Skip to main content
Top
Published in: Flow, Turbulence and Combustion 3-4/2017

25-08-2017

Turbulent Duct Flow Controlled with Spanwise Wall Oscillations

Authors: Steffen Straub, Ricardo Vinuesa, Philipp Schlatter, Bettina Frohnapfel, Davide Gatti

Published in: Flow, Turbulence and Combustion | Issue 3-4/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The spanwise oscillation of channel walls is known to substantially reduce the skin-friction drag in turbulent channel flows. In order to understand the limitations of this flow control approach when applied in ducts, direct numerical simulations of controlled turbulent duct flows with an aspect ratio of A R = 3 are performed. In contrast to channel flows, the spanwise extension of the duct is limited. Therefore, the spanwise wall oscillation either directly interacts with the duct side walls or its spatial extent is limited to a certain region of the duct. The present results show that this spanwise limitation of the oscillating region strongly diminishes the drag reduction potential of the control technique. We propose a simple model that allows estimating the achievable drag reduction rates in duct flows as a function of the width of the duct and the spanwise extent of the controlled region.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Quadrio, M.: Drag reduction in turbulent boundary layer by in-plane wall motion. Philos. T. R. Soc. A 369(1940), 1428–1442 (2011)CrossRef Quadrio, M.: Drag reduction in turbulent boundary layer by in-plane wall motion. Philos. T. R. Soc. A 369(1940), 1428–1442 (2011)CrossRef
3.
go back to reference Quadrio, M., Ricco, P.: Critical assessment of turbulent drag reduction through spanwise wall oscillations. J. Fluid Mech. 521, 251–271 (2004)CrossRefMATH Quadrio, M., Ricco, P.: Critical assessment of turbulent drag reduction through spanwise wall oscillations. J. Fluid Mech. 521, 251–271 (2004)CrossRefMATH
4.
go back to reference Quadrio, M., Ricco, P., Viotti, C.: Streamwise-traveling waves of spanwise wall velocity for turbulent drag reduction. J. Fluid Mech. 627, 161–178 (2009)MathSciNetCrossRefMATH Quadrio, M., Ricco, P., Viotti, C.: Streamwise-traveling waves of spanwise wall velocity for turbulent drag reduction. J. Fluid Mech. 627, 161–178 (2009)MathSciNetCrossRefMATH
5.
go back to reference Ricco, P., Hahn, S.: Turbulent drag reduction through rotating discs. J. Fluid Mech. 722, 267–290, 5 (2013). ISSN 1469-7645CrossRefMATH Ricco, P., Hahn, S.: Turbulent drag reduction through rotating discs. J. Fluid Mech. 722, 267–290, 5 (2013). ISSN 1469-7645CrossRefMATH
6.
go back to reference Wise, D.J., Ricco, P.: Turbulent drag reduction through oscillating discs. J. Fluid Mech. 746, 536–564, 5 (2014). ISSN 1469-7645CrossRef Wise, D.J., Ricco, P.: Turbulent drag reduction through oscillating discs. J. Fluid Mech. 746, 536–564, 5 (2014). ISSN 1469-7645CrossRef
7.
go back to reference Duque-Daza, C.A., Baig, M.F., Lockerby, D.A., Chernyshenko, S.I., Davies, C.: Modelling turbulent skin-friction control using linearised Navier-Stokes equations. J. Fluid Mech. 702, 403–414 (2012)MathSciNetCrossRefMATH Duque-Daza, C.A., Baig, M.F., Lockerby, D.A., Chernyshenko, S.I., Davies, C.: Modelling turbulent skin-friction control using linearised Navier-Stokes equations. J. Fluid Mech. 702, 403–414 (2012)MathSciNetCrossRefMATH
8.
go back to reference Gatti, D., Quadrio, M.: Reynolds-number dependence of turbulent skin-friction drag reduction induced by spanwise forcing. J. Fluid Mech. 802, 553–582, 009 (2016)MathSciNetCrossRef Gatti, D., Quadrio, M.: Reynolds-number dependence of turbulent skin-friction drag reduction induced by spanwise forcing. J. Fluid Mech. 802, 553–582, 009 (2016)MathSciNetCrossRef
9.
go back to reference Hurst, E., Yang, Q., Chung, Y.M.: The effect of reynolds number on turbulent drag reduction by streamwise travelling waves. J. Fluid Mech. 759, 28–55, 11 (2014). ISSN 1469-7645CrossRef Hurst, E., Yang, Q., Chung, Y.M.: The effect of reynolds number on turbulent drag reduction by streamwise travelling waves. J. Fluid Mech. 759, 28–55, 11 (2014). ISSN 1469-7645CrossRef
10.
go back to reference Moarref, R., Jovanovic, M.R.: Model-based design of transverse wall oscillations for turbulent drag reduction. J. Fluid Mech. 707, 205–240 (2012)MathSciNetCrossRefMATH Moarref, R., Jovanovic, M.R.: Model-based design of transverse wall oscillations for turbulent drag reduction. J. Fluid Mech. 707, 205–240 (2012)MathSciNetCrossRefMATH
11.
go back to reference Agostini, L., Touber, E., Leschziner, M.A.: The turbulence vorticity as a window to the physics of friction-drag reduction by oscillatory wall motion. Int. J. Heat Fluid Fl. 51, 3–15 (2015). ISSN 0142-727X. Theme special issue celebrating the 75th birthdays of Brian Launder and Kemo HanjalicCrossRef Agostini, L., Touber, E., Leschziner, M.A.: The turbulence vorticity as a window to the physics of friction-drag reduction by oscillatory wall motion. Int. J. Heat Fluid Fl. 51, 3–15 (2015). ISSN 0142-727X. Theme special issue celebrating the 75th birthdays of Brian Launder and Kemo HanjalicCrossRef
12.
go back to reference Agostini, L., Touber, E., Leschziner, M.A.: Spanwise oscillatory wall motion in channel flow: drag-reduction mechanisms inferred from DNS-predicted phase-wise property variations at R e τ = 1000. J. Fluid Mech. 743, 606–635, 003 (2014)CrossRef Agostini, L., Touber, E., Leschziner, M.A.: Spanwise oscillatory wall motion in channel flow: drag-reduction mechanisms inferred from DNS-predicted phase-wise property variations at R e τ = 1000. J. Fluid Mech. 743, 606–635, 003 (2014)CrossRef
13.
go back to reference Touber, E., Leschziner, M.A.: Near-wall streak modification by spanwise oscillatory wall motion and drag-reduction mechanisms. J. Fluid Mech. 693, 150–200 (2012)CrossRefMATH Touber, E., Leschziner, M.A.: Near-wall streak modification by spanwise oscillatory wall motion and drag-reduction mechanisms. J. Fluid Mech. 693, 150–200 (2012)CrossRefMATH
14.
go back to reference Yakeno, A., Hasegawa, Y., Kasagi, N.: Modification of quasi-streamwise vortical structure in a drag-reduced turbulent channel flow with spanwise wall oscillation. Phys. Fluids 26, 085109 (2014)CrossRef Yakeno, A., Hasegawa, Y., Kasagi, N.: Modification of quasi-streamwise vortical structure in a drag-reduced turbulent channel flow with spanwise wall oscillation. Phys. Fluids 26, 085109 (2014)CrossRef
15.
go back to reference Gatti, D., Güttler, A., Frohnapfel, B., Tropea, C.: Experimental assessment of spanwise-oscillating dielectric electroactive surfaces for turbulent drag reduction in an air channel flow. Exp. Fluids 56(5), 110 (2015)CrossRef Gatti, D., Güttler, A., Frohnapfel, B., Tropea, C.: Experimental assessment of spanwise-oscillating dielectric electroactive surfaces for turbulent drag reduction in an air channel flow. Exp. Fluids 56(5), 110 (2015)CrossRef
16.
go back to reference Gouder, K., Potter, M., Morrison, J.F.: Turbulent friction drag reduction using electroactive polymer and electromagnetically driven surfaces. Exp. Fluids 54 (1441), 1441 (2013)CrossRef Gouder, K., Potter, M., Morrison, J.F.: Turbulent friction drag reduction using electroactive polymer and electromagnetically driven surfaces. Exp. Fluids 54 (1441), 1441 (2013)CrossRef
17.
go back to reference Choi, K.S.: Near-wall structure of turbulent boundary layer with spanwise-wall oscillation. Phys. Fluids 14(7), 2530–2542 (2002)CrossRefMATH Choi, K.S.: Near-wall structure of turbulent boundary layer with spanwise-wall oscillation. Phys. Fluids 14(7), 2530–2542 (2002)CrossRefMATH
18.
go back to reference Choi, K.-S., DeBisschop, J.-R., Clayton, B.R.: Turbulent boundary-layer control by means of spanwise-wall oscillation. AIAA J. 36(7), 1157–1163 (1998)CrossRef Choi, K.-S., DeBisschop, J.-R., Clayton, B.R.: Turbulent boundary-layer control by means of spanwise-wall oscillation. AIAA J. 36(7), 1157–1163 (1998)CrossRef
19.
go back to reference Ricco, P., Wu, S.: On the effects of lateral wall oscillations on a turbulent boundary layer. Exp. Therm. Fluid Science 29, 41–52 (2004)CrossRef Ricco, P., Wu, S.: On the effects of lateral wall oscillations on a turbulent boundary layer. Exp. Therm. Fluid Science 29, 41–52 (2004)CrossRef
20.
go back to reference Trujillo, S.M., Bogard, D.G., Ball, K.S.: Turbulent boundary layer drag reduction using an oscillating wall. AIAA Paper 97–1870 (1997) Trujillo, S.M., Bogard, D.G., Ball, K.S.: Turbulent boundary layer drag reduction using an oscillating wall. AIAA Paper 97–1870 (1997)
21.
go back to reference Auteri, F., Baron, A., Belan, M., Campanardi, G., Quadrio, M.: Experimental assessment of drag reduction by traveling waves in a turbulent pipe flow. Phys. Fluids 22(11), 115103 (2010)CrossRef Auteri, F., Baron, A., Belan, M., Campanardi, G., Quadrio, M.: Experimental assessment of drag reduction by traveling waves in a turbulent pipe flow. Phys. Fluids 22(11), 115103 (2010)CrossRef
22.
go back to reference Choi, K.-S., Graham, M.: Drag reduction of turbulent pipe flows by circular-wall oscillation. Phys. Fluids 10(1), 7–9 (1998)CrossRef Choi, K.-S., Graham, M.: Drag reduction of turbulent pipe flows by circular-wall oscillation. Phys. Fluids 10(1), 7–9 (1998)CrossRef
23.
go back to reference Skote, M.: Temporal and spatial transients in turbulent boundary layer flow over an oscillating wall. Int. J. Heat Fluid Fl. 38, 1–12 (2012). ISSN 0142-727XCrossRef Skote, M.: Temporal and spatial transients in turbulent boundary layer flow over an oscillating wall. Int. J. Heat Fluid Fl. 38, 1–12 (2012). ISSN 0142-727XCrossRef
24.
go back to reference Lardeau, S., Leschziner, M.A.: The streamwise drag-reduction response of a boundary layer subjected to a sudden imposition of transverse oscillatory wall motion. Phys. Fluids 25, 075109 (2013)CrossRef Lardeau, S., Leschziner, M.A.: The streamwise drag-reduction response of a boundary layer subjected to a sudden imposition of transverse oscillatory wall motion. Phys. Fluids 25, 075109 (2013)CrossRef
25.
go back to reference Skote, M.: Comparison between spatial: temporal wall oscillations in turbulent boundary layer flows. J. Fluid Mech. 730, 273–294 (2013)MathSciNetCrossRefMATH Skote, M.: Comparison between spatial: temporal wall oscillations in turbulent boundary layer flows. J. Fluid Mech. 730, 273–294 (2013)MathSciNetCrossRefMATH
27.
go back to reference Patera, A.: A spectral element method for fluid dynamics: Laminar flow in a channel expansion. J. Comput. Phys. 54, 468–588 (1984)CrossRefMATH Patera, A.: A spectral element method for fluid dynamics: Laminar flow in a channel expansion. J. Comput. Phys. 54, 468–588 (1984)CrossRefMATH
28.
go back to reference Marin, O., Vinuesa, R., Obabko, A.V., Schlatter, P.: Characterization of the secondary flow in hexagonal ducts. Phys. Fluids 28(12), 125101 (2016)CrossRef Marin, O., Vinuesa, R., Obabko, A.V., Schlatter, P.: Characterization of the secondary flow in hexagonal ducts. Phys. Fluids 28(12), 125101 (2016)CrossRef
29.
go back to reference Kim, J., Moin, P., Moser, R.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166 (1987)CrossRefMATH Kim, J., Moin, P., Moser, R.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166 (1987)CrossRefMATH
30.
go back to reference Luchini, P., Quadrio, M.: A low-cost parallel implementation of direct numerical simulation of wall turbulence. J. Comput. Phys. 211, 551–571 (2006)CrossRefMATH Luchini, P., Quadrio, M.: A low-cost parallel implementation of direct numerical simulation of wall turbulence. J. Comput. Phys. 211, 551–571 (2006)CrossRefMATH
31.
go back to reference Vinuesa, R., Noorani, A., Lozano-Durán, A., El Khoury, G.K., Schlatter, P., Fischer, P.F., Nagib, H.M.: Aspect ratio effects in turbulent duct flows studied through direct numerical simulation. J. Turbul. 15(10), 677–706 (2014)CrossRef Vinuesa, R., Noorani, A., Lozano-Durán, A., El Khoury, G.K., Schlatter, P., Fischer, P.F., Nagib, H.M.: Aspect ratio effects in turbulent duct flows studied through direct numerical simulation. J. Turbul. 15(10), 677–706 (2014)CrossRef
32.
go back to reference Straub, S., Vinuesa, R., Schlatter, P., Frohnapfel, B., Gatti, D.: Direct Numerical Simulation of Controlled Turbulent Duct Flows. Master’s thesis, Karlsruhe Institute of Technology (2015) Straub, S., Vinuesa, R., Schlatter, P., Frohnapfel, B., Gatti, D.: Direct Numerical Simulation of Controlled Turbulent Duct Flows. Master’s thesis, Karlsruhe Institute of Technology (2015)
33.
go back to reference Ricco, P., Quadrio, M.: Wall-oscillation conditions for drag reduction in turbulent channel flow. Int. J. Heat Fluid Fl. 29, 601–612 (2008)CrossRef Ricco, P., Quadrio, M.: Wall-oscillation conditions for drag reduction in turbulent channel flow. Int. J. Heat Fluid Fl. 29, 601–612 (2008)CrossRef
34.
go back to reference Vinuesa, R., Prus, C., Schlatter, P., Nagib, H.M.: Convergence of numerical simulations of turbulent wall-bounded flows and mean cross-flow structure of rectangular ducts. Meccanica 51(12), 3025–3042 (2016). ISSN 1572-9648MathSciNetCrossRef Vinuesa, R., Prus, C., Schlatter, P., Nagib, H.M.: Convergence of numerical simulations of turbulent wall-bounded flows and mean cross-flow structure of rectangular ducts. Meccanica 51(12), 3025–3042 (2016). ISSN 1572-9648MathSciNetCrossRef
35.
go back to reference Lozano-Durán, A., Jiménez, J.: Effect of the computational domain on direct simulations of turbulent channels up to re τ = 4200. Phys. Fluids 26(1), 011702 (2014)CrossRef Lozano-Durán, A., Jiménez, J.: Effect of the computational domain on direct simulations of turbulent channels up to re τ = 4200. Phys. Fluids 26(1), 011702 (2014)CrossRef
36.
go back to reference Vinuesa, R., Schlatter, P., Nagib, H.M.: Characterization of the secondary flow in turbulent rectangular ducts with varying aspect ratio. In: International Symposium Turbulence & Shear Flow Phenomena (TSFP-9), 30 June–3 July, Melbourne, Australia (2015) Vinuesa, R., Schlatter, P., Nagib, H.M.: Characterization of the secondary flow in turbulent rectangular ducts with varying aspect ratio. In: International Symposium Turbulence & Shear Flow Phenomena (TSFP-9), 30 June–3 July, Melbourne, Australia (2015)
37.
go back to reference Fukagata, K., Iwamoto, K., Kasagi, N.: Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids 14(11), L73–76 (2002)CrossRefMATH Fukagata, K., Iwamoto, K., Kasagi, N.: Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids 14(11), L73–76 (2002)CrossRefMATH
38.
go back to reference Oliver, T.A., Malaya, N., Ulerich, R., Moser, R.D.: Estimating uncertainties in statistics computed from direct numerical simulation. Phys. Fluids 26(3), 035101 (2014)CrossRef Oliver, T.A., Malaya, N., Ulerich, R., Moser, R.D.: Estimating uncertainties in statistics computed from direct numerical simulation. Phys. Fluids 26(3), 035101 (2014)CrossRef
39.
go back to reference Moser, R.D., Kim, J., Mansour, N.N.: Direct numerical simulation of turbulent channel flow up to R e τ = 590. Phys. Fluids 11(4), 943–945 (1999)CrossRefMATH Moser, R.D., Kim, J., Mansour, N.N.: Direct numerical simulation of turbulent channel flow up to R e τ = 590. Phys. Fluids 11(4), 943–945 (1999)CrossRefMATH
40.
go back to reference Örlü, R., Schlatter, P.: Comparison of experiments and simulations for zero pressure gradient turbulent boundary layers at moderate Reynolds numbers. Exp. Fluids 54(6), 1547 (2013)CrossRef Örlü, R., Schlatter, P.: Comparison of experiments and simulations for zero pressure gradient turbulent boundary layers at moderate Reynolds numbers. Exp. Fluids 54(6), 1547 (2013)CrossRef
Metadata
Title
Turbulent Duct Flow Controlled with Spanwise Wall Oscillations
Authors
Steffen Straub
Ricardo Vinuesa
Philipp Schlatter
Bettina Frohnapfel
Davide Gatti
Publication date
25-08-2017
Publisher
Springer Netherlands
Published in
Flow, Turbulence and Combustion / Issue 3-4/2017
Print ISSN: 1386-6184
Electronic ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-017-9846-6

Other articles of this Issue 3-4/2017

Flow, Turbulence and Combustion 3-4/2017 Go to the issue

Premium Partners