Skip to main content
Erschienen in: Experiments in Fluids 6/2013

01.06.2013 | Research Article

Comparison of experiments and simulations for zero pressure gradient turbulent boundary layers at moderate Reynolds numbers

verfasst von: Ramis Örlü, Philipp Schlatter

Erschienen in: Experiments in Fluids | Ausgabe 6/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A detailed comparison between recent direct numerical simulation (DNS) and experiments of a turbulent boundary layer under zero pressure gradient at Re θ  = 2,500 and 4,000 (based on the free-stream velocity and momentum-loss thickness) is presented. The well-resolved DNS is computed in a long spatial domain (Schlatter and Örlü in J Fluid Mech 659:116, 2010a), including the disturbance strip, while the experiments consist of single hot-wire probe and oil-film interferometry measurements. Remarkably, good agreement is obtained for integral quantities such as skin friction and shape factor, as well as mean and fluctuating streamwise velocity profiles, higher-order moments and probability density distributions. The agreement also extends to spectral/structural quantities such as the amplitude modulation of the small scales by the large-scale motion and temporal spectral maps throughout the boundary layer. Differences within the inner layer observed for statistical and spectral quantities could entirely be removed by spatially averaging the DNS to match the viscous-scaled length of the hot-wire sensor, thereby explaining observed differences solely by insufficient spatial resolution of the hot-wire sensor. For the highest Reynolds number, Re θ  = 4,000, the experimental data exhibit a more pronounced secondary spectral peak in the outer region (y/δ 99 = 0.1) related to structures with length on the order of 5–7 boundary layer thicknesses, which is weaker and slightly moved towards lower temporal periods in the DNS. The cause is thought to be related to the limited spanwise box size which constrains the growth of the very large structures. In the light of the difficulty to obtain “canonical” flow conditions, both in DNS and the wind tunnel where effects such as boundary treatment, pressure gradient and turbulence tripping need to be considered, the present cross-validation of the data sets, at least for the present Re θ -range, provides important reference data for future studies and highlights the importance of taking spatial resolution effects into account when comparing experiment and DNS. For the considered flow, the present data also provide quantitative guidelines on what level of accuracy can be expected for the agreement between DNS and experiments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
See also the featuring Focus on Fluids article by Hutchins (2012).
 
2
Note that the data for pipe flows from experiments are inconclusive. Recent hot-wire measurements in the Superpipe with matched L + values surprisingly show “that the magnitude of the near-wall peak is invariant with Reynolds number in location and magnitude” (Hultmark et al. 2010), a finding that has been confirmed in the same facility by means of nano-scale thermal anemometry probes (Hultmark et al. 2012). A recent compilation of new DNS and experiments by Örlü and Alfredsson (2012), albeit limited to Re τ ⩽ 3,000, depicts, however, a clear increase with Re, indicating the need for new experiments for Re τ  > 3,000.
 
Literatur
Zurück zum Zitat Alfredsson PH, Johansson AV, Haritonidis JH, Eckelmann H (1988) The fluctuating wall-shear stress and the velocity field in the viscous sublayer. Phys Fluids 31:1026–1033CrossRef Alfredsson PH, Johansson AV, Haritonidis JH, Eckelmann H (1988) The fluctuating wall-shear stress and the velocity field in the viscous sublayer. Phys Fluids 31:1026–1033CrossRef
Zurück zum Zitat Alfredsson PH, Örlü R, Schlatter P (2011) The viscous sublayer revisited–exploiting self-similarity to determine the wall position and friction velocity. Exp Fluids 51:271–280CrossRef Alfredsson PH, Örlü R, Schlatter P (2011) The viscous sublayer revisited–exploiting self-similarity to determine the wall position and friction velocity. Exp Fluids 51:271–280CrossRef
Zurück zum Zitat Alfredsson PH, Örlü R, Segalini A (2012) A new formulation for the streamwise turbulence intensity distribution in wall-bounded turbulent flows. Eur J Mech B Fluid 36:167–175CrossRef Alfredsson PH, Örlü R, Segalini A (2012) A new formulation for the streamwise turbulence intensity distribution in wall-bounded turbulent flows. Eur J Mech B Fluid 36:167–175CrossRef
Zurück zum Zitat Bernardini M, Pirozzoli S (2011) Inner/outer layer interactions in turbulent boundary layers: a refined measure for the large-scale amplitude modulation mechanism. Phys Fluids 23:061701CrossRef Bernardini M, Pirozzoli S (2011) Inner/outer layer interactions in turbulent boundary layers: a refined measure for the large-scale amplitude modulation mechanism. Phys Fluids 23:061701CrossRef
Zurück zum Zitat Bertolotti FP, Herbert T, Spalart PR (1992) Linear and nonlinear stability of the Blasius boundary layer. J Fluid Mech 242:441–474MathSciNetMATHCrossRef Bertolotti FP, Herbert T, Spalart PR (1992) Linear and nonlinear stability of the Blasius boundary layer. J Fluid Mech 242:441–474MathSciNetMATHCrossRef
Zurück zum Zitat Bhatia J, Durst F, Jovanovic J (1982) Corrections of hot-wire anemometer measurements near walls. J Fluid Mech 123:411–431CrossRef Bhatia J, Durst F, Jovanovic J (1982) Corrections of hot-wire anemometer measurements near walls. J Fluid Mech 123:411–431CrossRef
Zurück zum Zitat Bruun HH (1995) Hot-wire anemometry: principles and signal analysis. Oxford University Press Inc, New York Bruun HH (1995) Hot-wire anemometry: principles and signal analysis. Oxford University Press Inc, New York
Zurück zum Zitat Buschmann MH, Indinger T, Gad-el-Hak M (2009) Near-wall behavior of turbulent wall-bounded flows. Int J Heat Fluid Flow 30:993–1006CrossRef Buschmann MH, Indinger T, Gad-el-Hak M (2009) Near-wall behavior of turbulent wall-bounded flows. Int J Heat Fluid Flow 30:993–1006CrossRef
Zurück zum Zitat Chauhan KA, Monkewitz PA, Nagib HM (2009) Criteria for assessing experiments in zero pressure gradient boundary layers. Fluid Dyn Res 41:021404CrossRef Chauhan KA, Monkewitz PA, Nagib HM (2009) Criteria for assessing experiments in zero pressure gradient boundary layers. Fluid Dyn Res 41:021404CrossRef
Zurück zum Zitat Chevalier M, Schlatter P, Lundbladh A, Henningson DS (2007) SIMSON—a pseudo-spectral solver for incompressible boundary layer flow. Technical report, Royal Institute of Technology, Stockholm, Sweden Chevalier M, Schlatter P, Lundbladh A, Henningson DS (2007) SIMSON—a pseudo-spectral solver for incompressible boundary layer flow. Technical report, Royal Institute of Technology, Stockholm, Sweden
Zurück zum Zitat Coles DE (1968) The young person’ s guide to the data. In: Coles DE, Hirst EA (eds) AFOSR-IFP-stanford conference on computation of turbulent boundary layers. pp 1–45 Coles DE (1968) The young person’ s guide to the data. In: Coles DE, Hirst EA (eds) AFOSR-IFP-stanford conference on computation of turbulent boundary layers. pp 1–45
Zurück zum Zitat DeGraaff DB, Eaton JK (2000) Reynolds-number scaling of the flat-plate turbulent boundary layer. J Fluid Mech 422:319–346MATHCrossRef DeGraaff DB, Eaton JK (2000) Reynolds-number scaling of the flat-plate turbulent boundary layer. J Fluid Mech 422:319–346MATHCrossRef
Zurück zum Zitat del Álamo JC, Jiménez J (2009) Estimation of turbulent convection velocities and corrections to Taylor’s approximation. J Fluid Mech 640:5–26MathSciNetMATHCrossRef del Álamo JC, Jiménez J (2009) Estimation of turbulent convection velocities and corrections to Taylor’s approximation. J Fluid Mech 640:5–26MathSciNetMATHCrossRef
Zurück zum Zitat del Álamo JC, Jiménez J, Zandonade P, Moser RD (2004) Scaling of the energy spectra of turbulent channels. J Fluid Mech 500:135–144MATHCrossRef del Álamo JC, Jiménez J, Zandonade P, Moser RD (2004) Scaling of the energy spectra of turbulent channels. J Fluid Mech 500:135–144MATHCrossRef
Zurück zum Zitat Dryden HL (1936) Air flow in the boundary layer near a plate. NACA Technical report No. 562 Dryden HL (1936) Air flow in the boundary layer near a plate. NACA Technical report No. 562
Zurück zum Zitat Dryden HL, Schubauer GB, Mock WC, Skramstad HK (1937) Measurements of intensity and scale of wind-tunnel turbulence and their relation to the critical Reynolds number of spheres. NACA Technical report No. 581 Dryden HL, Schubauer GB, Mock WC, Skramstad HK (1937) Measurements of intensity and scale of wind-tunnel turbulence and their relation to the critical Reynolds number of spheres. NACA Technical report No. 581
Zurück zum Zitat Erm LP, Joubert PN (1991) Low-Reynolds-number turbulent boundary layers. J Fluid Mech 230:1–44CrossRef Erm LP, Joubert PN (1991) Low-Reynolds-number turbulent boundary layers. J Fluid Mech 230:1–44CrossRef
Zurück zum Zitat Fernholz HH, Finley PJ (1996) The incompressible zero-pressure-gradient turbulent boundary layer: an assessment of the data. Prog Aerosp Sci 32:245–311CrossRef Fernholz HH, Finley PJ (1996) The incompressible zero-pressure-gradient turbulent boundary layer: an assessment of the data. Prog Aerosp Sci 32:245–311CrossRef
Zurück zum Zitat Ferrante A, Elghobashi SE (2005) Reynolds number effect on drag reduction in a microbubble-laden spatially developing turbulent boundary layer. J Fluid Mech 543:93–106MATHCrossRef Ferrante A, Elghobashi SE (2005) Reynolds number effect on drag reduction in a microbubble-laden spatially developing turbulent boundary layer. J Fluid Mech 543:93–106MATHCrossRef
Zurück zum Zitat Hoyas S, Jiménez J (2006) Scaling of the velocity fluctuations in turbulent channels up to Re τ = 2003. Phys Fluids 18:011702CrossRef Hoyas S, Jiménez J (2006) Scaling of the velocity fluctuations in turbulent channels up to Re τ  = 2003. Phys Fluids 18:011702CrossRef
Zurück zum Zitat Hultmark M, Bailey SCC, Smits AJ (2010) Scaling of near-wall turbulence in pipe flow. J Fluid Mech 649:103–113MATHCrossRef Hultmark M, Bailey SCC, Smits AJ (2010) Scaling of near-wall turbulence in pipe flow. J Fluid Mech 649:103–113MATHCrossRef
Zurück zum Zitat Hultmark M, Vallikivi M, Bailey SCC, Smits AJ (2012) Turbulent pipe flow at extreme Reynolds numbers. Phys Rev Lett 108:094501CrossRef Hultmark M, Vallikivi M, Bailey SCC, Smits AJ (2012) Turbulent pipe flow at extreme Reynolds numbers. Phys Rev Lett 108:094501CrossRef
Zurück zum Zitat Hutchins N, Marusic I (2007) Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J Fluid Mech 579:1–28MATHCrossRef Hutchins N, Marusic I (2007) Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J Fluid Mech 579:1–28MATHCrossRef
Zurück zum Zitat Hutchins N, Nickels TB, Marusic I, Chong MS (2009) Hot-wire spatial resolution issues in wall-bounded turbulence. J Fluid Mech 635:103–136MATHCrossRef Hutchins N, Nickels TB, Marusic I, Chong MS (2009) Hot-wire spatial resolution issues in wall-bounded turbulence. J Fluid Mech 635:103–136MATHCrossRef
Zurück zum Zitat Jiménez J, Hoyas S, Simens MP, Mizuno Y (2010) Turbulent boundary layers and channels at moderate Reynolds numbers. J Fluid Mech 657:335–360MATHCrossRef Jiménez J, Hoyas S, Simens MP, Mizuno Y (2010) Turbulent boundary layers and channels at moderate Reynolds numbers. J Fluid Mech 657:335–360MATHCrossRef
Zurück zum Zitat Karlsson RI (1980) Studies of skin friction in turbulent boundary layers on smooth and rough walls. Ph.D. thesis, Chalmers University of Technology, Göteborg, Sweden Karlsson RI (1980) Studies of skin friction in turbulent boundary layers on smooth and rough walls. Ph.D. thesis, Chalmers University of Technology, Göteborg, Sweden
Zurück zum Zitat Khujadze G, Oberlack M (2004) DNS and scaling laws from new symmetry groups of ZPG turbulent boundary layer flow. Theor Comput Fluid Dyn 18:391–411MATHCrossRef Khujadze G, Oberlack M (2004) DNS and scaling laws from new symmetry groups of ZPG turbulent boundary layer flow. Theor Comput Fluid Dyn 18:391–411MATHCrossRef
Zurück zum Zitat Kim J, Moin P, Moser RD (1987) Turbulence statistics in fully developed channel flow at low Reynolds number. J Fluid Mech 177:133–166MATHCrossRef Kim J, Moin P, Moser RD (1987) Turbulence statistics in fully developed channel flow at low Reynolds number. J Fluid Mech 177:133–166MATHCrossRef
Zurück zum Zitat Klewicki JC (2010) Reynolds number dependence, scaling, and dynamics of turbulent boundary layers. J Fluid Eng 132:094001CrossRef Klewicki JC (2010) Reynolds number dependence, scaling, and dynamics of turbulent boundary layers. J Fluid Eng 132:094001CrossRef
Zurück zum Zitat Klewicki JC, Falco R (1990) On accurately measuring statistics associated with small-scale structure in turbulent boundary layers using hot-wire probes. J Fluid Mech 219:119–142CrossRef Klewicki JC, Falco R (1990) On accurately measuring statistics associated with small-scale structure in turbulent boundary layers using hot-wire probes. J Fluid Mech 219:119–142CrossRef
Zurück zum Zitat Lee JH, Sung HJ (2011) Direct numerical simulation of a turbulent boundary layer up to Re θ = 2500. Int J Heat Fluid Flow 32:1–10CrossRef Lee JH, Sung HJ (2011) Direct numerical simulation of a turbulent boundary layer up to Re θ  = 2500. Int J Heat Fluid Flow 32:1–10CrossRef
Zurück zum Zitat Lenaers P, Li Q, Brethouwer G, Schlatter P, Örlü R (2012) Rare backflow and extreme wall-normal velocity fluctuations in near-wall turbulence. Phys Fluids 24:035110CrossRef Lenaers P, Li Q, Brethouwer G, Schlatter P, Örlü R (2012) Rare backflow and extreme wall-normal velocity fluctuations in near-wall turbulence. Phys Fluids 24:035110CrossRef
Zurück zum Zitat Lindgren B, Johansson AV (2002) Evaluation of the flow quality in the MTL wind-tunnel. Technical report, Royal Institute of Technology, Stockholm, Sweden Lindgren B, Johansson AV (2002) Evaluation of the flow quality in the MTL wind-tunnel. Technical report, Royal Institute of Technology, Stockholm, Sweden
Zurück zum Zitat Marusic I, McKeon BJ, Monkewitz PA, Nagib HM, Smits AJ, Sreenivasan KR (2010b) Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys Fluids 22:065103CrossRef Marusic I, McKeon BJ, Monkewitz PA, Nagib HM, Smits AJ, Sreenivasan KR (2010b) Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys Fluids 22:065103CrossRef
Zurück zum Zitat Mathis R, Hutchins N, Marusic I (2009) Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J Fluid Mech 628:311–337MATHCrossRef Mathis R, Hutchins N, Marusic I (2009) Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J Fluid Mech 628:311–337MATHCrossRef
Zurück zum Zitat Mathis R, Marusic I, Hutchins N, Sreenivasan K (2011) The relationship between the velocity skewness and the amplitude modulation of the small scale by the large scale in turbulent boundary layers. Phys Fluids 23:121702CrossRef Mathis R, Marusic I, Hutchins N, Sreenivasan K (2011) The relationship between the velocity skewness and the amplitude modulation of the small scale by the large scale in turbulent boundary layers. Phys Fluids 23:121702CrossRef
Zurück zum Zitat Metzger M, Klewicki JC (2001) A comparative study of near-wall turbulence in high and low Reynolds number boundary layers. Phys Fluids 13:692–701CrossRef Metzger M, Klewicki JC (2001) A comparative study of near-wall turbulence in high and low Reynolds number boundary layers. Phys Fluids 13:692–701CrossRef
Zurück zum Zitat Monkewitz PA, Chauhan KA, Nagib HM (2008) Comparison of mean flow similarity laws in zero pressure gradient turbulent boundary layers. Phys Fluids 20:105102CrossRef Monkewitz PA, Chauhan KA, Nagib HM (2008) Comparison of mean flow similarity laws in zero pressure gradient turbulent boundary layers. Phys Fluids 20:105102CrossRef
Zurück zum Zitat Monkewitz PA, Duncan RD, Nagib HM (2010) Correcting hot-wire measurements of stream-wise turbulence intensity in boundary layers. Phys Fluids 22:091701CrossRef Monkewitz PA, Duncan RD, Nagib HM (2010) Correcting hot-wire measurements of stream-wise turbulence intensity in boundary layers. Phys Fluids 22:091701CrossRef
Zurück zum Zitat Monty JP, Chong MS (2009) Turbulent channel flow: comparison of streamwise velocity data from experiments and direct numerical simulation. J Fluid Mech 633:461–474MATHCrossRef Monty JP, Chong MS (2009) Turbulent channel flow: comparison of streamwise velocity data from experiments and direct numerical simulation. J Fluid Mech 633:461–474MATHCrossRef
Zurück zum Zitat Nagib HM, Christophorou C, Rüedi JD, Monkewitz PA, Österlund JM (2004) Can we ever rely on results from wall-bounded turbulent flows without direct measurements of wall shear stress? AIAA 2004-2392 Nagib HM, Christophorou C, Rüedi JD, Monkewitz PA, Österlund JM (2004) Can we ever rely on results from wall-bounded turbulent flows without direct measurements of wall shear stress? AIAA 2004-2392
Zurück zum Zitat Nagib HM, Chauhan KA, Monkewitz PA (2007) Approach to an asymptotic state for zero pressure gradient turbulent boundary layers. Philos Trans R Soc 365:755–770MATHCrossRef Nagib HM, Chauhan KA, Monkewitz PA (2007) Approach to an asymptotic state for zero pressure gradient turbulent boundary layers. Philos Trans R Soc 365:755–770MATHCrossRef
Zurück zum Zitat Örlü R (2009) Experimental studies in jet flows and zero pressure-gradient turbulent boundary layers. Ph.D. thesis, Royal Institute of Technology, Stockholm, Sweden Örlü R (2009) Experimental studies in jet flows and zero pressure-gradient turbulent boundary layers. Ph.D. thesis, Royal Institute of Technology, Stockholm, Sweden
Zurück zum Zitat Örlü R, Alfredsson PH (2010) On spatial resolution issues related to time-averaged quantities using hot-wire anemometry. Exp Fluids 49:101–110CrossRef Örlü R, Alfredsson PH (2010) On spatial resolution issues related to time-averaged quantities using hot-wire anemometry. Exp Fluids 49:101–110CrossRef
Zurück zum Zitat Örlü R, Alfredsson PH (2012) Comment on the scaling of the near-wall streamwise variance peak in turbulent pipe flows. Exp Fluids 54:1431CrossRef Örlü R, Alfredsson PH (2012) Comment on the scaling of the near-wall streamwise variance peak in turbulent pipe flows. Exp Fluids 54:1431CrossRef
Zurück zum Zitat Örlü R, Schlatter P (2011) On the fluctuating wall shear stress in zero pressure-gradient turbulent boundary layer flows. Phys Fluids 23:021704CrossRef Örlü R, Schlatter P (2011) On the fluctuating wall shear stress in zero pressure-gradient turbulent boundary layer flows. Phys Fluids 23:021704CrossRef
Zurück zum Zitat Örlü R, Fransson JHM, Alfredsson PH (2010) On near wall measurements of wall bounded flows–the necessity of an accurate determination of the wall position. Prog Aerosp Sci 46:353–387CrossRef Örlü R, Fransson JHM, Alfredsson PH (2010) On near wall measurements of wall bounded flows–the necessity of an accurate determination of the wall position. Prog Aerosp Sci 46:353–387CrossRef
Zurück zum Zitat Osaka H, Kameda T, Mochizuki S (1998) Re-examination of the Reynolds-number-effect on the mean flow quantities in a smooth wall turbulent boundary layer. JSME Int J Ser B 41:123–129CrossRef Osaka H, Kameda T, Mochizuki S (1998) Re-examination of the Reynolds-number-effect on the mean flow quantities in a smooth wall turbulent boundary layer. JSME Int J Ser B 41:123–129CrossRef
Zurück zum Zitat Österlund JM (1999) Experimental studies of zero pressure-gradient turbulent boundary layer flow. Ph.D. thesis, Royal Institute of Technology, Stockholm, Sweden Österlund JM (1999) Experimental studies of zero pressure-gradient turbulent boundary layer flow. Ph.D. thesis, Royal Institute of Technology, Stockholm, Sweden
Zurück zum Zitat Österlund JM, Johansson AV, Nagib HM, Hites MH (2000) A note on the overlap region in turbulent boundary layers. Phys Fluids 12:1–4MATHCrossRef Österlund JM, Johansson AV, Nagib HM, Hites MH (2000) A note on the overlap region in turbulent boundary layers. Phys Fluids 12:1–4MATHCrossRef
Zurück zum Zitat Perry AE, Marusic I, Jones MB (2002) On the streamwise evolution of turbulent boundary layers in arbitrary pressure gradients. J Fluid Mech 461:61–91MathSciNetMATHCrossRef Perry AE, Marusic I, Jones MB (2002) On the streamwise evolution of turbulent boundary layers in arbitrary pressure gradients. J Fluid Mech 461:61–91MathSciNetMATHCrossRef
Zurück zum Zitat Purtell L, Klebanoff PS, Buckley F (1981) Turbulent boundary layer at low Reynolds number. Phys Fluids 25:802–811CrossRef Purtell L, Klebanoff PS, Buckley F (1981) Turbulent boundary layer at low Reynolds number. Phys Fluids 25:802–811CrossRef
Zurück zum Zitat Schlatter P, Örlü R (2010a) Assessment of direct numerical simulation data of turbulent boundary layers. J Fluid Mech 659:116–126MATHCrossRef Schlatter P, Örlü R (2010a) Assessment of direct numerical simulation data of turbulent boundary layers. J Fluid Mech 659:116–126MATHCrossRef
Zurück zum Zitat Schlatter P, Örlü R (2010b) Quantifying the interaction between large and small scales in wall-bounded turbulent flows: a note of caution. Phys Fluids 22:051704CrossRef Schlatter P, Örlü R (2010b) Quantifying the interaction between large and small scales in wall-bounded turbulent flows: a note of caution. Phys Fluids 22:051704CrossRef
Zurück zum Zitat Schlatter P, Örlü R (2012) Turbulent boundary layers at moderate Reynolds numbers: inflow length and tripping effects. J Fluid Mech 710:5–34CrossRef Schlatter P, Örlü R (2012) Turbulent boundary layers at moderate Reynolds numbers: inflow length and tripping effects. J Fluid Mech 710:5–34CrossRef
Zurück zum Zitat Schlatter P, Örlü R, Li Q, Brethouwer G, Fransson JHM, Johansson AV, Alfredsson PH, Henningson DS (2009) Turbulent boundary layers up to Re θ = 2500 studied through simulation and experiment. Phys Fluids 21:051702CrossRef Schlatter P, Örlü R, Li Q, Brethouwer G, Fransson JHM, Johansson AV, Alfredsson PH, Henningson DS (2009) Turbulent boundary layers up to Re θ  = 2500 studied through simulation and experiment. Phys Fluids 21:051702CrossRef
Zurück zum Zitat Schlatter P, Li Q, Brethouwer G, Johansson AV, Henningson DS (2010) Simulations of spatially evolving turbulent boundary layers up to Re θ =4300. Int J Heat Fluid Flow 31:251–261CrossRef Schlatter P, Li Q, Brethouwer G, Johansson AV, Henningson DS (2010) Simulations of spatially evolving turbulent boundary layers up to Re θ =4300. Int J Heat Fluid Flow 31:251–261CrossRef
Zurück zum Zitat Segalini A, Örlü R, Schlatter P, Alfredsson PH, Rüedi JD, Talamelli A (2011) A method to estimate turbulence intensity and transverse Taylor microscale in turbulent flows from spatially averaged hot-wire data. Exp Fluids 51:693–700CrossRef Segalini A, Örlü R, Schlatter P, Alfredsson PH, Rüedi JD, Talamelli A (2011) A method to estimate turbulence intensity and transverse Taylor microscale in turbulent flows from spatially averaged hot-wire data. Exp Fluids 51:693–700CrossRef
Zurück zum Zitat Segalini A, Örlü R, Alfredsson PH (2013) Uncertainty analysis of the von Kármán constant. Exp Fluids 54:1460CrossRef Segalini A, Örlü R, Alfredsson PH (2013) Uncertainty analysis of the von Kármán constant. Exp Fluids 54:1460CrossRef
Zurück zum Zitat Smits AJ, Matheson N, Joubert PN (1983) Low-Reynolds-number turbulent boundary layers in zero and favorable pressure gradients. J Ship Res 27:147–157 Smits AJ, Matheson N, Joubert PN (1983) Low-Reynolds-number turbulent boundary layers in zero and favorable pressure gradients. J Ship Res 27:147–157
Zurück zum Zitat Smits AJ, McKeon BJ, Marusic I (2011a) High–Reynolds number wall turbulence. Annu Rev Fluid Mech 43:353–375CrossRef Smits AJ, McKeon BJ, Marusic I (2011a) High–Reynolds number wall turbulence. Annu Rev Fluid Mech 43:353–375CrossRef
Zurück zum Zitat Smits AJ, Monty JP, Hultmark M, Bailey SCC, Hutchins N, Marusic I (2011b) Spatial resolution correction for wall-bounded turbulence measurements. J Fluid Mech 676:41–53MATHCrossRef Smits AJ, Monty JP, Hultmark M, Bailey SCC, Hutchins N, Marusic I (2011b) Spatial resolution correction for wall-bounded turbulence measurements. J Fluid Mech 676:41–53MATHCrossRef
Zurück zum Zitat Spalart PR (1988) Direct simulation of a turbulent boundary layer up to R θ = 1410. J Fluid Mech 187:61–98MATHCrossRef Spalart PR (1988) Direct simulation of a turbulent boundary layer up to R θ  = 1410. J Fluid Mech 187:61–98MATHCrossRef
Zurück zum Zitat Talamelli A, Segalini A, Örlü R, Schlatter P, Alfredsson PH (2013) Correcting hot-wire spatial resolution effects in third- and fourth-order velocity moments in wall-bounded turbulence. Exp Fluids 54:1496CrossRef Talamelli A, Segalini A, Örlü R, Schlatter P, Alfredsson PH (2013) Correcting hot-wire spatial resolution effects in third- and fourth-order velocity moments in wall-bounded turbulence. Exp Fluids 54:1496CrossRef
Zurück zum Zitat van der Hegge Zijnen B (1924) Measurements of the velocity distribution in the boundary layer along a plane surface. Ph.D. thesis, Delft University of Technology, The Netherlands van der Hegge Zijnen B (1924) Measurements of the velocity distribution in the boundary layer along a plane surface. Ph.D. thesis, Delft University of Technology, The Netherlands
Zurück zum Zitat Wallace JM (2012) Highlights from 50 years of turbulent boundary layer research. J Turbulence 13(N53) Wallace JM (2012) Highlights from 50 years of turbulent boundary layer research. J Turbulence 13(N53)
Zurück zum Zitat Wu X, Moin P (2010) Transitional and turbulent boundary layer with heat transfer. Phys Fluids 22:085105CrossRef Wu X, Moin P (2010) Transitional and turbulent boundary layer with heat transfer. Phys Fluids 22:085105CrossRef
Metadaten
Titel
Comparison of experiments and simulations for zero pressure gradient turbulent boundary layers at moderate Reynolds numbers
verfasst von
Ramis Örlü
Philipp Schlatter
Publikationsdatum
01.06.2013
Verlag
Springer Berlin Heidelberg
Erschienen in
Experiments in Fluids / Ausgabe 6/2013
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-013-1547-x

Weitere Artikel der Ausgabe 6/2013

Experiments in Fluids 6/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.