectifiers. Appl Phys Lett 100(23):234102CrossRef
go back to reference Jiang L, Chen S, Sadasivan C, Jiao X (2017) Structural topology optimization for generative design of personalized aneurysm implants: design, additive manufacturing, and experimental validation. In: 2017 IEEE healthcare innovations and point of care technologies (HI-POCT). IEEE, pp 9–13 Jiang L, Chen S, Sadasivan C, Jiao X (2017) Structural topology optimization for generative design of personalized aneurysm implants: design, additive manufacturing, and experimental validation. In: 2017 IEEE healthcare innovations and point of care technologies (HI-POCT). IEEE, pp 9–13
go back to reference Kletschka HD, Rafferty EH (1975) Pumps capable of use as heart pumps and blood pumps. US 3,864,055 Kletschka HD, Rafferty EH (1975) Pumps capable of use as heart pumps and blood pumps. US 3,864,055
go back to reference Kundu P, Kumar V, Mishra IM (2016) Experimental and numerical investigation of fluid flow hydrodynamics in porous media: characterization of pre-darcy, darcy and non-darcy flow regimes. Powder Technol 303:278–291CrossRef Kundu P, Kumar V, Mishra IM (2016) Experimental and numerical investigation of fluid flow hydrodynamics in porous media: characterization of pre-darcy, darcy and non-darcy flow regimes. Powder Technol 303:278–291CrossRef
go back to reference Lai WM, Rubin DH, Krempl E, Rubin D (2009) Introduction to continuum mechanics. Butterworth-Heinemann Lai WM, Rubin DH, Krempl E, Rubin D (2009) Introduction to continuum mechanics. Butterworth-Heinemann
go back to reference Lazarov BS, Sigmund O (2010) Filters in topology optimization based on helmholtz-type differential equations. Int J Numer Methods Eng 86(6):765–781MathSciNetMATHCrossRef Lazarov BS, Sigmund O (2010) Filters in topology optimization based on helmholtz-type differential equations. Int J Numer Methods Eng 86(6):765–781MathSciNetMATHCrossRef
go back to reference Leondes C (2000) Biomechanical systems: techniques and applications, Volume II: cardiovascular techniques, 1st edn. Biomechanical Systems: Techniques and Applications, CRC Press, Boca RatonCrossRef Leondes C (2000) Biomechanical systems: techniques and applications, Volume II: cardiovascular techniques, 1st edn. Biomechanical Systems: Techniques and Applications, CRC Press, Boca RatonCrossRef
go back to reference Lu P, Lai H, Liu J (2001) A reevaluation and discussion on the threshold limit for hemolysis in a turbulent shear flow. J Biomech 34(10):1361–1364CrossRef Lu P, Lai H, Liu J (2001) A reevaluation and discussion on the threshold limit for hemolysis in a turbulent shear flow. J Biomech 34(10):1361–1364CrossRef
go back to reference Montevecchi F, Inzoli F, Redaelli A, Mammana M (1995) Preliminary design and optimization of an ecc blood pump by means of a parametric approach. Artif Organs 19(7):685–690CrossRef Montevecchi F, Inzoli F, Redaelli A, Mammana M (1995) Preliminary design and optimization of an ecc blood pump by means of a parametric approach. Artif Organs 19(7):685–690CrossRef
go back to reference Munson BR, Young DF, Okiishi TH (2009) Fundamentals of fluid mechanics, 6th edn. Wiley, New YorkMATH Munson BR, Young DF, Okiishi TH (2009) Fundamentals of fluid mechanics, 6th edn. Wiley, New YorkMATH
go back to reference Nam J, Behr M, Pasquali M (2011) Space-time least-squares finite element method for convection-reaction system with transformed variables. Comput Methods Appl Mech Eng 200(33–36):2562–2576MathSciNetMATHCrossRef Nam J, Behr M, Pasquali M (2011) Space-time least-squares finite element method for convection-reaction system with transformed variables. Comput Methods Appl Mech Eng 200(33–36):2562–2576MathSciNetMATHCrossRef
go back to reference Olesen LH, Okkels F, Bruus H (2006) A high-level programming-language implementation of topology optimization applied to steady-state navier–stokes flow. Int J Numer Methods Eng 65(7):975–1001MathSciNetMATHCrossRef Olesen LH, Okkels F, Bruus H (2006) A high-level programming-language implementation of topology optimization applied to steady-state navier–stokes flow. Int J Numer Methods Eng 65(7):975–1001MathSciNetMATHCrossRef
go back to reference Papoutsis-Kiachagias E, Kontoleontos E, Zymaris A, Papadimitriou D, Giannakoglou K (2011) Constrained topology optimization for laminar and turbulent flows, including heat transfer. CIRA, editor, EUROGEN, Evolutionary and Deterministic Methods for Design Optimization and Control, Capua, Italy Papoutsis-Kiachagias E, Kontoleontos E, Zymaris A, Papadimitriou D, Giannakoglou K (2011) Constrained topology optimization for laminar and turbulent flows, including heat transfer. CIRA, editor, EUROGEN, Evolutionary and Deterministic Methods for Design Optimization and Control, Capua, Italy
go back to reference Pauli L, Nam J, Pasquali M, Behr M (2013) Transient stress-based and strain-based hemolysis estimation in a simplified blood pump. Int J Numer Methods Biomed Eng 29(10):1148–1160MathSciNetCrossRef Pauli L, Nam J, Pasquali M, Behr M (2013) Transient stress-based and strain-based hemolysis estimation in a simplified blood pump. Int J Numer Methods Biomed Eng 29(10):1148–1160MathSciNetCrossRef
go back to reference Philippi B, Jin Y (2015) Topology optimization of turbulent fluid flow with a sensitive porosity adjoint method (spam). arXiv:151208445 Philippi B, Jin Y (2015) Topology optimization of turbulent fluid flow with a sensitive porosity adjoint method (spam). arXiv:151208445
go back to reference Pingen G, Maute K (2010) Optimal design for non-newtonian flows using a topology optimization approach. Comput Math Appl 59(7):2340–2350MathSciNetMATHCrossRef Pingen G, Maute K (2010) Optimal design for non-newtonian flows using a topology optimization approach. Comput Math Appl 59(7):2340–2350MathSciNetMATHCrossRef
go back to reference Pinotti M, Rosa ES (1995) Computational prediction of hemolysis in a centrifugal ventricular assist device. Artif Organs 19(3):267– 273CrossRef Pinotti M, Rosa ES (1995) Computational prediction of hemolysis in a centrifugal ventricular assist device. Artif Organs 19(3):267– 273CrossRef
go back to reference Pratumwal Y, Limtrakarn W, Muengtaweepongsa S, Phakdeesan P, Duangburong S, Eiamaram P, Intharakham K (2017) Whole blood viscosity modeling using power law, casson, and carreau yasuda models integrated with image scanning u-tube viscometer technique. Songklanakarin J Sci Technol 39(5) pp 625–631 Pratumwal Y, Limtrakarn W, Muengtaweepongsa S, Phakdeesan P, Duangburong S, Eiamaram P, Intharakham K (2017) Whole blood viscosity modeling using power law, casson, and carreau yasuda models integrated with image scanning u-tube viscometer technique. Songklanakarin J Sci Technol 39(5) pp 625–631
go back to reference Rafferty EH, Kletschka HD (1972) Electrically driven pumps capable of use as heart pumps. US 3,647,324 Rafferty EH, Kletschka HD (1972) Electrically driven pumps capable of use as heart pumps. US 3,647,324
go back to reference Rafferty EH, Kletschka HD (1976) Pumping apparatus and process characterized by gentle operation. US 3,957,389 Rafferty EH, Kletschka HD (1976) Pumping apparatus and process characterized by gentle operation. US 3,957,389
go back to reference Reddy JN, Gartling DK (2010) The finite element method in heat transfer and fluid dynamics, 3rd edn. CRC Press, Boca RatonMATHCrossRef Reddy JN, Gartling DK (2010) The finite element method in heat transfer and fluid dynamics, 3rd edn. CRC Press, Boca RatonMATHCrossRef
go back to reference Rey Ladino AF (2004) Numerical simulation of the flow field in a friction-type turbine (tesla turbine) Diploma thesis, Institute of Thermal Powerplants, Vienna University of Technology Rey Ladino AF (2004) Numerical simulation of the flow field in a friction-type turbine (tesla turbine) Diploma thesis, Institute of Thermal Powerplants, Vienna University of Technology
go back to reference Romero JS, Silva ECN (2017) Non-newtonian laminar flow machine rotor design by using topology optimization. Struct Multidiscip Optim 55(5):1711–1732MathSciNetCrossRef Romero JS, Silva ECN (2017) Non-newtonian laminar flow machine rotor design by using topology optimization. Struct Multidiscip Optim 55(5):1711–1732MathSciNetCrossRef
go back to reference Sabersky RH, Acosta AJ, Hauptmann EG, Gates EM (1971) Fluid flow: a first course in fluid mechanics, vol 299. Macmillan, New York Sabersky RH, Acosta AJ, Hauptmann EG, Gates EM (1971) Fluid flow: a first course in fluid mechanics, vol 299. Macmillan, New York
go back to reference Sastry S, Kadambi JR, Sankovic JM, Izraelev V (2006) Study of flow field in an advanced bladeless rotary blood pump using particle image velocimetry. Lisbon, Portugal Sastry S, Kadambi JR, Sankovic JM, Izraelev V (2006) Study of flow field in an advanced bladeless rotary blood pump using particle image velocimetry. Lisbon, Portugal
go back to reference Sato Y, Yaji K, Izui K, Yamada T, Nishiwaki S (2018) An optimum design method for a thermal-fluid device incorporating multiobjective topology optimization with an adaptive weighting scheme. J Mech Des 140(3):031402CrossRef Sato Y, Yaji K, Izui K, Yamada T, Nishiwaki S (2018) An optimum design method for a thermal-fluid device incorporating multiobjective topology optimization with an adaptive weighting scheme. J Mech Des 140(3):031402CrossRef
go back to reference Song XG, Wang L, Baek SH, Park YC (2009) Multidisciplinary optimization of a butterfly valve. ISA Trans 48(3):370–377CrossRef Song XG, Wang L, Baek SH, Park YC (2009) Multidisciplinary optimization of a butterfly valve. ISA Trans 48(3):370–377CrossRef
go back to reference Sonntag RE, Borgnakke C (2013) Fundamentals of thermodynamics, 8th edn. Wiley, New York Sonntag RE, Borgnakke C (2013) Fundamentals of thermodynamics, 8th edn. Wiley, New York
go back to reference Taskin ME, Fraser KH, Zhang T, Wu C, Griffith BP, Wu ZJ (2012) Evaluation of eulerian and lagrangian models for hemolysis estimation. ASAIO J 58(4):363–372CrossRef Taskin ME, Fraser KH, Zhang T, Wu C, Griffith BP, Wu ZJ (2012) Evaluation of eulerian and lagrangian models for hemolysis estimation. ASAIO J 58(4):363–372CrossRef
go back to reference Tesch K (2013) On invariants of fluid mechanics tensors. Task Quart 17(3–4):228–230 Tesch K (2013) On invariants of fluid mechanics tensors. Task Quart 17(3–4):228–230
go back to reference Wächter A, Biegler LT (2006) On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math Program 106(1):25–57MathSciNetMATHCrossRef Wächter A, Biegler LT (2006) On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math Program 106(1):25–57MathSciNetMATHCrossRef
go back to reference Wang L, Torres A, Xiang L, Fei X, Naido A, Wu W (2015) A technical review on shale gas production and unconventional reservoirs modeling. Nat Resour 6(03):141 Wang L, Torres A, Xiang L, Fei X, Naido A, Wu W (2015) A technical review on shale gas production and unconventional reservoirs modeling. Nat Resour 6(03):141
go back to reference White FM (2009) Fluid mechanics, 7th edn. McGraw-Hill, New York White FM (2009) Fluid mechanics, 7th edn. McGraw-Hill, New York
go back to reference Wiker N, Klarbring A, Borrvall T (2007) Topology optimization of regions of darcy and stokes flow. Int J Numer Methods Eng 69(7):1374–1404MathSciNetMATHCrossRef Wiker N, Klarbring A, Borrvall T (2007) Topology optimization of regions of darcy and stokes flow. Int J Numer Methods Eng 69(7):1374–1404MathSciNetMATHCrossRef
go back to reference Wu J (2007) Letter to the editor: a possible major mistake in the paper entitled “collected nondimensional performance of rotary dynamic blood pump”: Smith WA, Allaire P, Antaki J, Butler KC, Kerkhoffs W, Kink T, Loree H, Reul H. ASAIO J 50:25–32, 2004. Asaio J 53(2):255–256CrossRef Wu J (2007) Letter to the editor: a possible major mistake in the paper entitled “collected nondimensional performance of rotary dynamic blood pump”: Smith WA, Allaire P, Antaki J, Butler KC, Kerkhoffs W, Kink T, Loree H, Reul H. ASAIO J 50:25–32, 2004. Asaio J 53(2):255–256CrossRef
go back to reference Wu J, Antaki JF, Snyder TA, Wagner WR, Borovetz HS, Paden BE (2005) Design optimization of blood shearing instrument by computational fluid dynamics. Artif Organs 29(6):482–489CrossRef Wu J, Antaki JF, Snyder TA, Wagner WR, Borovetz HS, Paden BE (2005) Design optimization of blood shearing instrument by computational fluid dynamics. Artif Organs 29(6):482–489CrossRef
go back to reference Yano T, Sekine K, Mitoh A, Mitamura Y, Okamoto E, Kim DW, Nishimura I, Murabayashi S, Yozu R (2003) An estimation method of hemolysis within an axial flow blood pump by computational fluid dynamics analysis. Artif Organs 27(10):920–925CrossRef Yano T, Sekine K, Mitoh A, Mitamura Y, Okamoto E, Kim DW, Nishimura I, Murabayashi S, Yozu R (2003) An estimation method of hemolysis within an axial flow blood pump by computational fluid dynamics analysis. Artif Organs 27(10):920–925CrossRef
go back to reference Yeleswarapu KK, Antaki JF, Kameneva MV, Rajagopal KR (1995) A mathematical model for shear-induced hemolysis. Artif Organs 19(7):576–582CrossRef Yeleswarapu KK, Antaki JF, Kameneva MV, Rajagopal KR (1995) A mathematical model for shear-induced hemolysis. Artif Organs 19(7):576–582CrossRef
go back to reference Yu H (2015) Flow design optimization of blood pumps considering hemolysis. PhD thesis, Magdeburg, universität, Diss., 2015 Yu H (2015) Flow design optimization of blood pumps considering hemolysis. PhD thesis, Magdeburg, universität, Diss., 2015
go back to reference Zauderer E (1989) Partial differential equations of applied mathematics, 2nd edn. Wiley, New YorkMATH Zauderer E (1989) Partial differential equations of applied mathematics, 2nd edn. Wiley, New YorkMATH
go back to reference Zhang B, Liu X, Sun J (2016) Topology optimization design of non-newtonian roller-type viscous micropumps. Struct Multidiscip Optim 53(3):409–424MathSciNetCrossRef Zhang B, Liu X, Sun J (2016) Topology optimization design of non-newtonian roller-type viscous micropumps. Struct Multidiscip Optim 53(3):409–424MathSciNetCrossRef
go back to reference Zhang T, Taskin ME, Fang HB, Pampori A, Jarvik R, Griffith BP, Wu ZJ (2011) Study of flow-induced hemolysis using novel couette-type blood-shearing devices. Artif Organs 35(12):1180–1186CrossRef Zhang T, Taskin ME, Fang HB, Pampori A, Jarvik R, Griffith BP, Wu ZJ (2011) Study of flow-induced hemolysis using novel couette-type blood-shearing devices. Artif Organs 35(12):1180–1186CrossRef
go back to reference Zhou S, Li Q (2008) A variationals level set method for the topology optimization of steady-state navier–stokes flow. J Comput Phys 227(24):10178–10195MathSciNetMATHCrossRef Zhou S, Li Q (2008) A variationals level set method for the topology optimization of steady-state navier–stokes flow. J Comput Phys 227(24):10178–10195MathSciNetMATHCrossRef
Metadata
Title
Topology optimization for blood flow considering a hemolysis model
Authors
Diego Hayashi Alonso
Emílio Carlos Nelli Silva
Publication date
15-03-2021
Publisher
Springer Berlin Heidelberg
Published in
Structural and Multidisciplinary Optimization / Issue 5/2021
Print ISSN: 1615-147X
Electronic ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-020-02806-x

Other articles of this Issue 5/2021

Structural and Multidisciplinary Optimization 5/2021 Go to the issue

Premium Partners