Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 23/2020

16-10-2020

Traces of superconducting correlations in nanographite films

Author: S. G. Lebedev

Published in: Journal of Materials Science: Materials in Electronics | Issue 23/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The review of structural, electronic and magnetic properties of nanographite films is presented. The superconducting correlations such as AC-to-DC conversion associated with the reversed Josephson Effect, pinning of vortices on columnar topological structure of film surface observed in atomic force and magnetic force microscope, non-zero current at zero voltage in scanning tunneling microscope in local area of nanographite film surface have been found. These results are broadly in line with other our observations on abrupt resistivity jump accompanied by light emission having potential applications as switchers and compact light emitter. Further experiments on studies of local conductivity related to ion irradiation hoping to find a zero resistance state are proposed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference W.A. Little, Possibility of synthesizing an organic superconductor. Phys. Review. 134, 6A-A1416 (1964) W.A. Little, Possibility of synthesizing an organic superconductor. Phys. Review. 134, 6A-A1416 (1964)
2.
go back to reference V.L. Ginzburg, On surface superconductivity. Phys. Letters. 13(2), 101–102 (1964) V.L. Ginzburg, On surface superconductivity. Phys. Letters. 13(2), 101–102 (1964)
3.
go back to reference T.L. Makarova, Unconventional magnetism in carbon based materials //Frontiers in Magnetic Materials (– Springer, Berlin Heidelberg, 2005), – P. 209–246 T.L. Makarova, Unconventional magnetism in carbon based materials //Frontiers in Magnetic Materials (– Springer, Berlin Heidelberg, 2005), – P. 209–246
4.
go back to reference A.M. Ziatdinov, Nanographites, their compounds, and film structures. Russian Chemical Bulletin. 64(1), 1–14 (2015) A.M. Ziatdinov, Nanographites, their compounds, and film structures. Russian Chemical Bulletin. 64(1), 1–14 (2015)
5.
go back to reference G. Zhao, Is Room Temperature Superconductivity in Carbon Nanotubes Too Wonderful to Believe? //arXiv preprint cond-mat/0307770. – 2003 G. Zhao, Is Room Temperature Superconductivity in Carbon Nanotubes Too Wonderful to Believe? //arXiv preprint cond-mat/0307770. – 2003
6.
go back to reference G. Zhao, P. Beeli, Magnetic evidence for hot superconductivity in multi-walled carbon nanotubes //arXiv preprint cond-mat/0509037. – 2005 G. Zhao, P. Beeli, Magnetic evidence for hot superconductivity in multi-walled carbon nanotubes //arXiv preprint cond-mat/0509037. – 2005
7.
go back to reference S. Pathak, V.B. Shenoy, G. Baskaran, Possible high-temperature superconducting state with a d + id pairing symmetry in doped graphene. Physical Review B81(8), 085431 (2010) S. Pathak, V.B. Shenoy, G. Baskaran, Possible high-temperature superconducting state with a d + id pairing symmetry in doped graphene. Physical Review B81(8), 085431 (2010)
8.
go back to reference G. Baskaran, Five-fold way to new high Tc superconductors //Current Trends in Science—Platinum Jubilee Special. – 2009 G. Baskaran, Five-fold way to new high Tc superconductors //Current Trends in Science—Platinum Jubilee Special. – 2009
9.
go back to reference A.M. Black-Schaffer, S. Doniach, Resonating valence bonds and mean-field d-wave superconductivity in graphite. Phys. Rev. B 75(13), 134512 (2007) A.M. Black-Schaffer, S. Doniach, Resonating valence bonds and mean-field d-wave superconductivity in graphite. Phys. Rev. B 75(13), 134512 (2007)
10.
go back to reference Y. Kopelevich, P. Esquinazi, J.H.S. Torres, S. Moehlecke, Ferromagnetic-and superconducting-like behavior of graphite. J. Low Temp. Phys. 119(5), 691–702 (2000) Y. Kopelevich, P. Esquinazi, J.H.S. Torres, S. Moehlecke, Ferromagnetic-and superconducting-like behavior of graphite. J. Low Temp. Phys. 119(5), 691–702 (2000)
11.
go back to reference Y. Kopelevich, V.V. Lemanov, S. Moehlecke, J.H. Torres, Landau level quantization and possible superconducting instabilities in highly oriented pyrolitic graphite. Phys. Solid State 41(12), 1959–1962 (1999) Y. Kopelevich, V.V. Lemanov, S. Moehlecke, J.H. Torres, Landau level quantization and possible superconducting instabilities in highly oriented pyrolitic graphite. Phys. Solid State 41(12), 1959–1962 (1999)
12.
go back to reference T. Scheike, W. Böhlmann, P. Esquinazi, J. Barzola-Quiquia, A. Ballestar, A. Setzer, Can Doping Graphite Trigger Room Temperature Superconductivity? Evidence for Granular High‐Temperature Superconductivity in Water‐Treated Graphite Powder. Adv. Mater. 24(43), 5826–5831 (2012) T. Scheike, W. Böhlmann, P. Esquinazi, J. Barzola-Quiquia, A. Ballestar, A. Setzer, Can Doping Graphite Trigger Room Temperature Superconductivity? Evidence for Granular High‐Temperature Superconductivity in Water‐Treated Graphite Powder. Adv. Mater. 24(43), 5826–5831 (2012)
13.
go back to reference R.R. Da Silva, J.H.S. Torres, Y. Kopelevich, Indication of superconductivity at 35 K in graphite-sulfur composites. Phys. Rev. lett. 87(14), 147001 (2001) R.R. Da Silva, J.H.S. Torres, Y. Kopelevich, Indication of superconductivity at 35 K in graphite-sulfur composites. Phys. Rev. lett. 87(14), 147001 (2001)
14.
go back to reference T. Scheike, P. Esquinazi, A. Setzer, W. Böhlmann, Granular superconductivity at room temperature in bulk highly oriented pyrolytic graphite samples. Carbon 59, 140–149 (2013) T. Scheike, P. Esquinazi, A. Setzer, W. Böhlmann, Granular superconductivity at room temperature in bulk highly oriented pyrolytic graphite samples. Carbon 59, 140–149 (2013)
15.
go back to reference C.E. Precker, P.D. Esquinazi, A. Champi, J. Barzola-Quiquia, M. Zoraghi, S. Muiños-Landin, … T. Muenster, Identification of a possible superconducting transition above room temperature in natural graphite crystals. New J. Phys. 18(11), 113041 (2016) C.E. Precker, P.D. Esquinazi, A. Champi, J. Barzola-Quiquia, M. Zoraghi, S. Muiños-Landin, … T. Muenster, Identification of a possible superconducting transition above room temperature in natural graphite crystals. New J. Phys. 18(11), 113041 (2016)
16.
go back to reference A. Ballestar, J. Barzola-Quiquia, T. Scheike, P. Esquinazi, Josephson-coupled superconducting regions embedded at the interfaces of highly oriented pyrolytic graphite. New J. Phys. 15(15), 023024 (2013) A. Ballestar, J. Barzola-Quiquia, T. Scheike, P. Esquinazi, Josephson-coupled superconducting regions embedded at the interfaces of highly oriented pyrolytic graphite. New J. Phys. 15(15), 023024 (2013)
17.
go back to reference K. Antonowicz, Possible superconductivity at room temperature. Nature 247, 358–360 (1974) K. Antonowicz, Possible superconductivity at room temperature. Nature 247, 358–360 (1974)
18.
go back to reference S.G. Lebedev, S.V. Topalov, Observation of Weak Superconductivity in Carbon Films. Bulletin of the Lebedev Phys. Institute. 12, 14–20 (1994) S.G. Lebedev, S.V. Topalov, Observation of Weak Superconductivity in Carbon Films. Bulletin of the Lebedev Phys. Institute. 12, 14–20 (1994)
19.
go back to reference P. Esquinazi, N. García, J. Barzola-Quiquia, P. Rödiger, K. Schindler, J.L. Yao, M. Ziese, Indications for intrinsic superconductivity in highly oriented pyrolytic graphite. Phys. Rev. B 78(13), 134516 (2008) P. Esquinazi, N. García, J. Barzola-Quiquia, P. Rödiger, K. Schindler, J.L. Yao, M. Ziese, Indications for intrinsic superconductivity in highly oriented pyrolytic graphite. Phys. Rev. B 78(13), 134516 (2008)
20.
go back to reference N. García, P. Esquinazi, Mean field superconductivity approach in two dimensions. J. Superconductivity and Novel Magnetism 22(5), 439–444 (2009) N. García, P. Esquinazi, Mean field superconductivity approach in two dimensions. J. Superconductivity and Novel Magnetism 22(5), 439–444 (2009)
21.
go back to reference F. Arnold, J. Nyeki, John Saunders. “Superconducting sweet-spot in microcrystalline graphite revealed by point-contact spectroscopy.“ JETP Lett. 107.9 (2018): 577–578 F. Arnold, J. Nyeki, John Saunders. “Superconducting sweet-spot in microcrystalline graphite revealed by point-contact spectroscopy.“ JETP Lett. 107.9 (2018): 577–578
22.
go back to reference A.N. Ionov, Josephson-Like Behaviour of the Current–Voltage Characteristics of Multi-graphene Flakes Embedded in Polystyrene. J. Low Temp. Phys. 185, 5–6 (2016) “.“ ( : 515–521. A.N. Ionov, Josephson-Like Behaviour of the Current–Voltage Characteristics of Multi-graphene Flakes Embedded in Polystyrene. J. Low Temp. Phys. 185, 5–6 (2016) “.“ ( : 515–521.
23.
go back to reference A.N. Ionov, M.P. Volkov, M.N. Nikolaeva, High-temperature superconductivity of graphite particles incorporated in polystyrene. JETP Lett. 109(3), 163–165 (2019) A.N. Ionov, M.P. Volkov, M.N. Nikolaeva, High-temperature superconductivity of graphite particles incorporated in polystyrene. JETP Lett. 109(3), 163–165 (2019)
24.
go back to reference Y. Kawashima, “Possible room temperature superconductivity in conductors obtained by bringing alkanes into contact with a graphite surface.“. AIP Adv. 3(5), 052132 (2013) Y. Kawashima, “Possible room temperature superconductivity in conductors obtained by bringing alkanes into contact with a graphite surface.“. AIP Adv. 3(5), 052132 (2013)
25.
go back to reference M. Saad, I.F. Gilmutdinov, A.G. Kiiamov, D.A.B. Tayurskii, S.I. Nikitin, R.V.E. Yusupov, Observation of persistent currents in finely dispersed pyrolytic graphite. JETP Lett. 107(1), 37–41 (2018) M. Saad, I.F. Gilmutdinov, A.G. Kiiamov, D.A.B. Tayurskii, S.I. Nikitin, R.V.E. Yusupov, Observation of persistent currents in finely dispersed pyrolytic graphite. JETP Lett. 107(1), 37–41 (2018)
26.
go back to reference V.I. Tsebro, O.E. Omel’yanovskii, Persistent currents and magnetic flux trapping in a multiply connected carbon nanotube structure. Phys. Usp. 43(8), 847 (2000) V.I. Tsebro, O.E. Omel’yanovskii, Persistent currents and magnetic flux trapping in a multiply connected carbon nanotube structure. Phys. Usp. 43(8), 847 (2000)
27.
go back to reference C. Xu, L. Balents, Topological superconductivity in twisted multilayer graphene. Phys. Rev. Lett. 121(8), 087001 (2018) C. Xu, L. Balents, Topological superconductivity in twisted multilayer graphene. Phys. Rev. Lett. 121(8), 087001 (2018)
28.
go back to reference V.Z. Kresin, Y.N. Ovchinnikov, Shell structure and strengthening of superconducting pair correlation in nanoclusters. Phys. Rev. B. 74(2), 024514 (2006) V.Z. Kresin, Y.N. Ovchinnikov, Shell structure and strengthening of superconducting pair correlation in nanoclusters. Phys. Rev. B. 74(2), 024514 (2006)
29.
go back to reference S.G. Lebedev, Field-effect switching in nano-graphite films. J. Phys. Chem. Solids. 75(9), 1029–1032 (2014) S.G. Lebedev, Field-effect switching in nano-graphite films. J. Phys. Chem. Solids. 75(9), 1029–1032 (2014)
30.
go back to reference R. Munger, H.J.T. Smith, High-temperature reverse ac Josephson Effect in YBa2Cu3O7. Phys. Rev. B. 44(1), 242 (1991) R. Munger, H.J.T. Smith, High-temperature reverse ac Josephson Effect in YBa2Cu3O7. Phys. Rev. B. 44(1), 242 (1991)
31.
go back to reference J.T. Chen, L.E. Wenger, C.J. McEwan, E.M. Logothetis, Observation of the reverse ac Josephson effect in Y-Ba-Cu-O at 240 K. Phys. Rev. Lett. 58(19), 1972 (1987) J.T. Chen, L.E. Wenger, C.J. McEwan, E.M. Logothetis, Observation of the reverse ac Josephson effect in Y-Ba-Cu-O at 240 K. Phys. Rev. Lett. 58(19), 1972 (1987)
32.
go back to reference C.Z. Wang, K.M. Ho, and C.T.Chan, Phys. Rev. Lett. 70, 611–614 (1993) C.Z. Wang, K.M. Ho, and C.T.Chan, Phys. Rev. Lett. 70, 611–614 (1993)
33.
go back to reference P.K. Chu, L. Li, Mater. Chem. Phys. 96, 253 (2006) P.K. Chu, L. Li, Mater. Chem. Phys. 96, 253 (2006)
34.
go back to reference S.G. Lebedev, V.E. Yants, A.S. Lebedev, Nucl. Instrum. Methods Phys. Res. A590, 227–233 (2008) S.G. Lebedev, V.E. Yants, A.S. Lebedev, Nucl. Instrum. Methods Phys. Res. A590, 227–233 (2008)
35.
go back to reference L.R. Zhao, B.Z.Jang, Journal of Material Sciences Letters 15, 99–101 (1996) L.R. Zhao, B.Z.Jang, Journal of Material Sciences Letters 15, 99–101 (1996)
36.
go back to reference S.R.Ovshinsky,(1968) Physical Review Letters, 211450–1453 S.R.Ovshinsky,(1968) Physical Review Letters, 211450–1453
37.
go back to reference S.S.K. Titus, R. Chatterjee, S. Asokan, A.Kumar, Phys. Rev. B48, 14650–14652 (1993) S.S.K. Titus, R. Chatterjee, S. Asokan, A.Kumar, Phys. Rev. B48, 14650–14652 (1993)
38.
go back to reference N.F. Mott, Philosophical Magazine 24, 911 (1971) N.F. Mott, Philosophical Magazine 24, 911 (1971)
39.
go back to reference M. Ovadia, B. Sacepe, D.Shahar, Phys. Rev. Lett. 102, 176802–176803 (2009) M. Ovadia, B. Sacepe, D.Shahar, Phys. Rev. Lett. 102, 176802–176803 (2009)
40.
go back to reference B.Z. Jang, L.R. Zhao, Journal of Material Research 10, 2449–2453 (1995) B.Z. Jang, L.R. Zhao, Journal of Material Research 10, 2449–2453 (1995)
41.
go back to reference L. K.Antonowicz.J.Turlo Cacha, Carbon 11, 1–5 (1973) L. K.Antonowicz.J.Turlo Cacha, Carbon 11, 1–5 (1973)
42.
go back to reference A.Jesmansowicz K.Antonowicz, J.Wieczorek, Carbon 10, 81–84 (1972) A.Jesmansowicz K.Antonowicz, J.Wieczorek, Carbon 10, 81–84 (1972)
43.
go back to reference K. Antonowicz, Phys. Status. Solidi (a) 28, 497–502 (1975) K. Antonowicz, Phys. Status. Solidi (a) 28, 497–502 (1975)
44.
go back to reference S.G. Lebedev, Nuclear Instruments and Methods in Physics Research A52122, 26 (2004) S.G. Lebedev, Nuclear Instruments and Methods in Physics Research A52122, 26 (2004)
45.
go back to reference S.G. Lebedev, International Review of Physics (IREPHY) 2, 312 (2008) S.G. Lebedev, International Review of Physics (IREPHY) 2, 312 (2008)
46.
go back to reference J.C. Gonzalez, M. Munoz, N. Garcıa, J. Barzola-Quiquia, D. Spoddig, K. Schindler, P. Esquinazi, Phys. Rev. Lett. 99, 216601 (2007) J.C. Gonzalez, M. Munoz, N. Garcıa, J. Barzola-Quiquia, D. Spoddig, K. Schindler, P. Esquinazi, Phys. Rev. Lett. 99, 216601 (2007)
47.
go back to reference G. Timp, P.D. Dresselhaus, T.C. Chieu, G. Dresselhaus, Y. Iye, Phys. Rev. B28, 7393 (1983) G. Timp, P.D. Dresselhaus, T.C. Chieu, G. Dresselhaus, Y. Iye, Phys. Rev. B28, 7393 (1983)
48.
go back to reference Z.M. Wang, Q.Y. Xu, G.Ni, and Y.W. Du, Physics Letters A314, 328 (2003) Z.M. Wang, Q.Y. Xu, G.Ni, and Y.W. Du, Physics Letters A314, 328 (2003)
49.
go back to reference K. Kuriyama, M.S. Dresselhaus, Journal of Material Research 7, 940 (1992) K. Kuriyama, M.S. Dresselhaus, Journal of Material Research 7, 940 (1992)
50.
go back to reference A.W.P. Fung, Z.H. Wang, M.S. Dresselhaus, G. Dresselhaus, R.W. Pekala, M. Endo, Phys. Rev. B49, 17325 (1994) A.W.P. Fung, Z.H. Wang, M.S. Dresselhaus, G. Dresselhaus, R.W. Pekala, M. Endo, Phys. Rev. B49, 17325 (1994)
51.
go back to reference S.G.Lebedev,- Editor, “Unconventional Electromagnetics in Carbonaceous Materials” Nova Science Publishers, Inc., ISBN: 9781616681746, 2010 S.G.Lebedev,- Editor, “Unconventional Electromagnetics in Carbonaceous Materials” Nova Science Publishers, Inc., ISBN: 9781616681746, 2010
52.
go back to reference G.M. Mikheev, V.M. Styapshin, P.A. Obraztsov, E.A. Khestanova, S.V. Garnov, Quantum Electron. 40(5), 425 (2010) G.M. Mikheev, V.M. Styapshin, P.A. Obraztsov, E.A. Khestanova, S.V. Garnov, Quantum Electron. 40(5), 425 (2010)
53.
go back to reference P.A. Obraztsov, G.M. Mikheev, S.V. Garnov, A.N. Obraztsov, Y.P.Svirko, Appl. Phys. Lett. 98, 091903 (2011) P.A. Obraztsov, G.M. Mikheev, S.V. Garnov, A.N. Obraztsov, Y.P.Svirko, Appl. Phys. Lett. 98, 091903 (2011)
54.
go back to reference V.L. Al’perovich, V.I. Belinicher, V.N. Novikov, A.S. Terekhov, Sov. Phys. JETP 6, 1201 (1981) V.L. Al’perovich, V.I. Belinicher, V.N. Novikov, A.S. Terekhov, Sov. Phys. JETP 6, 1201 (1981)
55.
go back to reference V.L. Gurevich, R. Laiho, Phys. Solid State 42, 1807 (2000) V.L. Gurevich, R. Laiho, Phys. Solid State 42, 1807 (2000)
56.
go back to reference H. Sadate-Akhavi, J.T. Chen, A.M. Kadin, J.E. Keem, and S.R.Ovshinsky, Solid State Commun. 50, 975–978 (1984) H. Sadate-Akhavi, J.T. Chen, A.M. Kadin, J.E. Keem, and S.R.Ovshinsky, Solid State Commun. 50, 975–978 (1984)
57.
go back to reference J.T. Chen, R.J.Todd, and Y.W. Kim, Phys. Rev. B5, 1843–1849 (1972) J.T. Chen, R.J.Todd, and Y.W. Kim, Phys. Rev. B5, 1843–1849 (1972)
58.
go back to reference A. Dorokhov, A. Glauser, Y. Musienko, C. Regenfus, S. Reucroft, J. Swain, Recent progress on cooled avalanche photodiodes for single photon detection. J. Mod. Opt. 51(9–10), 1351–1357 (2004) A. Dorokhov, A. Glauser, Y. Musienko, C. Regenfus, S. Reucroft, J. Swain, Recent progress on cooled avalanche photodiodes for single photon detection. J. Mod. Opt. 51(9–10), 1351–1357 (2004)
59.
go back to reference R.G. Mints, A.L. Rakhmanov, Rev. Mod. Phys. 53, 551 (1981) R.G. Mints, A.L. Rakhmanov, Rev. Mod. Phys. 53, 551 (1981)
60.
go back to reference N. Jalili, K. Laxminarayana, Mechatronics 14, 907 (2004) N. Jalili, K. Laxminarayana, Mechatronics 14, 907 (2004)
61.
go back to reference M.R. Beasley, J.E. Mooij, T.P. Orlando, Possibility of vortex-antivortex pair dissociation in two-dimensional superconductors. Phys. Rev. Lett. 42(17), 1165 (1979) M.R. Beasley, J.E. Mooij, T.P. Orlando, Possibility of vortex-antivortex pair dissociation in two-dimensional superconductors. Phys. Rev. Lett. 42(17), 1165 (1979)
62.
go back to reference M. Fogelström, D. Rainer, J.A. Sauls, Tunneling into current-carrying surface states of high-Tc superconductors. Phys. Rev. Lett. 79(2), 281 (1997) M. Fogelström, D. Rainer, J.A. Sauls, Tunneling into current-carrying surface states of high-Tc superconductors. Phys. Rev. Lett. 79(2), 281 (1997)
63.
go back to reference S. Sasaki, M. Kriener, K. Segawa, K. Yada, Y. Tanaka, M. Sato, Y. Ando, Topological superconductivity in CuxBi2Se3. Physical review letters 107(21), 217001 (2011) S. Sasaki, M. Kriener, K. Segawa, K. Yada, Y. Tanaka, M. Sato, Y. Ando, Topological superconductivity in CuxBi2Se3. Physical review letters 107(21), 217001 (2011)
64.
go back to reference K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 54(24), 17954 (1996) K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 54(24), 17954 (1996)
65.
go back to reference V.Z. Kresin, Y.N. Ovchinnikov (2020). Pair correlation in nano systems. Annals of Physics, 168141 V.Z. Kresin, Y.N. Ovchinnikov (2020). Pair correlation in nano systems. Annals of Physics, 168141
66.
go back to reference P.L. Walker (1981). Chemistry and Physics of Carbon Vol. 17. Marcel Dekker Incorporated P.L. Walker (1981). Chemistry and Physics of Carbon Vol. 17. Marcel Dekker Incorporated
67.
go back to reference M.S. Dresselhaus, G. Dresselhaus, Adv. Phys. 30, 139 (1981) M.S. Dresselhaus, G. Dresselhaus, Adv. Phys. 30, 139 (1981)
68.
go back to reference Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, P. Jarillo-Herrero, Unconventional superconductivity in magic-angle graphene superlattices. Nature 556(7699), 43–50 (2018) Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, P. Jarillo-Herrero, Unconventional superconductivity in magic-angle graphene superlattices. Nature 556(7699), 43–50 (2018)
69.
go back to reference T. Cao, F. Zhao, S.G. Louie, Topological Phases in Graphene Nanoribbons: Junction States, Spin Centers, and Quantum Spin Chains. Phys. Rev. Lett. 119, 076401 (2017) T. Cao, F. Zhao, S.G. Louie, Topological Phases in Graphene Nanoribbons: Junction States, Spin Centers, and Quantum Spin Chains. Phys. Rev. Lett. 119, 076401 (2017)
70.
go back to reference K.N.Yugai,(2013) Topologicheskaya sverkhprovodimost nanostructur. Vestnik Omskogo Universiteta. 2 (68) (in Russian) K.N.Yugai,(2013) Topologicheskaya sverkhprovodimost nanostructur. Vestnik Omskogo Universiteta. 2 (68) (in Russian)
71.
go back to reference D.E. Jiang, B.G. Sumpter, S. Dai, Unique chemical reactivity of a graphene nanoribbon’s zigzag edge. J. Chem. Phys. 126(13), 134701 (2007) D.E. Jiang, B.G. Sumpter, S. Dai, Unique chemical reactivity of a graphene nanoribbon’s zigzag edge. J. Chem. Phys. 126(13), 134701 (2007)
72.
go back to reference B. Uchoa, Y. Barlas, Superconducting states in pseudo-Landau-levels of strained graphene. Phys. Rev. Lett. 111(4), 046604 (2013) B. Uchoa, Y. Barlas, Superconducting states in pseudo-Landau-levels of strained graphene. Phys. Rev. Lett. 111(4), 046604 (2013)
73.
go back to reference V. Celebonovic, J. Pesic, R. Gajic, B. Vasic, A. Matkovic, Selected transport, vibrational, and mechanical properties of low-dimensional systems under strain. J. Appl. Phys. 125(15), 154301 (2019) V. Celebonovic, J. Pesic, R. Gajic, B. Vasic, A. Matkovic, Selected transport, vibrational, and mechanical properties of low-dimensional systems under strain. J. Appl. Phys. 125(15), 154301 (2019)
74.
go back to reference T.J. Peltonen, T.T. Heikkila, Flat-band superconductivity in periodically strained graphene: mean-field and Berezinskii–Kosterlitz–Thouless transition (Condensed Matter, Journal of Physics, 2020) T.J. Peltonen, T.T. Heikkila, Flat-band superconductivity in periodically strained graphene: mean-field and Berezinskii–Kosterlitz–Thouless transition (Condensed Matter, Journal of Physics, 2020)
75.
go back to reference N. Levy, S.A. Burke, K.L. Meaker, M. Panlasigui, A. Zettl, F. Guinea, A.H. Castro, Neto, M.F. Crommie, Science 329, 544 (2010) N. Levy, S.A. Burke, K.L. Meaker, M. Panlasigui, A. Zettl, F. Guinea, A.H. Castro, Neto, M.F. Crommie, Science 329, 544 (2010)
76.
go back to reference F. Guinea, M.I. Katsnelson, A.G. Geim, Nat. Phys. 6, 30 (2010) F. Guinea, M.I. Katsnelson, A.G. Geim, Nat. Phys. 6, 30 (2010)
77.
go back to reference F. Guinea, A.G. Geim, M.I. Katsnelson, K.S. Novoselov, Phys. Rev. B 81, 035408 (2010) F. Guinea, A.G. Geim, M.I. Katsnelson, K.S. Novoselov, Phys. Rev. B 81, 035408 (2010)
78.
go back to reference L. Civale, A.D. Marwick, T.K. Worthington, M.A. Kirk, J.R. Thompson, L. Krusin-Elbaum, F. Holtzberg, Vortex confinement by columnar defects in YBa2Cu3O7 crystals Enhanced pinning at high fields and temperatures. Physical Review Letters 67(5), 648 (1991) L. Civale, A.D. Marwick, T.K. Worthington, M.A. Kirk, J.R. Thompson, L. Krusin-Elbaum, F. Holtzberg, Vortex confinement by columnar defects in YBa2Cu3O7 crystals Enhanced pinning at high fields and temperatures. Physical Review Letters 67(5), 648 (1991)
79.
go back to reference R. Córdoba, T.I. Baturina, J. Sesé, A.Y. Mironov, J.M. De Teresa, M.R. Ibarra, H. Suderow, Magnetic field-induced dissipation-free state in superconducting nanostructures. Nature communications 4(1), 1–7 (2013) R. Córdoba, T.I. Baturina, J. Sesé, A.Y. Mironov, J.M. De Teresa, M.R. Ibarra, H. Suderow, Magnetic field-induced dissipation-free state in superconducting nanostructures. Nature communications 4(1), 1–7 (2013)
Metadata
Title
Traces of superconducting correlations in nanographite films
Author
S. G. Lebedev
Publication date
16-10-2020
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 23/2020
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-020-04603-0

Other articles of this Issue 23/2020

Journal of Materials Science: Materials in Electronics 23/2020 Go to the issue