Skip to main content
Erschienen in: Experiments in Fluids 1/2013

01.01.2013 | Research Article

Turbulent friction drag reduction using electroactive polymer and electromagnetically driven surfaces

verfasst von: Kevin Gouder, Mark Potter, Jonathan F. Morrison

Erschienen in: Experiments in Fluids | Ausgabe 1/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work reports aerodynamic testing of two spanwise-oscillating surfaces fabricated out of electroactive polymers (EAPs) in the dielectric form of actuation, and of an electromagnetic-driven linear motor. Hot-wire and PIV measurements of velocity and direct measurement of friction drag using a drag balance are presented. A maximum of 16 % surface friction reduction, as calculated by the diminution of the wall-normal streamwise velocity gradient, was obtained. Among other quantities, the spatial dependence of the drag reduction was investigated. When this spatial transient and portions which are static are accounted for, the direct drag measurements complement the hot-wire data. PIV measurements, where the laser beam was parallel to the oscillating surface at y + ≈ 15, support the hot-wire data. The two actuators are original in design, and significant contributions have been made to the development of EAPs. This experiment is the first to aerodynamically test EAP actuators at such a large scale and at a relatively moderate Re.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Akhavan R, Kamm R, Shapiro A (1991a) An investigation of transition to turbulence in bounded oscillatory Stokes flows Part 1. Exp J Fluid Mech 225:395–422CrossRef Akhavan R, Kamm R, Shapiro A (1991a) An investigation of transition to turbulence in bounded oscillatory Stokes flows Part 1. Exp J Fluid Mech 225:395–422CrossRef
Zurück zum Zitat Akhavan R, Jung W, Mangiavacchi N (1993) Turbulence control in wall-bounded flows by spanwise oscillations. App Sci Res 51:299–303CrossRef Akhavan R, Jung W, Mangiavacchi N (1993) Turbulence control in wall-bounded flows by spanwise oscillations. App Sci Res 51:299–303CrossRef
Zurück zum Zitat Alfredsson PH, Örlü R (2010) The diagnostic plot—a litmus test for wall bounded turbulence data. Eur J Mechs B Fluids 42:403–406CrossRef Alfredsson PH, Örlü R (2010) The diagnostic plot—a litmus test for wall bounded turbulence data. Eur J Mechs B Fluids 42:403–406CrossRef
Zurück zum Zitat Bradshaw P, Pontikos N (1985) Measurement in the turbulent boundary layer on an infinite-swept wing. J Fluid Mech 159:105–130CrossRef Bradshaw P, Pontikos N (1985) Measurement in the turbulent boundary layer on an infinite-swept wing. J Fluid Mech 159:105–130CrossRef
Zurück zum Zitat Choi K (2002) Near-wall structure of turbulent boundary layer with spanwise-wall oscillation. Phys Fluids 14(7):2530–2542CrossRef Choi K (2002) Near-wall structure of turbulent boundary layer with spanwise-wall oscillation. Phys Fluids 14(7):2530–2542CrossRef
Zurück zum Zitat Choi K, Clayton B (2001) The mechanism of turbulent drag reduction with wall oscillation. Int J Heat Fluid Flow 22(1):1–9CrossRef Choi K, Clayton B (2001) The mechanism of turbulent drag reduction with wall oscillation. Int J Heat Fluid Flow 22(1):1–9CrossRef
Zurück zum Zitat Choi K, DeBisschop JR, Clayton B (1998) Turbulent boundary-layer control by means of spanwise-wall oscillation. AIAA J 36(7):1157–1163CrossRef Choi K, DeBisschop JR, Clayton B (1998) Turbulent boundary-layer control by means of spanwise-wall oscillation. AIAA J 36(7):1157–1163CrossRef
Zurück zum Zitat Dearing S, Lambert S, Morrison J (2007) Flow control with active dimples. Aero J 111(1125):705–714 Dearing S, Lambert S, Morrison J (2007) Flow control with active dimples. Aero J 111(1125):705–714
Zurück zum Zitat Dearing S, Morrison J, Iannucci L (2010) Electro-active polymer (EAP) dimple actuators for flow control: design and characterisation. Sens Actuators A Phys157:210–218CrossRef Dearing S, Morrison J, Iannucci L (2010) Electro-active polymer (EAP) dimple actuators for flow control: design and characterisation. Sens Actuators A Phys157:210–218CrossRef
Zurück zum Zitat Du Y, Symeonidis V, Karniadakis G (2002) Drag reduction in wall-bounded turbulence via a transverse travelling wave. J Fluid Mech 457:1–34MathSciNetMATHCrossRef Du Y, Symeonidis V, Karniadakis G (2002) Drag reduction in wall-bounded turbulence via a transverse travelling wave. J Fluid Mech 457:1–34MathSciNetMATHCrossRef
Zurück zum Zitat Fernholz HH, Krause E, Nockemann M, Schober M (1995) Comparative measurements in the canonical boundary layer at Re δ2 < 6 × 104 on the wall of the DNW. Phys Fluids A 7:1275–1281CrossRef Fernholz HH, Krause E, Nockemann M, Schober M (1995) Comparative measurements in the canonical boundary layer at Re δ2 < 6 × 104 on the wall of the DNW. Phys Fluids A 7:1275–1281CrossRef
Zurück zum Zitat Gouder K (2011) Turbulent friction drag reduction using electroactive polymer surfaces. PhD thesis, Imperial College London Gouder K (2011) Turbulent friction drag reduction using electroactive polymer surfaces. PhD thesis, Imperial College London
Zurück zum Zitat Il-Choi J, Xu C, Sung H (2002) Drag reduction by spanwise wall oscillation in wall-bounded turbulent flows. AIAA J 40(5):842–850CrossRef Il-Choi J, Xu C, Sung H (2002) Drag reduction by spanwise wall oscillation in wall-bounded turbulent flows. AIAA J 40(5):842–850CrossRef
Zurück zum Zitat Jung W, Mangiavacchi N, R A (1992) Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations. Phys Fluids A 4(8):1605–1607CrossRef Jung W, Mangiavacchi N, R A (1992) Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations. Phys Fluids A 4(8):1605–1607CrossRef
Zurück zum Zitat Kamphuis J (1975) Friction factor under oscillatory waves. J Waterways, Port Coastal Engineering, Div ASCE 101:135–144 Kamphuis J (1975) Friction factor under oscillatory waves. J Waterways, Port Coastal Engineering, Div ASCE 101:135–144
Zurück zum Zitat Kofod G (2001) Dielectric elastomer actuators. PhD thesis, The Technical University of Denmark Kofod G (2001) Dielectric elastomer actuators. PhD thesis, The Technical University of Denmark
Zurück zum Zitat Laadhari F, Skandaji L, Morel R (1994) Turbulence reduction in a boundary layer by a local spanwise oscillating surface. Phys Fluids 6(10):3218–3220CrossRef Laadhari F, Skandaji L, Morel R (1994) Turbulence reduction in a boundary layer by a local spanwise oscillating surface. Phys Fluids 6(10):3218–3220CrossRef
Zurück zum Zitat Moffat R (1988) Describing the uncertainties in experimental results. Exp Therm Fluid Sci 1:3–17CrossRef Moffat R (1988) Describing the uncertainties in experimental results. Exp Therm Fluid Sci 1:3–17CrossRef
Zurück zum Zitat Pelrine R, Kornbluh R, Joseph J, Chiba S (1997) Electrostriction of polymer films for microactuators. IEEE 0-7803-3744-1:238–243 Pelrine R, Kornbluh R, Joseph J, Chiba S (1997) Electrostriction of polymer films for microactuators. IEEE 0-7803-3744-1:238–243
Zurück zum Zitat Potter M, Gouder K, Morrison J (2011) A numerical model for electro-active polymer actuators with experimental validation. Sens Actuators A Phys 170:121–130CrossRef Potter M, Gouder K, Morrison J (2011) A numerical model for electro-active polymer actuators with experimental validation. Sens Actuators A Phys 170:121–130CrossRef
Zurück zum Zitat Quadrio M, Ricco P (2003) Initial response of a turbulent channel flow to spanwise oscillation of the walls. J Turb 4(007) Quadrio M, Ricco P (2003) Initial response of a turbulent channel flow to spanwise oscillation of the walls. J Turb 4(007)
Zurück zum Zitat Quadrio M, Ricco P (2004) Critical assessment of turbulent drag reduction through spanwise wall oscillations. J Fluid Mech 521:251–271MATHCrossRef Quadrio M, Ricco P (2004) Critical assessment of turbulent drag reduction through spanwise wall oscillations. J Fluid Mech 521:251–271MATHCrossRef
Zurück zum Zitat Quadrio M, Sibilla S (2000) Numerical simulation of turbulent flow in a pipe oscillating around its axis. J Fluid Mech 424:217–241MATHCrossRef Quadrio M, Sibilla S (2000) Numerical simulation of turbulent flow in a pipe oscillating around its axis. J Fluid Mech 424:217–241MATHCrossRef
Zurück zum Zitat Quadrio M, Viotti C (2007) Skin-friction drag reduction via steady streamwise oscillations of spanwise velocity. In: Palma JMLM, SilvaLopez A (eds) Advances in Turbulence. Springer, Berlin Quadrio M, Viotti C (2007) Skin-friction drag reduction via steady streamwise oscillations of spanwise velocity. In: Palma JMLM, SilvaLopez A (eds) Advances in Turbulence. Springer, Berlin
Zurück zum Zitat Quadrio M, Ricco P, Viotti C (2009) Streamwise-travelling waves of spanwise wall velocity for turbulent drag reduction. J Fluid Mech 627:161–178MathSciNetMATHCrossRef Quadrio M, Ricco P, Viotti C (2009) Streamwise-travelling waves of spanwise wall velocity for turbulent drag reduction. J Fluid Mech 627:161–178MathSciNetMATHCrossRef
Zurück zum Zitat Ricco P, Wu S (2004) On the effects of lateral wall oscillations on a turbulent boundary layer. Exp Thermal Fluid Sci 29:41–52CrossRef Ricco P, Wu S (2004) On the effects of lateral wall oscillations on a turbulent boundary layer. Exp Thermal Fluid Sci 29:41–52CrossRef
Zurück zum Zitat Schlichting H (1968) Boundary layer theory, 6th edn. McGrawHill Book Company, New York Schlichting H (1968) Boundary layer theory, 6th edn. McGrawHill Book Company, New York
Zurück zum Zitat Schoppa W, Hussain F (1998) A large-scale control strategy for drag reduction in turbulent boundary layers. Phys Fluids 10(5):1049–1051MathSciNetMATHCrossRef Schoppa W, Hussain F (1998) A large-scale control strategy for drag reduction in turbulent boundary layers. Phys Fluids 10(5):1049–1051MathSciNetMATHCrossRef
Zurück zum Zitat Zhao H, Wu JZ, Luo JS (2004) Turbulent drag reduction by travelling wave of flexible wall. Fluid Dyn Res 34:175–198MATHCrossRef Zhao H, Wu JZ, Luo JS (2004) Turbulent drag reduction by travelling wave of flexible wall. Fluid Dyn Res 34:175–198MATHCrossRef
Metadaten
Titel
Turbulent friction drag reduction using electroactive polymer and electromagnetically driven surfaces
verfasst von
Kevin Gouder
Mark Potter
Jonathan F. Morrison
Publikationsdatum
01.01.2013
Verlag
Springer-Verlag
Erschienen in
Experiments in Fluids / Ausgabe 1/2013
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-012-1441-y

Weitere Artikel der Ausgabe 1/2013

Experiments in Fluids 1/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.