Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 3/2016

10.10.2015 | RESEARCH PAPER

Topology optimization design of non-Newtonian roller-type viscous micropumps

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 3/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The paper studies the two-dimensional roller-type viscous micropumps design problem using a level set based topology optimization method. The flow in the viscous micropumps is considered as non-Newtonian flow approximated by the power-law constitutive model. The optimization objective is to minimize the flow viscous dissipation and maximize the flow rate subject to the area constraint. Topology optimization of several roller-type viscous micropumps is numerically investigated by using the presented level set based optimization method. The results show that (1) the optimal long viscous micropump has a higher flow rate; (2) the optimal short viscous micropumps with different flow rates can achieve lower viscous dissipations; (3) the optimal design of the non-Newtonian fluid viscous micropump with a bigger power-law index has a wider gap on the top of the rotor to accommodate a higher flow rate.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abdelgawad M, Hassan I, Esmail N (2004) Transient behavior of the viscous micropump. Microscale Thermophys Eng 8:361–381CrossRef Abdelgawad M, Hassan I, Esmail N (2004) Transient behavior of the viscous micropump. Microscale Thermophys Eng 8:361–381CrossRef
Zurück zum Zitat Abdelgawad M, Hassan I, Esmail N, Phutthavong P (2005) Numerical investigation of multistage viscous micropump configurations. J Fluids Eng 127:734–742CrossRef Abdelgawad M, Hassan I, Esmail N, Phutthavong P (2005) Numerical investigation of multistage viscous micropump configurations. J Fluids Eng 127:734–742CrossRef
Zurück zum Zitat Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194:363–393MathSciNetCrossRefMATH Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194:363–393MathSciNetCrossRefMATH
Zurück zum Zitat Andreasen CS, Gersborg AR, Sigmund O (2009) Topology optimization of microfluidic mixers. Int J Numer Meth Fluids 61:498–513MathSciNetCrossRefMATH Andreasen CS, Gersborg AR, Sigmund O (2009) Topology optimization of microfluidic mixers. Int J Numer Meth Fluids 61:498–513MathSciNetCrossRefMATH
Zurück zum Zitat Bataineh KM, Al-Nimr MA (2009) 2D navier–stokes simulations of microscale viscous pump with slip flow. J Fluids Eng 131:051105-1–7CrossRef Bataineh KM, Al-Nimr MA (2009) 2D navier–stokes simulations of microscale viscous pump with slip flow. J Fluids Eng 131:051105-1–7CrossRef
Zurück zum Zitat Blanchard D, Ligrani P (2006) Comparisons of different viscous pumps based on physical flow behavior. Sens Actuators, A 126:83–92CrossRef Blanchard D, Ligrani P (2006) Comparisons of different viscous pumps based on physical flow behavior. Sens Actuators, A 126:83–92CrossRef
Zurück zum Zitat Chen H, Su J, Li K, Wang S (2014) A characteristic projection method for incompressible thermal flow. Numer Heat Tr B-Fund 65:554–590CrossRef Chen H, Su J, Li K, Wang S (2014) A characteristic projection method for incompressible thermal flow. Numer Heat Tr B-Fund 65:554–590CrossRef
Zurück zum Zitat Choi H-I, Lee Y, Choi D-H, Maeng J-S (2010) Design optimization of a viscous micropump with two rotating cylinders for maximizing efficiency. Struct Multidiscip O 40:537–548CrossRef Choi H-I, Lee Y, Choi D-H, Maeng J-S (2010) Design optimization of a viscous micropump with two rotating cylinders for maximizing efficiency. Struct Multidiscip O 40:537–548CrossRef
Zurück zum Zitat da Silva AK, Kobayashi MH, Coimbra CFM (2007a) Optimal design of non-Newtonian, micro-scale viscous pumps for biomedical devices. Biotechnol Bioeng 96:37–47CrossRef da Silva AK, Kobayashi MH, Coimbra CFM (2007a) Optimal design of non-Newtonian, micro-scale viscous pumps for biomedical devices. Biotechnol Bioeng 96:37–47CrossRef
Zurück zum Zitat da Silva AK, Kobayashi MH, Coimbra CFM (2007b) Optimal theoretical design of 2-D microscale viscous pumps for maximum mass flow rate and minimum power consumption. Int J Heat Fluid Flow 28:526–536CrossRef da Silva AK, Kobayashi MH, Coimbra CFM (2007b) Optimal theoretical design of 2-D microscale viscous pumps for maximum mass flow rate and minimum power consumption. Int J Heat Fluid Flow 28:526–536CrossRef
Zurück zum Zitat Decourtye D, Sen M, Gad-El-Hak M (1998) Analysis of viscous micropumps and microturbines. Int J Comput Fluid D 10:13–25CrossRefMATH Decourtye D, Sen M, Gad-El-Hak M (1998) Analysis of viscous micropumps and microturbines. Int J Comput Fluid D 10:13–25CrossRefMATH
Zurück zum Zitat Deng Y, Liu Z, Zhang P, Liu Y, Wu Y (2011) Topology optimization of unsteady incompressible Navier–Stokes flows. J Comput Phys 230:6688–6708MathSciNetCrossRefMATH Deng Y, Liu Z, Zhang P, Liu Y, Wu Y (2011) Topology optimization of unsteady incompressible Navier–Stokes flows. J Comput Phys 230:6688–6708MathSciNetCrossRefMATH
Zurück zum Zitat Deng Y, Liu Z, Zhang P, Liu Y, Gao Q, Wu Y (2012) A flexible layout design method for passive micromixers. Biomed Microdevices 14:929–945CrossRef Deng Y, Liu Z, Zhang P, Liu Y, Gao Q, Wu Y (2012) A flexible layout design method for passive micromixers. Biomed Microdevices 14:929–945CrossRef
Zurück zum Zitat Deng Y, Liu Z, Wu J, Wu Y (2013a) Topology optimization of steady Navier–Stokes flow with body force. Comput Method Appl M 255:306–321MathSciNetCrossRefMATH Deng Y, Liu Z, Wu J, Wu Y (2013a) Topology optimization of steady Navier–Stokes flow with body force. Comput Method Appl M 255:306–321MathSciNetCrossRefMATH
Zurück zum Zitat Deng Y, Liu Z, Wu Y (2013b) Topology optimization of steady and unsteady incompressible Navier–Stokes flows driven by body forces. Struct Multidiscip O 47:555–570MathSciNetCrossRefMATH Deng Y, Liu Z, Wu Y (2013b) Topology optimization of steady and unsteady incompressible Navier–Stokes flows driven by body forces. Struct Multidiscip O 47:555–570MathSciNetCrossRefMATH
Zurück zum Zitat Ding X, Li P, Lin S-CS, Stratton ZS, Nama N, Guo F, Slotcavage D, Mao X, Shi J, Costanzo F (2013) Surface acoustic wave microfluidics. Lab Chip 13:3626–3649CrossRef Ding X, Li P, Lin S-CS, Stratton ZS, Nama N, Guo F, Slotcavage D, Mao X, Shi J, Costanzo F (2013) Surface acoustic wave microfluidics. Lab Chip 13:3626–3649CrossRef
Zurück zum Zitat Duan XB, Ma YC, Zhang R (2008a) Optimal shape control of fluid flow using variational level set method. Phys Lett A 372:1374–1379MathSciNetCrossRefMATH Duan XB, Ma YC, Zhang R (2008a) Optimal shape control of fluid flow using variational level set method. Phys Lett A 372:1374–1379MathSciNetCrossRefMATH
Zurück zum Zitat Duan XB, Ma YC, Zhang R (2008b) Shape-topology optimization for Navier–Stokes problem using variational level set method. J Comput Appl Math 222:487–499MathSciNetCrossRefMATH Duan XB, Ma YC, Zhang R (2008b) Shape-topology optimization for Navier–Stokes problem using variational level set method. J Comput Appl Math 222:487–499MathSciNetCrossRefMATH
Zurück zum Zitat Duan XB, Ma YC, Zhang R (2008c) Shape-topology optimization of stokes flow via variational level set method. Appl Math Comput 202:200–209MathSciNetMATH Duan XB, Ma YC, Zhang R (2008c) Shape-topology optimization of stokes flow via variational level set method. Appl Math Comput 202:200–209MathSciNetMATH
Zurück zum Zitat Ejlebjerg Jensen K, Szabo P, Okkels F (2012) Topology optimization of viscoelastic rectifiers. Appl Phys Lett 100:234102-234102-234103 Ejlebjerg Jensen K, Szabo P, Okkels F (2012) Topology optimization of viscoelastic rectifiers. Appl Phys Lett 100:234102-234102-234103
Zurück zum Zitat Hyun J, Wang S, Yang S (2014) Topology optimization of the shear thinning non-Newtonian fluidic systems for minimizing wall shear stress. Comput Math Appl 67:1154–1170MathSciNetCrossRef Hyun J, Wang S, Yang S (2014) Topology optimization of the shear thinning non-Newtonian fluidic systems for minimizing wall shear stress. Comput Math Appl 67:1154–1170MathSciNetCrossRef
Zurück zum Zitat Iverson BD, Garimella SV (2008) Recent advances in microscale pumping technologies: a review and evaluation. Microfluid Nanofluid 5:145–174CrossRef Iverson BD, Garimella SV (2008) Recent advances in microscale pumping technologies: a review and evaluation. Microfluid Nanofluid 5:145–174CrossRef
Zurück zum Zitat Kreissl S, Maute K (2012) Levelset based fluid topology optimization using the extended finite element method. Struct Multidiscip O 46:311–326MathSciNetCrossRefMATH Kreissl S, Maute K (2012) Levelset based fluid topology optimization using the extended finite element method. Struct Multidiscip O 46:311–326MathSciNetCrossRefMATH
Zurück zum Zitat Kreissl S, Pingen G, Evgrafov A, Maute K (2010) Topology optimization of flexible micro-fluidic devices. Struct Multidiscip O 42:495–516CrossRef Kreissl S, Pingen G, Evgrafov A, Maute K (2010) Topology optimization of flexible micro-fluidic devices. Struct Multidiscip O 42:495–516CrossRef
Zurück zum Zitat Laser DJ, Santiago JG (2004) A review of micropumps. J Micromech Microeng 14:R35–R64CrossRef Laser DJ, Santiago JG (2004) A review of micropumps. J Micromech Microeng 14:R35–R64CrossRef
Zurück zum Zitat Maatoug H (2006) Shape optimization for the Stokes equations using topological sensitivity analysis. ARIMA 5:216–229 Maatoug H (2006) Shape optimization for the Stokes equations using topological sensitivity analysis. ARIMA 5:216–229
Zurück zum Zitat Nabavi M (2009) Steady and unsteady flow analysis in microdiffusers and micropumps: a critical review. Microfluid Nanofluid 7:599–619CrossRef Nabavi M (2009) Steady and unsteady flow analysis in microdiffusers and micropumps: a critical review. Microfluid Nanofluid 7:599–619CrossRef
Zurück zum Zitat Nguyen NT, Huang XY, Chuan TK (2002) MEMS-micropumps: A review. J Fluids Eng 124:384–392CrossRef Nguyen NT, Huang XY, Chuan TK (2002) MEMS-micropumps: A review. J Fluids Eng 124:384–392CrossRef
Zurück zum Zitat Okkels F, Bruus H (2007) Scaling behavior of optimally structured catalytic microfluidic reactors. Phys Rev E 75:016301CrossRef Okkels F, Bruus H (2007) Scaling behavior of optimally structured catalytic microfluidic reactors. Phys Rev E 75:016301CrossRef
Zurück zum Zitat Osher S, Fedkiw R (2003) Level set methods and dynamic implicit surfaces. Springer Osher S, Fedkiw R (2003) Level set methods and dynamic implicit surfaces. Springer
Zurück zum Zitat Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79:12–49MathSciNetCrossRefMATH Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79:12–49MathSciNetCrossRefMATH
Zurück zum Zitat Pingen G, Maute K (2010) Optimal design for non-Newtonian flows using a topology optimization approach. Comput Math Appl 59:2340–2350MathSciNetCrossRefMATH Pingen G, Maute K (2010) Optimal design for non-Newtonian flows using a topology optimization approach. Comput Math Appl 59:2340–2350MathSciNetCrossRefMATH
Zurück zum Zitat Reyes DR, Iossifidis D, Auroux PA, Manz A (2002) Micro total analysis systems. 1. introduction, theory, and technology. Anal Chem 74:2623–2636CrossRef Reyes DR, Iossifidis D, Auroux PA, Manz A (2002) Micro total analysis systems. 1. introduction, theory, and technology. Anal Chem 74:2623–2636CrossRef
Zurück zum Zitat Romero J, Silva E (2014) A topology optimization approach applied to laminar flow machine rotor design. Comput Method Appl M 279:268–300MathSciNetCrossRef Romero J, Silva E (2014) A topology optimization approach applied to laminar flow machine rotor design. Comput Method Appl M 279:268–300MathSciNetCrossRef
Zurück zum Zitat Sen M, Wajerski D, GadelHak M (1996) A novel pump for MEMS applications. J Fluids Eng 118:624–627CrossRef Sen M, Wajerski D, GadelHak M (1996) A novel pump for MEMS applications. J Fluids Eng 118:624–627CrossRef
Zurück zum Zitat Sethian JA (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge University Press Sethian JA (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge University Press
Zurück zum Zitat Sharatchandra MC, Sen M, GadelHak M (1997) Navier–Stokes simulations of a novel viscous pump. J Fluids Eng 119:372–382CrossRef Sharatchandra MC, Sen M, GadelHak M (1997) Navier–Stokes simulations of a novel viscous pump. J Fluids Eng 119:372–382CrossRef
Zurück zum Zitat Sharatchandra MC, Sen M, Gad-el-Hak M (1998a) New approach to constrained shape optimization using genetic algorithms. AIAA J 36:51–61CrossRefMATH Sharatchandra MC, Sen M, Gad-el-Hak M (1998a) New approach to constrained shape optimization using genetic algorithms. AIAA J 36:51–61CrossRefMATH
Zurück zum Zitat Sharatchandra MC, Sen M, Gad-el-Hak M (1998b) Thermal aspects of a novel viscous pump. J Heat Transfer 120:99–107CrossRef Sharatchandra MC, Sen M, Gad-el-Hak M (1998b) Thermal aspects of a novel viscous pump. J Heat Transfer 120:99–107CrossRef
Zurück zum Zitat Sussman M, Smereka P, Osher S (1994) A level set approach for computing solutions to incompressible two-phase flow. J Comput Phys 114:146–159CrossRefMATH Sussman M, Smereka P, Osher S (1994) A level set approach for computing solutions to incompressible two-phase flow. J Comput Phys 114:146–159CrossRefMATH
Zurück zum Zitat Walburn FJ, Schneck DJ (1976) A constitutive equation for whole human blood. Biorheology 13:201–210 Walburn FJ, Schneck DJ (1976) A constitutive equation for whole human blood. Biorheology 13:201–210
Zurück zum Zitat Wang MY (2005) Shape optimization with level set method incorporating topological derivatives. in: Sixth Congresses of Struc Multidisc Optim Wang MY (2005) Shape optimization with level set method incorporating topological derivatives. in: Sixth Congresses of Struc Multidisc Optim
Zurück zum Zitat Zhang B, Liu X (2015) Topology optimization study of arterial bypass configurations using the level set method. Struct Multidiscip O 51:773–798MathSciNetCrossRef Zhang B, Liu X (2015) Topology optimization study of arterial bypass configurations using the level set method. Struct Multidiscip O 51:773–798MathSciNetCrossRef
Zurück zum Zitat Zhang B, Liu XM, Sun JJ (2013) Topology optimization for Stokes problem under multiple flow cases using an improved level set method. Proceedings of the ASME FEDSM2013, Paper FEDSM2013-16155, Nevada, USA Zhang B, Liu XM, Sun JJ (2013) Topology optimization for Stokes problem under multiple flow cases using an improved level set method. Proceedings of the ASME FEDSM2013, Paper FEDSM2013-16155, Nevada, USA
Zurück zum Zitat Zhou S, Li Q (2008) A variational level set method for the topology optimization of steady-state Navier–Stokes flow. J Comput Phys 227:10178–10195MathSciNetCrossRefMATH Zhou S, Li Q (2008) A variational level set method for the topology optimization of steady-state Navier–Stokes flow. J Comput Phys 227:10178–10195MathSciNetCrossRefMATH
Zurück zum Zitat Ziaie B, Baldi A, Lei M, Gu Y, Siegel RA (2004) Hard and soft micromachining for BioMEMS: review of techniques and examples of applications in microfluidics and drug delivery. Adv Drug Del Rev 56:145–172CrossRef Ziaie B, Baldi A, Lei M, Gu Y, Siegel RA (2004) Hard and soft micromachining for BioMEMS: review of techniques and examples of applications in microfluidics and drug delivery. Adv Drug Del Rev 56:145–172CrossRef
Metadaten
Titel
Topology optimization design of non-Newtonian roller-type viscous micropumps
Publikationsdatum
10.10.2015
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 3/2016
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-015-1346-5

Weitere Artikel der Ausgabe 3/2016

Structural and Multidisciplinary Optimization 3/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.