Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 1/2020

05.03.2020 | Research Paper

Non-newtonian laminar 2D swirl flow design by the topology optimization method

verfasst von: Diego Hayashi Alonso, Juan Sergio Romero Saenz, Emílio Carlos Nelli Silva

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The performance of fluid devices, such as channels, valves, nozzles, and pumps, may be improved by designing them through the topology optimization method. There are various fluid flow problems that can be elaborated in order to design fluid devices and among them there is a specific type which comprises axisymmetric flow with a rotation (swirl flow) around an axis. This specific type of problem allows the simplification of the computationally more expensive 3D fluid flow model to a computationally less expensive 2D swirl flow model. The topology optimization method applied to a Newtonian fluid in 2D swirl flow has already been analyzed before, however not all fluids feature Newtonian (linear) properties, and can exhibit non-Newtonian (nonlinear) effects, such as shear-thinning, which means that the fluid should feature a higher viscosity when under lower shear stresses. Some fluids that exhibit such behavior are, for example, blood, activated sludge, and ketchup. In this work, the effect of a non-Newtonian fluid flow is considered for the design of 2D swirl flow devices by using the topology optimization method. The non-Newtonian fluid is modeled by the Carreau-Yasuda model, which is known to be able to accurately predict velocity distributions for blood flow. The design comprises the minimization of the relative energy dissipation considering the viscous, porous, and inertial effects, and is solved by using the finite element method. The traditional pseudo-density material model for topology optimization is adopted with a nodal design variable. A penalization scheme is introduced for 2D swirl flow in order to enforce the low shear stress behavior of the non-Newtonian viscosity inside the modeled solid material. The optimization is performed with IPOPT (Interior Point Optimization algorithm). Numerical examples are presented for some 2D swirl flow problems, comparing the non-Newtonian with the Newtonian fluid designs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Abraham F, Behr M, Heinkenschloss M (2005) Shape optimization in steady blood flow: a numerical study of non-newtonian effects. Comput Methods Biomech Biomed Eng 8(2):127–137 Abraham F, Behr M, Heinkenschloss M (2005) Shape optimization in steady blood flow: a numerical study of non-newtonian effects. Comput Methods Biomech Biomed Eng 8(2):127–137
Zurück zum Zitat Amestoy PR, Duff IS, Koster J, L’Excellent JY (2001) A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J Matrix Anal Appl 23(1):15–41MathSciNetMATH Amestoy PR, Duff IS, Koster J, L’Excellent JY (2001) A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J Matrix Anal Appl 23(1):15–41MathSciNetMATH
Zurück zum Zitat Anand M, Rajagopal KR (2017) A short review of advances in the modelling of blood rheology and clot formation. Fluids 2(3) Anand M, Rajagopal KR (2017) A short review of advances in the modelling of blood rheology and clot formation. Fluids 2(3)
Zurück zum Zitat Arora D, Behr M, Pasquali M (2004) A tensor-based measure for estimating blood damage. Artif Organs 28(11):1002–1015 Arora D, Behr M, Pasquali M (2004) A tensor-based measure for estimating blood damage. Artif Organs 28(11):1002–1015
Zurück zum Zitat Bayod E, Willers EP, Tornberg E (2008) Rheological and structural characterization of tomato paste and its influence on the quality of ketchup. LWT-Food Sci Technol 41(7):1289–1300 Bayod E, Willers EP, Tornberg E (2008) Rheological and structural characterization of tomato paste and its influence on the quality of ketchup. LWT-Food Sci Technol 41(7):1289–1300
Zurück zum Zitat Behbahani M, Behr M, Hormes M, Steinseifer U, Arora D, Coronado O, Pasquali M (2009) A review of computational fluid dynamics analysis of blood pumps. Eur J Appl Math 20(4):363–397MathSciNetMATH Behbahani M, Behr M, Hormes M, Steinseifer U, Arora D, Coronado O, Pasquali M (2009) A review of computational fluid dynamics analysis of blood pumps. Eur J Appl Math 20(4):363–397MathSciNetMATH
Zurück zum Zitat Bird RB, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids, Volume 1: Fluid mechanics, 1st edn. Wiley, New York Bird RB, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids, Volume 1: Fluid mechanics, 1st edn. Wiley, New York
Zurück zum Zitat Brandenburg C, Lindemann F, Ulbrich M, Ulbrich S (2009) A continuous adjoint approach to shape optimization for navier stokes flow. In: Kunisch K, Sprekels J, Leugering G, Tröltzsch F (eds) Optimal control of coupled systems of partial differential equations. Basel, Birkhäuser Basel, pp 35–56 Brandenburg C, Lindemann F, Ulbrich M, Ulbrich S (2009) A continuous adjoint approach to shape optimization for navier stokes flow. In: Kunisch K, Sprekels J, Leugering G, Tröltzsch F (eds) Optimal control of coupled systems of partial differential equations. Basel, Birkhäuser Basel, pp 35–56
Zurück zum Zitat Brezzi F, Fortin M (1991) Mixed and hybrid finite element methods. Springer, BerlinMATH Brezzi F, Fortin M (1991) Mixed and hybrid finite element methods. Springer, BerlinMATH
Zurück zum Zitat Cho YI, Kenssey KR (1991) Effects of the non-newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady flows. Biorheology 28:241–262 Cho YI, Kenssey KR (1991) Effects of the non-newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady flows. Biorheology 28:241–262
Zurück zum Zitat Deng Y, Wu Y, Liu Z (2018) Topology optimization theory for laminar flow. Springer, Singapore Deng Y, Wu Y, Liu Z (2018) Topology optimization theory for laminar flow. Springer, Singapore
Zurück zum Zitat Duan XB, Li FF, Qin XQ (2015) Adaptive mesh method for topology optimization of fluid flow. Appl Math Lett 44:40–44MathSciNetMATH Duan XB, Li FF, Qin XQ (2015) Adaptive mesh method for topology optimization of fluid flow. Appl Math Lett 44:40–44MathSciNetMATH
Zurück zum Zitat Evgrafov A (2004) Topology optimization of navier-stokes equations. In: Nordic MPS 2004. The ninth meeting of the nordic section of the mathematical programming society. Linköping University Electronic Press, vol 014, pp 37–55 Evgrafov A (2004) Topology optimization of navier-stokes equations. In: Nordic MPS 2004. The ninth meeting of the nordic section of the mathematical programming society. Linköping University Electronic Press, vol 014, pp 37–55
Zurück zum Zitat Evgrafov A (2006) Topology optimization of slightly compressible fluids. ZAMM-J Appl Math Mech/Z Angew Math Mech 86(1):46–62MathSciNetMATH Evgrafov A (2006) Topology optimization of slightly compressible fluids. ZAMM-J Appl Math Mech/Z Angew Math Mech 86(1):46–62MathSciNetMATH
Zurück zum Zitat Evgrafov A (2015) On chebyshev’s method for topology optimization of stokes flows. Struct Multidiscip Optim 51(4):801–811MathSciNet Evgrafov A (2015) On chebyshev’s method for topology optimization of stokes flows. Struct Multidiscip Optim 51(4):801–811MathSciNet
Zurück zum Zitat Farrell PE, Ham DA, Funke SW, Rognes ME (2013) Automated derivation of the adjoint of high-level transient finite element programs. SIAM J Sci Comput 35(4):C369–C393MathSciNetMATH Farrell PE, Ham DA, Funke SW, Rognes ME (2013) Automated derivation of the adjoint of high-level transient finite element programs. SIAM J Sci Comput 35(4):C369–C393MathSciNetMATH
Zurück zum Zitat Ferraris CF, deLarrard F (1998) Testing and modeling of fresh concrete rheology. Technical report, NIST Ferraris CF, deLarrard F (1998) Testing and modeling of fresh concrete rheology. Technical report, NIST
Zurück zum Zitat Galvin KJ (2013) Advancements in finite element methods for newtonian and non-newtonian flows. PhD thesis, Clemson University Galvin KJ (2013) Advancements in finite element methods for newtonian and non-newtonian flows. PhD thesis, Clemson University
Zurück zum Zitat Garakani AHK, Mostoufi N, Sadeghi F, Hosseinzadeh M, Fatourechi H, Sarrafzadeh MH, Mehrnia MR (2011) Comparison between different models for rheological characterization of activated sludge. Iran J Environ Health Sci Eng 8(3):255 Garakani AHK, Mostoufi N, Sadeghi F, Hosseinzadeh M, Fatourechi H, Sarrafzadeh MH, Mehrnia MR (2011) Comparison between different models for rheological characterization of activated sludge. Iran J Environ Health Sci Eng 8(3):255
Zurück zum Zitat Girault V, Raviart p (2012) Finite element methods for Navier-Stokes equations: theory and algorithms. Springer Series in Computational Mathematics. Springer, Berlin Girault V, Raviart p (2012) Finite element methods for Navier-Stokes equations: theory and algorithms. Springer Series in Computational Mathematics. Springer, Berlin
Zurück zum Zitat Gupta DK, van Keulen F, Langelaar M (2020) Design and analysis adaptivity in multiresolution topology optimization. Int J Numer Methods Eng 121(3):450–476 Gupta DK, van Keulen F, Langelaar M (2020) Design and analysis adaptivity in multiresolution topology optimization. Int J Numer Methods Eng 121(3):450–476
Zurück zum Zitat Gurtin ME (1981) An introduction to continuum mechanics, 1st edn. Academic Press, New YorkMATH Gurtin ME (1981) An introduction to continuum mechanics, 1st edn. Academic Press, New YorkMATH
Zurück zum Zitat Hinghofer-Szalkay H, Greenleaf J (1987) Continuous monitoring of blood volume changes in humans. J Appl Physiol 63(3):1003–1007 Hinghofer-Szalkay H, Greenleaf J (1987) Continuous monitoring of blood volume changes in humans. J Appl Physiol 63(3):1003–1007
Zurück zum Zitat Jensen KE (2013) Structural optimization of non-newtonian microfluidics. PhD thesis, Technical University of Denmark, phD thesis Jensen KE (2013) Structural optimization of non-newtonian microfluidics. PhD thesis, Technical University of Denmark, phD thesis
Zurück zum Zitat Jensen KE, Szabo P, Okkels F (2012) Topology optimization of viscoelastic rectifiers. Appl Phys Lett 100(23):234102 Jensen KE, Szabo P, Okkels F (2012) Topology optimization of viscoelastic rectifiers. Appl Phys Lett 100(23):234102
Zurück zum Zitat Jiang L, Chen S, Sadasivan C, Jiao X (2017) Structural topology optimization for generative design of personalized aneurysm implants: design, additive manufacturing, and experimental validation. In: 2017 IEEE Healthcare innovations and point of care technologies (HI-POCT). IEEE, pp 9–13 Jiang L, Chen S, Sadasivan C, Jiao X (2017) Structural topology optimization for generative design of personalized aneurysm implants: design, additive manufacturing, and experimental validation. In: 2017 IEEE Healthcare innovations and point of care technologies (HI-POCT). IEEE, pp 9–13
Zurück zum Zitat Lai W M, Rubin D, Krempl E (2009) Introduction to continuum mechanics. Butterworth-Heinemann, Oxford Lai W M, Rubin D, Krempl E (2009) Introduction to continuum mechanics. Butterworth-Heinemann, Oxford
Zurück zum Zitat Leondes C (2000) Biomechanical systems: techniques and applications, Volume II: Cardiovascular Techniques, 1st edn. Biomechanical Systems, Techniques and Applications. CRC Press Leondes C (2000) Biomechanical systems: techniques and applications, Volume II: Cardiovascular Techniques, 1st edn. Biomechanical Systems, Techniques and Applications. CRC Press
Zurück zum Zitat Munson BR, Young DF, Okiishi TH (2009) Fundamentals of fluid mechanics, 6th edn. Wiley, New YorkMATH Munson BR, Young DF, Okiishi TH (2009) Fundamentals of fluid mechanics, 6th edn. Wiley, New YorkMATH
Zurück zum Zitat Olesen LH, Okkels F, Bruus H (2006) A high-level programming-language implementation of topology optimization applied to steady-state navier–stokes flow. Int J Numer Methods Eng 65(7):975–1001MathSciNetMATH Olesen LH, Okkels F, Bruus H (2006) A high-level programming-language implementation of topology optimization applied to steady-state navier–stokes flow. Int J Numer Methods Eng 65(7):975–1001MathSciNetMATH
Zurück zum Zitat Pingen G, Maute K (2010) Optimal design for non-newtonian flows using a topology optimization approach. Comput Math Appl 59(7):2340–2350MathSciNetMATH Pingen G, Maute K (2010) Optimal design for non-newtonian flows using a topology optimization approach. Comput Math Appl 59(7):2340–2350MathSciNetMATH
Zurück zum Zitat Pratumwal Y, Limtrakarn W, Muengtaweepongsa S, Phakdeesan P, Duangburong S, Eiamaram P, Intharakham K (2017) Whole blood viscosity modeling using power law, casson, and carreau yasuda models integrated with image scanning u-tube viscometer technique. Songklanakarin J Sci Technol 39(5) Pratumwal Y, Limtrakarn W, Muengtaweepongsa S, Phakdeesan P, Duangburong S, Eiamaram P, Intharakham K (2017) Whole blood viscosity modeling using power law, casson, and carreau yasuda models integrated with image scanning u-tube viscometer technique. Songklanakarin J Sci Technol 39(5)
Zurück zum Zitat Quarteroni A, Tuveri M, Veneziani A (2000) Computational vascular fluid dynamics: problems, models and methods. Comput Vis Sci 2(4):163–197MATH Quarteroni A, Tuveri M, Veneziani A (2000) Computational vascular fluid dynamics: problems, models and methods. Comput Vis Sci 2(4):163–197MATH
Zurück zum Zitat Reddy JN, Gartling DK (2010) The finite element method in heat transfer and fluid dynamics, 3rd edn. CRC Press, Boca RatonMATH Reddy JN, Gartling DK (2010) The finite element method in heat transfer and fluid dynamics, 3rd edn. CRC Press, Boca RatonMATH
Zurück zum Zitat Romero JS, Silva ECN (2017) Non-newtonian laminar flow machine rotor design by using topology optimization. Struct Multidiscip Optim 55(5):1711–1732MathSciNet Romero JS, Silva ECN (2017) Non-newtonian laminar flow machine rotor design by using topology optimization. Struct Multidiscip Optim 55(5):1711–1732MathSciNet
Zurück zum Zitat Sato Y, Yaji K, Izui K, Yamada T, Nishiwaki S (2018) An optimum design method for a thermal-fluid device incorporating multiobjective topology optimization with an adaptive weighting scheme. J Mech Des 140(3):031402 Sato Y, Yaji K, Izui K, Yamada T, Nishiwaki S (2018) An optimum design method for a thermal-fluid device incorporating multiobjective topology optimization with an adaptive weighting scheme. J Mech Des 140(3):031402
Zurück zum Zitat Sokolowski J, Zochowski A (1999) On the topological derivative in shape optimization. SIAM J Control Optim 37(4):1251– 1272MathSciNetMATH Sokolowski J, Zochowski A (1999) On the topological derivative in shape optimization. SIAM J Control Optim 37(4):1251– 1272MathSciNetMATH
Zurück zum Zitat Song XG, Wang L, Baek SH, Park YC (2009) Multidisciplinary optimization of a butterfly valve. ISA Trans 48(3):370–377 Song XG, Wang L, Baek SH, Park YC (2009) Multidisciplinary optimization of a butterfly valve. ISA Trans 48(3):370–377
Zurück zum Zitat Tesch K (2013) On invariants of fluid mechanics tensors. Task Quart 17(3-4):228–230 Tesch K (2013) On invariants of fluid mechanics tensors. Task Quart 17(3-4):228–230
Zurück zum Zitat Vafai K (2005) Handbook of porous media, 2nd edn. CRC Press, Boca ratonMATH Vafai K (2005) Handbook of porous media, 2nd edn. CRC Press, Boca ratonMATH
Zurück zum Zitat Varchanis S, Syrakos A, Dimakopoulos Y, Tsamopoulos J (2019) A new finite element formulation for viscoelastic flows: circumventing simultaneously the lbb condition and the high-weissenberg number problem. J Non-Newt Fluid Mech 267:78–97MathSciNet Varchanis S, Syrakos A, Dimakopoulos Y, Tsamopoulos J (2019) A new finite element formulation for viscoelastic flows: circumventing simultaneously the lbb condition and the high-weissenberg number problem. J Non-Newt Fluid Mech 267:78–97MathSciNet
Zurück zum Zitat Vlachopoulos C, O’Rourke M, Nichols WW (2011) Mcdonald’s blood flow in arteries: theoretical experimental and clinical principles, 6th edn. Hodder Arnold, London Vlachopoulos C, O’Rourke M, Nichols WW (2011) Mcdonald’s blood flow in arteries: theoretical experimental and clinical principles, 6th edn. Hodder Arnold, London
Zurück zum Zitat Wächter A, Biegler LT (2006) On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math Programm 106(1):25–57MathSciNetMATH Wächter A, Biegler LT (2006) On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math Programm 106(1):25–57MathSciNetMATH
Zurück zum Zitat White FM (2011) Fluid mechanics, 7th edn., McGraw-Hill, New York White FM (2011) Fluid mechanics, 7th edn., McGraw-Hill, New York
Zurück zum Zitat Wiker N, Klarbring A, Borrvall T (2007) Topology optimization of regions of darcy and stokes flow. Int J Numer Methods Eng 69(7):1374–1404MathSciNetMATH Wiker N, Klarbring A, Borrvall T (2007) Topology optimization of regions of darcy and stokes flow. Int J Numer Methods Eng 69(7):1374–1404MathSciNetMATH
Zurück zum Zitat Zhang B, Liu X, Sun J (2016) Topology optimization design of non-newtonian roller-type viscous micropumps. Struct Multidiscip Optim 53(3):409–424MathSciNet Zhang B, Liu X, Sun J (2016) Topology optimization design of non-newtonian roller-type viscous micropumps. Struct Multidiscip Optim 53(3):409–424MathSciNet
Zurück zum Zitat Zhou S, Li Q (2008) A variationals level set method for the topology optimization of steady-state navier–stokes flow. J Comput Phys 227(24):10178–10195MathSciNetMATH Zhou S, Li Q (2008) A variationals level set method for the topology optimization of steady-state navier–stokes flow. J Comput Phys 227(24):10178–10195MathSciNetMATH
Metadaten
Titel
Non-newtonian laminar 2D swirl flow design by the topology optimization method
verfasst von
Diego Hayashi Alonso
Juan Sergio Romero Saenz
Emílio Carlos Nelli Silva
Publikationsdatum
05.03.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 1/2020
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-020-02499-2

Weitere Artikel der Ausgabe 1/2020

Structural and Multidisciplinary Optimization 1/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.