Skip to main content
Erschienen in: Experiments in Fluids 1/2011

01.07.2011 | Research Article

The viscous sublayer revisited–exploiting self-similarity to determine the wall position and friction velocity

verfasst von: P. Henrik Alfredsson, Ramis Örlü, Philipp Schlatter

Erschienen in: Experiments in Fluids | Ausgabe 1/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In experiments using hot wires near the wall, it is well known that wall interference effects between the hot wire and the wall give rise to errors, and mean velocity data from the viscous sublayer can usually not be used to determine the wall position, nor the friction velocity from the linear velocity distribution. Here, we introduce a new method that takes advantage of the similarity of the probability density distributions (PDF) or rather the cumulative distribution functions (CDF) in the near-wall region. By using the velocity data in the CDF in a novel way, it is possible to circumvent the problem associated with heat transfer to the wall and to accurately determine both the wall position and the friction velocity. Prior to its exploitation, the self-similarity of the distribution functions of the streamwise velocity fluctuations within the viscous sublayer is established, and it is shown that they can accurately be described by a lognormal distribution.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
The situation for pipe flows is, due to the lack of both resolved experimental and numerical data spanning a sufficient Reynolds number range, unclear (Hultmark et al. 2010), although the recent pipe flow DNS by Wu and Moin (2009) indicates an increase in the limiting values with increasing Reynolds number.
 
2
Equivalently, the lognormal distribution parameters, μ and σ, can be obtained through the mean and variance of the PDF, viz. \(\mu=\ln(\rm{mean}^2/\sqrt{\rm{var}+\rm{mean}^2})\) and \(\sigma=\sqrt{\ln(\rm{var}/\rm{mean}^2+1)}\).
 
Literatur
Zurück zum Zitat Abe H, Kawamura H, Choi H (2004) Very large-scale structures and their effects on the wall shear-stress fluctuations in a turbulent channel flow up to Re τ = 640. J Fluid Eng 126:835–846CrossRef Abe H, Kawamura H, Choi H (2004) Very large-scale structures and their effects on the wall shear-stress fluctuations in a turbulent channel flow up to Re τ = 640. J Fluid Eng 126:835–846CrossRef
Zurück zum Zitat Alfredsson PH, Johansson AV, Haritonidis J, Eckelmann H (1988) The fluctuating wall-shear stress and the velocity field in the viscous sublayer. Phys Fluids 31:1026–1033CrossRef Alfredsson PH, Johansson AV, Haritonidis J, Eckelmann H (1988) The fluctuating wall-shear stress and the velocity field in the viscous sublayer. Phys Fluids 31:1026–1033CrossRef
Zurück zum Zitat Alfredsson PH, Örlü R (2010) The diagnostic plot–a litmus test for wall bounded turbulence data. Eur J Mech B-Fluid 29:403–406MATHCrossRef Alfredsson PH, Örlü R (2010) The diagnostic plot–a litmus test for wall bounded turbulence data. Eur J Mech B-Fluid 29:403–406MATHCrossRef
Zurück zum Zitat Barndorff-Nielsen O (1979) Models for non-Gaussian variation, with applications to turbulence. Proc R Soc London Ser A 368:501–520MATHCrossRefMathSciNet Barndorff-Nielsen O (1979) Models for non-Gaussian variation, with applications to turbulence. Proc R Soc London Ser A 368:501–520MATHCrossRefMathSciNet
Zurück zum Zitat Bhatia J, Durst F, Jovanovic J (1982) Corrections of hot-wire anemometer measurements near walls. J Fluid Mech 123:411–431CrossRef Bhatia J, Durst F, Jovanovic J (1982) Corrections of hot-wire anemometer measurements near walls. J Fluid Mech 123:411–431CrossRef
Zurück zum Zitat Brücker C, Spatz J, Schröder W (2005) Feasability study of wall shear stress imaging using microstructured surfaces with flexible micropillars. Exp Fluids 39:464–474CrossRef Brücker C, Spatz J, Schröder W (2005) Feasability study of wall shear stress imaging using microstructured surfaces with flexible micropillars. Exp Fluids 39:464–474CrossRef
Zurück zum Zitat Buschmann MH, Gad-el-Hak M (2010) Kolmogorov scaling of turbulent flow in the vicinity of the wall. Phys D Nonlinear Phenom 239:1288–1295MATHCrossRef Buschmann MH, Gad-el-Hak M (2010) Kolmogorov scaling of turbulent flow in the vicinity of the wall. Phys D Nonlinear Phenom 239:1288–1295MATHCrossRef
Zurück zum Zitat Buschmann MH, Indinger T, Gad-el-Hak M (2009) Near-wall behavior of turbulent wall-bounded flows. Int J Heat Fluid Flow 30:993–1006CrossRef Buschmann MH, Indinger T, Gad-el-Hak M (2009) Near-wall behavior of turbulent wall-bounded flows. Int J Heat Fluid Flow 30:993–1006CrossRef
Zurück zum Zitat Chevalier M, Schlatter P, Lundbladh A, Henningson DS (2007) SIMSON–a pseudo-spectral solver for incompressible boundary-layer flow. Tech Rep TRITA-MEK 2007:07, Royal Institute of Technology, Stockholm, Sweden Chevalier M, Schlatter P, Lundbladh A, Henningson DS (2007) SIMSON–a pseudo-spectral solver for incompressible boundary-layer flow. Tech Rep TRITA-MEK 2007:07, Royal Institute of Technology, Stockholm, Sweden
Zurück zum Zitat Chew Y, Shi S, Khoo BC (1995) On the numerical near-wall corrections of single hot-wire measurements. Int J Heat Fluid Flow 16:471–476CrossRef Chew Y, Shi S, Khoo BC (1995) On the numerical near-wall corrections of single hot-wire measurements. Int J Heat Fluid Flow 16:471–476CrossRef
Zurück zum Zitat Durst F, Jovanovic J, Kanevce L et al (1987) Probability density distribution in turbulent wall boundary-layer flows. In: Durst F (eds) Turbulent shear flows 5. Springer, Berlin, pp 197–220 Durst F, Jovanovic J, Kanevce L et al (1987) Probability density distribution in turbulent wall boundary-layer flows. In: Durst F (eds) Turbulent shear flows 5. Springer, Berlin, pp 197–220
Zurück zum Zitat Durst F, Kikura H, Lekakis I, Jovanovic J, Ye Q (1996) Wall shear stress determination from near-wall mean velocity data in turbulent pipe and channel flows. Exp Fluids 20:417–428CrossRef Durst F, Kikura H, Lekakis I, Jovanovic J, Ye Q (1996) Wall shear stress determination from near-wall mean velocity data in turbulent pipe and channel flows. Exp Fluids 20:417–428CrossRef
Zurück zum Zitat Durst F, Zanoun ES (2002) Experimental investigation of near-wall effects on hot-wire measurements. Exp Fluids 33:210–218 Durst F, Zanoun ES (2002) Experimental investigation of near-wall effects on hot-wire measurements. Exp Fluids 33:210–218
Zurück zum Zitat Durst F, Zanoun ES, Pashtrapanska M (2001) In situ calibration of hot wires close to highly heat-conducting walls. Exp Fluids 31:103–110CrossRef Durst F, Zanoun ES, Pashtrapanska M (2001) In situ calibration of hot wires close to highly heat-conducting walls. Exp Fluids 31:103–110CrossRef
Zurück zum Zitat Eckelmann H (1974) The structure of the viscous sublayer and the adjacent wall region in a turbulent channel flow. J Fluid Mech 65:439–459CrossRef Eckelmann H (1974) The structure of the viscous sublayer and the adjacent wall region in a turbulent channel flow. J Fluid Mech 65:439–459CrossRef
Zurück zum Zitat Fischer M, Jovanovic J, Durst F (2001) Reynolds number effects in the near-wall region of turbulent channel flows. Phys Fluids 13:1755–1767CrossRef Fischer M, Jovanovic J, Durst F (2001) Reynolds number effects in the near-wall region of turbulent channel flows. Phys Fluids 13:1755–1767CrossRef
Zurück zum Zitat Große S, Schröder W (2009) High Reynolds number turbulent wind tunnel boundary layer wall-shear stress sensor. J Turbulence 10:1–12CrossRef Große S, Schröder W (2009) High Reynolds number turbulent wind tunnel boundary layer wall-shear stress sensor. J Turbulence 10:1–12CrossRef
Zurück zum Zitat Hebbar K (1980) Wall proximity corrections for hot-wire readings in turbulent flows. DISA Inf 25:15–16 Hebbar K (1980) Wall proximity corrections for hot-wire readings in turbulent flows. DISA Inf 25:15–16
Zurück zum Zitat Hultmark M, Bailey SCC, Smits AJ (2010) Scaling of near-wall turbulence in pipe flow. J Fluid Mech 649:103–113MATHCrossRef Hultmark M, Bailey SCC, Smits AJ (2010) Scaling of near-wall turbulence in pipe flow. J Fluid Mech 649:103–113MATHCrossRef
Zurück zum Zitat Khoo BC, Chew Y, Li G (1997) Effects of imperfect spatial resolution on turbulence measurements in the very near-wall viscous sublayer region. Exp Fluids 22:327–335CrossRef Khoo BC, Chew Y, Li G (1997) Effects of imperfect spatial resolution on turbulence measurements in the very near-wall viscous sublayer region. Exp Fluids 22:327–335CrossRef
Zurück zum Zitat Klewicki JC, Metzger M, Kelner E, Thurlow E (1995) Viscous sublayer flow visualizations at R θ ≅ 1500000. Phys Fluids 7:867–863CrossRef Klewicki JC, Metzger M, Kelner E, Thurlow E (1995) Viscous sublayer flow visualizations at R θ ≅ 1500000. Phys Fluids 7:867–863CrossRef
Zurück zum Zitat Landahl M, Mollo-Christensen E (1992) Turbulence and random processes in fluid mechanics, 2nd ed. Cambridge University Press, Cambridge Landahl M, Mollo-Christensen E (1992) Turbulence and random processes in fluid mechanics, 2nd ed. Cambridge University Press, Cambridge
Zurück zum Zitat Lindgren B, Johansson AV, Tsuji Y (2004) Universality of probability density distributions in the overlap region in high Reynolds number turbulent boundary layers. Phys Fluids 16:2587–2591CrossRef Lindgren B, Johansson AV, Tsuji Y (2004) Universality of probability density distributions in the overlap region in high Reynolds number turbulent boundary layers. Phys Fluids 16:2587–2591CrossRef
Zurück zum Zitat Marusic I, Heuer WDC (2007) Reynolds number invariance of the structure inclination angle in wall turbulence. Phys Rev Lett 99:114504CrossRef Marusic I, Heuer WDC (2007) Reynolds number invariance of the structure inclination angle in wall turbulence. Phys Rev Lett 99:114504CrossRef
Zurück zum Zitat Miyagi N, Kimura M, Shoji H, Saima A, Ho CM, Tung S, Tai YC (2000) Statistical analysis on wall shear stress of turbulent boundary layer in a channel flow using micro-shear stress imager. Int J Heat Fluid Flow 21:576–581CrossRef Miyagi N, Kimura M, Shoji H, Saima A, Ho CM, Tung S, Tai YC (2000) Statistical analysis on wall shear stress of turbulent boundary layer in a channel flow using micro-shear stress imager. Int J Heat Fluid Flow 21:576–581CrossRef
Zurück zum Zitat Monin AS, Yaglom AM (1971) Statistical fluid mechanics: mechanics of turbulence. vol. I. MIT Press, Cambridge Monin AS, Yaglom AM (1971) Statistical fluid mechanics: mechanics of turbulence. vol. I. MIT Press, Cambridge
Zurück zum Zitat Morrison JF, McKeon B, Jiang W, Smits AJ (2004) Scaling of the streamwise velocity component in turbulent pipe flow. J Fluid Mech 508:99–131MATHCrossRef Morrison JF, McKeon B, Jiang W, Smits AJ (2004) Scaling of the streamwise velocity component in turbulent pipe flow. J Fluid Mech 508:99–131MATHCrossRef
Zurück zum Zitat Moser RD, Kim J, Mansour N (1999) Direct numerical simulation of turbulent channel flow up to Re τ = 590. Phys Fluids 11:943–945MATHCrossRef Moser RD, Kim J, Mansour N (1999) Direct numerical simulation of turbulent channel flow up to Re τ = 590. Phys Fluids 11:943–945MATHCrossRef
Zurück zum Zitat Naqwi A, Reynolds W (1991) Measurement of turbulent wall velocity gradients using cylindrical waves of laser light. Exp Fluids 10:257–266CrossRef Naqwi A, Reynolds W (1991) Measurement of turbulent wall velocity gradients using cylindrical waves of laser light. Exp Fluids 10:257–266CrossRef
Zurück zum Zitat Obi S, Inoue K, Furukawa T, Masuda S (1996) Experimental study on the statistics of wall shear stress in turbulent channel flows. Int J Heat Fluid Flow 17:187–192CrossRef Obi S, Inoue K, Furukawa T, Masuda S (1996) Experimental study on the statistics of wall shear stress in turbulent channel flows. Int J Heat Fluid Flow 17:187–192CrossRef
Zurück zum Zitat Oka S, Kostic Z (1972) Influence of wall proximity on hot-wire velocity measurements. DISA Inf 13:29–33 Oka S, Kostic Z (1972) Influence of wall proximity on hot-wire velocity measurements. DISA Inf 13:29–33
Zurück zum Zitat Örlü R (2009) Experimental studies in jet flows and zero pressure-gradient turbulent boundary layers. PhD thesis, Royal Institute of Technology, Stockholm, Sweden Örlü R (2009) Experimental studies in jet flows and zero pressure-gradient turbulent boundary layers. PhD thesis, Royal Institute of Technology, Stockholm, Sweden
Zurück zum Zitat Örlü R, Fransson JHM, Alfredsson PH (2010) On near wall measurements of wall bounded flows—the necessity of an accurate determination of the wall position. Prog Aero Sci 46:353–387CrossRef Örlü R, Fransson JHM, Alfredsson PH (2010) On near wall measurements of wall bounded flows—the necessity of an accurate determination of the wall position. Prog Aero Sci 46:353–387CrossRef
Zurück zum Zitat Örlü R, Schlatter P (2011) On the fluctuating wall shear stress in zero pressure-gradient turbulent boundary layer flows. Phys Fluids (in press) Örlü R, Schlatter P (2011) On the fluctuating wall shear stress in zero pressure-gradient turbulent boundary layer flows. Phys Fluids (in press)
Zurück zum Zitat Pailhas G, Barricau P, Touvet Y, Perret L (2009) Friction measurement in zero and adverse pressure-gradient boundary layer using oil droplet interferometric method. Exp Fluids 47:195–207CrossRef Pailhas G, Barricau P, Touvet Y, Perret L (2009) Friction measurement in zero and adverse pressure-gradient boundary layer using oil droplet interferometric method. Exp Fluids 47:195–207CrossRef
Zurück zum Zitat Rao K, Narasimha R, Narayanan M (1971) The ‘bursting’ phenomenon in a turbulent boundary layer. J Fluid Mech 48:339–352CrossRef Rao K, Narasimha R, Narayanan M (1971) The ‘bursting’ phenomenon in a turbulent boundary layer. J Fluid Mech 48:339–352CrossRef
Zurück zum Zitat Rüedi J-D, Duncan R, Imayama S, Chauhan K (2009) Accurate and independent measurements of wall-shear stress in turbulent flows. Bull Am Phys Soc 54:20 Rüedi J-D, Duncan R, Imayama S, Chauhan K (2009) Accurate and independent measurements of wall-shear stress in turbulent flows. Bull Am Phys Soc 54:20
Zurück zum Zitat Schlatter P, Örlü R (2010) Assessment of direct numerical simulation data of turbulent boundary layers. J Fluid Mech 659:116–126MATHCrossRef Schlatter P, Örlü R (2010) Assessment of direct numerical simulation data of turbulent boundary layers. J Fluid Mech 659:116–126MATHCrossRef
Zurück zum Zitat Schlatter P, Örlü R, Li Q, Brethouwer G, Fransson JHM, Johansson AV, Alfredsson PH, Henningson DS (2009) Turbulent boundary layers up to Re θ = 2500 studied through simulation and experiment. Phys Fluids 21:051702CrossRef Schlatter P, Örlü R, Li Q, Brethouwer G, Fransson JHM, Johansson AV, Alfredsson PH, Henningson DS (2009) Turbulent boundary layers up to Re θ = 2500 studied through simulation and experiment. Phys Fluids 21:051702CrossRef
Zurück zum Zitat Smith C, Metzler S (1983) The characteristics of low-speed streaks in the near-wall region of a turbulent boundary layer. J Fluid Mech 129:27–54CrossRef Smith C, Metzler S (1983) The characteristics of low-speed streaks in the near-wall region of a turbulent boundary layer. J Fluid Mech 129:27–54CrossRef
Zurück zum Zitat Tsuji Y, Nakamura I (1999) Probability density function in the log-law region of low Reynolds number turbulent boundary layer. Phys Fluids 11:647–658MATHCrossRefMathSciNet Tsuji Y, Nakamura I (1999) Probability density function in the log-law region of low Reynolds number turbulent boundary layer. Phys Fluids 11:647–658MATHCrossRefMathSciNet
Zurück zum Zitat Wenzhong L, Khoo BC, Diao X (2006) The thermal characteristics of a hot wire in a near-wall flow. Int J Heat Mass Transfer 49:905–918CrossRef Wenzhong L, Khoo BC, Diao X (2006) The thermal characteristics of a hot wire in a near-wall flow. Int J Heat Mass Transfer 49:905–918CrossRef
Zurück zum Zitat Wu X, Moin P (2006) A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow. J Fluid Mech 608:81–112 Wu X, Moin P (2006) A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow. J Fluid Mech 608:81–112
Metadaten
Titel
The viscous sublayer revisited–exploiting self-similarity to determine the wall position and friction velocity
verfasst von
P. Henrik Alfredsson
Ramis Örlü
Philipp Schlatter
Publikationsdatum
01.07.2011
Verlag
Springer-Verlag
Erschienen in
Experiments in Fluids / Ausgabe 1/2011
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-011-1048-8

Weitere Artikel der Ausgabe 1/2011

Experiments in Fluids 1/2011 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.