Skip to main content

11.02.2016 | RESEARCH PAPER

Topological derivatives applied to fluid flow channel design optimization problems

verfasst von: L. F. N. Sá, R. C. R. Amigo, A. A. Novotny, E. C. N. Silva

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 2/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Topology optimization methods application for viscous flow problems is currently an active area of research. A general approach to deal with shape and topology optimization design is based on the topological derivative. This relatively new concept represents the first term of the asymptotic expansion of a given shape functional with respect to the small parameter which measures the size of singular domain perturbations, such as holes and inclusions. In previous topological derivative-based formulations for viscous fluid flow problems, the topology is obtained by nucleating and removing holes in the fluid domain which creates numerical difficulties to deal with the boundary conditions for these holes. Thus, we propose a topological derivative formulation for fluid flow channel design based on the concept of traditional topology optimization formulations in which solid or fluid material is distributed at each point of the domain to optimize the cost function subjected to some constraints. By using this idea, the problem of dealing with the hole boundary conditions during the optimization process is solved because the asymptotic expansion is performed with respect to the nucleation of inclusions – which mimic solid or fluid phases – instead of inserting or removing holes in the fluid domain, which allows for working in a fixed computational domain. To evaluate the formulation, an optimization problem which consists in minimizing the energy dissipation in fluid flow channels is implemented. Results from considering Stokes and Navier-Stokes are presented and compared, as well as two- (2D) and three-dimensional (3D) designs. The topologies can be obtained in a few iterations with well defined boundaries.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Allaire G, Jouve F, Van Goethem N (2011) Damage and fracture evolution in brittle materials by shape optimization methods. J Comput Phys 230(12):5010–5044MathSciNetCrossRefMATH Allaire G, Jouve F, Van Goethem N (2011) Damage and fracture evolution in brittle materials by shape optimization methods. J Comput Phys 230(12):5010–5044MathSciNetCrossRefMATH
Zurück zum Zitat Alnæs M, Logg A, Mardal KA, Skavhaug O, Langtangen H (2009) Unified framework for finite element assembly. Int J Comput Sci Eng 4(4):231–244CrossRef Alnæs M, Logg A, Mardal KA, Skavhaug O, Langtangen H (2009) Unified framework for finite element assembly. Int J Comput Sci Eng 4(4):231–244CrossRef
Zurück zum Zitat Alnæs MS, Logg A, Ølgaard KB, Rognes ME, Wells GN (2014) Unified form language. ACM Trans Math Softw 40(2):1–37CrossRefMATH Alnæs MS, Logg A, Ølgaard KB, Rognes ME, Wells GN (2014) Unified form language. ACM Trans Math Softw 40(2):1–37CrossRefMATH
Zurück zum Zitat Amestoy PR, Duff IS, L‘Excellent J-Y, Koster J (2001) A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J Matrix Anal Appl 23(1):15–41MathSciNetCrossRefMATH Amestoy PR, Duff IS, L‘Excellent J-Y, Koster J (2001) A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J Matrix Anal Appl 23(1):15–41MathSciNetCrossRefMATH
Zurück zum Zitat Amstutz S (2005) The topological asymptotic for the Navier-Stokes equations. ESAIM: Control Optimisation and Calculus of Variations 11(3):401–425MathSciNetCrossRefMATH Amstutz S (2005) The topological asymptotic for the Navier-Stokes equations. ESAIM: Control Optimisation and Calculus of Variations 11(3):401–425MathSciNetCrossRefMATH
Zurück zum Zitat Amstutz S (2011) Analysis of a level set method for topology optimization. Optimization Methods and Software 26(4-5):555–573MathSciNetCrossRefMATH Amstutz S (2011) Analysis of a level set method for topology optimization. Optimization Methods and Software 26(4-5):555–573MathSciNetCrossRefMATH
Zurück zum Zitat Amstutz S, Andrä H (2006) A new algorithm for topology optimization using a level-set method. J Comput Phys 216(2):573–588MathSciNetCrossRefMATH Amstutz S, Andrä H (2006) A new algorithm for topology optimization using a level-set method. J Comput Phys 216(2):573–588MathSciNetCrossRefMATH
Zurück zum Zitat Amstutz S, Giusti SM, Novotny AA, de Souza Neto EA (2010) Topological derivative for multi-scale linear elasticity models applied to the synthesis of microstructures. Int J Numer Methods Eng 84:733–756MathSciNetCrossRefMATH Amstutz S, Giusti SM, Novotny AA, de Souza Neto EA (2010) Topological derivative for multi-scale linear elasticity models applied to the synthesis of microstructures. Int J Numer Methods Eng 84:733–756MathSciNetCrossRefMATH
Zurück zum Zitat Amstutz S, Novotny AA, de Souza Neto EA (2012) Topological derivative-based topology optimization of structures subject to Drucker-Prager stress constraints. Comput Methods Appl Mech Eng:233–236:123–136 Amstutz S, Novotny AA, de Souza Neto EA (2012) Topological derivative-based topology optimization of structures subject to Drucker-Prager stress constraints. Comput Methods Appl Mech Eng:233–236:123–136
Zurück zum Zitat Amstutz S, Novotny AA, Van Goethem N (2014) Topological sensitivity analysis for elliptic differential operators of order 2m. J Differ Equ 256:1735–1770MathSciNetCrossRefMATH Amstutz S, Novotny AA, Van Goethem N (2014) Topological sensitivity analysis for elliptic differential operators of order 2m. J Differ Equ 256:1735–1770MathSciNetCrossRefMATH
Zurück zum Zitat Bergounioux M, Privat Y (2013) Shape optimization with stokes constraints over the set of axisymmetric domains. SIAM J Control Optim 51(1):599–628MathSciNetCrossRefMATH Bergounioux M, Privat Y (2013) Shape optimization with stokes constraints over the set of axisymmetric domains. SIAM J Control Optim 51(1):599–628MathSciNetCrossRefMATH
Zurück zum Zitat Campeão DE, Giusti SM, Novotny AA (2014) Topology design of plates consedering different volume control methods. Eng Comput 31(5):826–842CrossRef Campeão DE, Giusti SM, Novotny AA (2014) Topology design of plates consedering different volume control methods. Eng Comput 31(5):826–842CrossRef
Zurück zum Zitat Dautray R, Lions JL (1988) Mathematical analysis and numerical methods for science and technology Functional and variational methods, vol 2. Springer, Berlin Dautray R, Lions JL (1988) Mathematical analysis and numerical methods for science and technology Functional and variational methods, vol 2. Springer, Berlin
Zurück zum Zitat Duan X, Li F (2015) Material distribution resembled level set method for optimal shape design of stokes flow. Appl Math Comput 266:21–30MathSciNet Duan X, Li F (2015) Material distribution resembled level set method for optimal shape design of stokes flow. Appl Math Comput 266:21–30MathSciNet
Zurück zum Zitat Evgrafov A (2015) On chebyshevs method for topology optimization of stokes flows. Struct Multidiscip Optim 51(4):801–811MathSciNetCrossRef Evgrafov A (2015) On chebyshevs method for topology optimization of stokes flows. Struct Multidiscip Optim 51(4):801–811MathSciNetCrossRef
Zurück zum Zitat Gersborg-Hansen A (2003) Topology optimization of incompressible newtonian flows at moderate reynolds numbers. Master’s thesis, Technical University of Denmark. Department of Mechanical Engineering Solid mechanics, Lyngby Gersborg-Hansen A (2003) Topology optimization of incompressible newtonian flows at moderate reynolds numbers. Master’s thesis, Technical University of Denmark. Department of Mechanical Engineering Solid mechanics, Lyngby
Zurück zum Zitat Gersborg-Hansen A (2007) Topology optimization of incompressible newtonian flows at moderate Reynolds numbers. PhD thesis, Technical University of Denmark. Department of Mechanical Engineering Solid mechanics, Lyngby Gersborg-Hansen A (2007) Topology optimization of incompressible newtonian flows at moderate Reynolds numbers. PhD thesis, Technical University of Denmark. Department of Mechanical Engineering Solid mechanics, Lyngby
Zurück zum Zitat Gersborg-Hansen A, Sigmund O, Haber RB (2005) Topology optimization of chanel flow problems. Struct Multidisc Optim 90:90–120MathSciNetMATH Gersborg-Hansen A, Sigmund O, Haber RB (2005) Topology optimization of chanel flow problems. Struct Multidisc Optim 90:90–120MathSciNetMATH
Zurück zum Zitat Guest J, Prevost J (2007) Topology optimization of creeping fluid flows using a darcy and stokes flow. Int J Numer Methods Eng 69:1374–1404CrossRef Guest J, Prevost J (2007) Topology optimization of creeping fluid flows using a darcy and stokes flow. Int J Numer Methods Eng 69:1374–1404CrossRef
Zurück zum Zitat Guillaume P, Hassine M (2008) Removing holes in topological shape optimization. ESAIM: ControlOptimisation and Calculus of Variations 14(1):160–191MathSciNetCrossRefMATH Guillaume P, Hassine M (2008) Removing holes in topological shape optimization. ESAIM: ControlOptimisation and Calculus of Variations 14(1):160–191MathSciNetCrossRefMATH
Zurück zum Zitat Guillaume P, Idris KS (2004) Topological sensitivity and shape optimization for the stokes equations. SIAM J Control Optim 43(1):1–31MathSciNetCrossRefMATH Guillaume P, Idris KS (2004) Topological sensitivity and shape optimization for the stokes equations. SIAM J Control Optim 43(1):1–31MathSciNetCrossRefMATH
Zurück zum Zitat Haug EJ, Choi KK, Komkov V (1986) Desing sensitivity analysis of structural systems. Academic Press, New YorkMATH Haug EJ, Choi KK, Komkov V (1986) Desing sensitivity analysis of structural systems. Academic Press, New YorkMATH
Zurück zum Zitat Hintermüller M, Laurain A (2009) Multiphase image segmentation and modulation recovery based on shape and topological sensitivity. J Math Imaging Vision 35:1–22MathSciNetCrossRef Hintermüller M, Laurain A (2009) Multiphase image segmentation and modulation recovery based on shape and topological sensitivity. J Math Imaging Vision 35:1–22MathSciNetCrossRef
Zurück zum Zitat Hintermüller M, Laurain A, Novotny AA (2012) Second-order topological expansion for electrical impedance tomography. Adv Comput Math 36(2):235–265MathSciNetCrossRefMATH Hintermüller M, Laurain A, Novotny AA (2012) Second-order topological expansion for electrical impedance tomography. Adv Comput Math 36(2):235–265MathSciNetCrossRefMATH
Zurück zum Zitat Lebesgue H (1910) Sur l’intégration des fonctions discontinues. Annales Scientifiques de l’École Normale Supérieure 27:361–450MathSciNetMATH Lebesgue H (1910) Sur l’intégration des fonctions discontinues. Annales Scientifiques de l’École Normale Supérieure 27:361–450MathSciNetMATH
Zurück zum Zitat Logg A, Wells GN, Book TF (2012) Automated solution of differential equations by the finite element method, volume 84 of Lecture Notes in Computational Science and Engineering. Springer Berlin Heidelberg, Berlin, HeidelbergCrossRef Logg A, Wells GN, Book TF (2012) Automated solution of differential equations by the finite element method, volume 84 of Lecture Notes in Computational Science and Engineering. Springer Berlin Heidelberg, Berlin, HeidelbergCrossRef
Zurück zum Zitat Novotny AA, Sokołowski J (2013) Topological derivatives in shape optimization. Interaction of Mechanics and Mathematics. Springer Novotny AA, Sokołowski J (2013) Topological derivatives in shape optimization. Interaction of Mechanics and Mathematics. Springer
Zurück zum Zitat Othmer C (2008) A continuous adjoint formulation for the computation of topological and surface sensitivities of ducted flows. Int J Numer Methods Fluids 58:861–877MathSciNetCrossRefMATH Othmer C (2008) A continuous adjoint formulation for the computation of topological and surface sensitivities of ducted flows. Int J Numer Methods Fluids 58:861–877MathSciNetCrossRefMATH
Zurück zum Zitat Papoutsis-Kiachagias E, Kontoleontos E, Zymaris A, Papadimitriou D, Giannakoglou K (2011) Constrained topology optimization for laminar and turbulent flows, including heat transfer. In: Evolutionary and deterministic methods for design, optimization and control, symposium proceedings Papoutsis-Kiachagias E, Kontoleontos E, Zymaris A, Papadimitriou D, Giannakoglou K (2011) Constrained topology optimization for laminar and turbulent flows, including heat transfer. In: Evolutionary and deterministic methods for design, optimization and control, symposium proceedings
Zurück zum Zitat Plotnikov P, Sokołowski J (2012) Compressible Navier-Stokes equations Theory and shape optimization. Springer, Basel Plotnikov P, Sokołowski J (2012) Compressible Navier-Stokes equations Theory and shape optimization. Springer, Basel
Zurück zum Zitat Sokołowski J, żochowski A (1999) On the topological derivative in shape optimization. SIAM J Control Optim 37(4): 1251–1272MathSciNetCrossRefMATH Sokołowski J, żochowski A (1999) On the topological derivative in shape optimization. SIAM J Control Optim 37(4): 1251–1272MathSciNetCrossRefMATH
Zurück zum Zitat Temam R (1984) Navier-Stokes equations: theory and numerical analysis. North-Holland, AmsterdamMATH Temam R (1984) Navier-Stokes equations: theory and numerical analysis. North-Holland, AmsterdamMATH
Zurück zum Zitat Van Goethem N, Novotny AA (2010) Crack nucleation sensitivity analysis. Math Methods Appl Sci 33 (16):197–1994MathSciNetMATH Van Goethem N, Novotny AA (2010) Crack nucleation sensitivity analysis. Math Methods Appl Sci 33 (16):197–1994MathSciNetMATH
Zurück zum Zitat Wiker N, Klarbring A, Borvall T (2006) Topology optimization of regions of darcy-stokes finite element. Int J Numer Methods Eng 66:461–484CrossRef Wiker N, Klarbring A, Borvall T (2006) Topology optimization of regions of darcy-stokes finite element. Int J Numer Methods Eng 66:461–484CrossRef
Metadaten
Titel
Topological derivatives applied to fluid flow channel design optimization problems
verfasst von
L. F. N. Sá
R. C. R. Amigo
A. A. Novotny
E. C. N. Silva
Publikationsdatum
11.02.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 2/2016
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-016-1399-0

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.