Skip to main content
Erschienen in: Experiments in Fluids 2/2013

01.02.2013 | Research Article

Uncertainty analysis of the von Kármán constant

verfasst von: Antonio Segalini, Ramis Örlü, P. Henrik Alfredsson

Erschienen in: Experiments in Fluids | Ausgabe 2/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In 1930, von Kármán presented an expression for the mean velocity distribution in channel and pipe flows that can be transformed into the today well-known logarithmic velocity distribution. At the same time, he also formulated the logarithmic skin friction law and obtained a value of 0.38 for the constant named after him through pipe flow pressure drop measurements. Different approaches to determine the von Kármán constant from mean velocity measurements have been proposed over the last decades, sometimes giving different results even when employed on the same data, partly because the range over which the logarithmic law should be fitted is also under debate. Up to today, the research community has not been able to converge toward a single value and the favored values range between 0.36 and 0.44 for different research groups and canonical flow cases. The present paper discusses some pitfalls and error sources of commonly employed estimation methods and shows, through the use of boundary layer data from Österlund (1999) that von Kármán’s original suggestion of 0.38 seems still to be valid for zero pressure gradient turbulent boundary layer flows. More importantly, it is shown that the uncertainty in the determination of the von Kármán constant can never be less than the uncertainty in the friction velocity, thereby yielding a realistic uncertainty for the most debated constant in wall turbulence.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
It is interesting in this respect, to note, that while Schlichting (1965) and George and Castillo (1997), among others, refer to Stanton and Pannell (1914), for the origin of the defect law, Panton (2005) correctly remarks: “This is erroneous. The Stanton reference contains neither velocity profiles nor mention of the defect law.” von Kármán (1930a), on the other hand, refers to Stanton (1911) for the origin of the defect law, however, remarks in a later publication (loose translation from von Kármán 1932): “Herr Prandtl called my attention to the fact, that, although T. E. Stanton used the relation […] to depict the velocity distribution in individual cases, he was not aware of its general validity. In point of fact, this was first pronounced in a work by W. Fritsch.”
 
2
Albeit this derivation based on matched asymptotics is usually attributed to Millikan (1938), von Kármán (1934) actually states that in an overlap region, where both inner and outer descriptions are valid, the velocity distribution in both scales must be logarithmic, thereby actually superseding Millikan’s paper.
 
3
As pointed out by Bodenschatz and Eckert (2011), Prandtl had derived the logarithmic velocity profile few years earlier but “dismissed [it] because of [its] unpleasant behavior at the centerline of the channel” (Bodenschatz and Eckert 2011, pp 56–57). In his Tokyo lecture in 1929, he dismissed it as well due to its unphysical result at the wall (Prandtl 1930).
 
4
Recalling Philippe Spalart’s outcry “If κ is different in these two flows, I’ll quit!” (Spalart 2006) triggered by recent experimental results in pipe and flat plate boundary layer flows which exhibit quite different constants, it appears that this view is not yet generally accepted.
 
5
A fact that was already pointed out by von Kármán (1934), who notes “For the velocity distribution near to the wall κ = 0.40 checks the experiments better, for the velocity distribution in greater distance from the wall κ = 0.38 fits better,” and which is related to the overshoot of the mean velocity profile over the logarithmic law in the buffer region (Zanoun et al. 2003; Österlund et al. 2000).
 
6
A method that goes back to the first days of the logarithmic law (see e.g. Nikuradse 1930).
 
7
The same or inverse quantity is also frequently denoted as the “diagnostic function” or the “Kármán measure.”
 
8
Other alternative methods can be proposed that are similar to the κB scatter method. One example is the determination of κ and B as a two-stage process by means of Eq. (5).
 
9
Henceforth, the + superscript, used to indicate viscous scaling, will be omitted in this section for the sake of brevity.
 
10
More accurate methods exist but every approach will lead to a different final formula. The second-order central scheme has been chosen because it is commonly applied to evaluate such data.
 
Literatur
Zurück zum Zitat Alfredsson PH, Imayama S, Lingwood RJ, Örlü R, Segalini A (2012) Turbulent boundary layers over flat plates and rotating disks-the legacy of von Kármán: a Stockholm perspective. Eur J Mech B Fluid. doi:10.1016/j.euromechflu.2013.01.001 Alfredsson PH, Imayama S, Lingwood RJ, Örlü R, Segalini A (2012) Turbulent boundary layers over flat plates and rotating disks-the legacy of von Kármán: a Stockholm perspective. Eur J Mech B Fluid. doi:10.​1016/​j.​euromechflu.​2013.​01.​001
Zurück zum Zitat Alfredsson PH, Örlü R, Schlatter P (2011) The viscous sublayer revisited–exploiting self-similarity to determine the wall position and friction velocity. Eur J Mech B-Fluid 51:271–280 Alfredsson PH, Örlü R, Schlatter P (2011) The viscous sublayer revisited–exploiting self-similarity to determine the wall position and friction velocity. Eur J Mech B-Fluid 51:271–280
Zurück zum Zitat Andreas E, Claffey K, Jordan R, Fairall C (2006) Evaluations of the von Kármán constant in the atmospheric surface layer. J Fluid Mech 559:117–149MATHCrossRef Andreas E, Claffey K, Jordan R, Fairall C (2006) Evaluations of the von Kármán constant in the atmospheric surface layer. J Fluid Mech 559:117–149MATHCrossRef
Zurück zum Zitat Bodenschatz E, Eckert M (2011) Prandtl and the Göttingen school. In: Davidson PA (eds) A voyage through turbulence. Cambridge University Press, Cambridge, pp 40–100 Bodenschatz E, Eckert M (2011) Prandtl and the Göttingen school. In: Davidson PA (eds) A voyage through turbulence. Cambridge University Press, Cambridge, pp 40–100
Zurück zum Zitat Buschmann MH, Gad-el-Hak M (2003) Debate concerning the mean-velocity profile of a turbulent boundary layer. AIAA J 41:565–572CrossRef Buschmann MH, Gad-el-Hak M (2003) Debate concerning the mean-velocity profile of a turbulent boundary layer. AIAA J 41:565–572CrossRef
Zurück zum Zitat Buschmann MH, Gad-el-Hak M (2006) Recent developments in scaling of wall-bounded flows. Prog Aerosp Sci 42:419–467CrossRef Buschmann MH, Gad-el-Hak M (2006) Recent developments in scaling of wall-bounded flows. Prog Aerosp Sci 42:419–467CrossRef
Zurück zum Zitat Chauhan KA, Monkewitz PA, Nagib HM (2009) Criteria for assessing experiments in zero pressure gradient boundary layers. Fluid Dyn Res 41(021404) Chauhan KA, Monkewitz PA, Nagib HM (2009) Criteria for assessing experiments in zero pressure gradient boundary layers. Fluid Dyn Res 41(021404)
Zurück zum Zitat Coles DE (1968) In: Coles DE, Hirst EA (eds) The young person’s guide to the data. AFOSR-IFP-Stanford Conf. on computation of turbulent boundary layers. pp 1–45. doi:10.1007/s00348-009-0698-2 Coles DE (1968) In: Coles DE, Hirst EA (eds) The young person’s guide to the data. AFOSR-IFP-Stanford Conf. on computation of turbulent boundary layers. pp 1–45. doi:10.​1007/​s00348-009-0698-2
Zurück zum Zitat Davidson PA, Kaneda Y, Moffatt K, Sreenivasan K (2011) A voyage through turbulence. Cambridge University Press, CambridgeMATHCrossRef Davidson PA, Kaneda Y, Moffatt K, Sreenivasan K (2011) A voyage through turbulence. Cambridge University Press, CambridgeMATHCrossRef
Zurück zum Zitat Eckert M (2006) The dawn of fluid dynamics: a discipline between science and technology. Wiley-VCH, Weinheim Eckert M (2006) The dawn of fluid dynamics: a discipline between science and technology. Wiley-VCH, Weinheim
Zurück zum Zitat George WK (2007) Is there a universal log law for turbulent wall-bounded flows?. Philos Roy Soc Lond A Mat 365:789–806MATHCrossRef George WK (2007) Is there a universal log law for turbulent wall-bounded flows?. Philos Roy Soc Lond A Mat 365:789–806MATHCrossRef
Zurück zum Zitat George WK, Castillo L (1997) Zero-pressure-gradient turbulent boundary layer. Appl Mech Rev 50:689–730CrossRef George WK, Castillo L (1997) Zero-pressure-gradient turbulent boundary layer. Appl Mech Rev 50:689–730CrossRef
Zurück zum Zitat Grosse S, Schröder W (2008) Mean wall-shear stress measurements using the micro-pillar shear-stress sensor, MPS3. Meas Sci Tech 19(015403) Grosse S, Schröder W (2008) Mean wall-shear stress measurements using the micro-pillar shear-stress sensor, MPS3. Meas Sci Tech 19(015403)
Zurück zum Zitat Kundu PK, Cohen IC (2004) Fluid mechanics, 3rd edn. Elsevier/Academic Press, New York Kundu PK, Cohen IC (2004) Fluid mechanics, 3rd edn. Elsevier/Academic Press, New York
Zurück zum Zitat Marusic I, McKeon BJ, Monkewitz PA, Nagib HM, Smits AJ, Sreenivasan KR (2010) Wall-bounded turbulent flows at high Reynolds numbers: Recent advances and key issues. Phys Fluids 22:065103 Marusic I, McKeon BJ, Monkewitz PA, Nagib HM, Smits AJ, Sreenivasan KR (2010) Wall-bounded turbulent flows at high Reynolds numbers: Recent advances and key issues. Phys Fluids 22:065103
Zurück zum Zitat McKeon BJ, Li JD, Jiang W, Morrison JF, Smits AJ (2004) Further observations on the mean velocity distribution in fully developed pipe flow. J Fluid Mech 501:135–147MATHCrossRef McKeon BJ, Li JD, Jiang W, Morrison JF, Smits AJ (2004) Further observations on the mean velocity distribution in fully developed pipe flow. J Fluid Mech 501:135–147MATHCrossRef
Zurück zum Zitat Millikan CB (1938) A critical discussion of turbulent flows in channels and circular tubes. In: Proceedings 5th international congress on applied mechanics, Massachusetts institute of technology, Cambridge, MA, pp 386–392 Millikan CB (1938) A critical discussion of turbulent flows in channels and circular tubes. In: Proceedings 5th international congress on applied mechanics, Massachusetts institute of technology, Cambridge, MA, pp 386–392
Zurück zum Zitat Monty JP (2005) Developments in smooth wall turbulent duct flows. PhD thesis University of Melbourne, Australia Monty JP (2005) Developments in smooth wall turbulent duct flows. PhD thesis University of Melbourne, Australia
Zurück zum Zitat Nagib HM, Chauhan KA (2008) Variations of von Kármán coefficient in canonical flows. Phys Fluids 20:101518 Nagib HM, Chauhan KA (2008) Variations of von Kármán coefficient in canonical flows. Phys Fluids 20:101518
Zurück zum Zitat Nagib HM, Chauhan KA, Monkewitz PA (2007) Approach to an asymptotic state for zero pressure gradient turbulent boundary layers. Philos Roy Soc Lond A Mat 365:755–770MATHCrossRef Nagib HM, Chauhan KA, Monkewitz PA (2007) Approach to an asymptotic state for zero pressure gradient turbulent boundary layers. Philos Roy Soc Lond A Mat 365:755–770MATHCrossRef
Zurück zum Zitat Nikuradse J (1930) Widerstandsgesetz und Geschwindigkeitsverteilung von turbulenten Wasserströmungen in glatten und rauhen Rohren. In: Proceedings of 3rd international congress on applied mechanics, Stockholm, Sweden, pp. 239–248 Nikuradse J (1930) Widerstandsgesetz und Geschwindigkeitsverteilung von turbulenten Wasserströmungen in glatten und rauhen Rohren. In: Proceedings of 3rd international congress on applied mechanics, Stockholm, Sweden, pp. 239–248
Zurück zum Zitat Oliver T, Moser RD (2012) Accounting for uncertainty in the analysis of overlap layer mean velocity models. Phys Fluids 24:075108 Oliver T, Moser RD (2012) Accounting for uncertainty in the analysis of overlap layer mean velocity models. Phys Fluids 24:075108
Zurück zum Zitat Örlü R, Fransson JHM, Alfredsson PH (2010) On near wall measurements of wall bounded flows—the necessity of an accurate determination of the wall position. Prog Aerosp Sci 46:353–387CrossRef Örlü R, Fransson JHM, Alfredsson PH (2010) On near wall measurements of wall bounded flows—the necessity of an accurate determination of the wall position. Prog Aerosp Sci 46:353–387CrossRef
Zurück zum Zitat Österlund JM (1999) Experimental studies of zero pressure-gradient turbulent boundary layer flow. PhD thesis, Royal Institute of Technology, Stockholm, Sweden Österlund JM (1999) Experimental studies of zero pressure-gradient turbulent boundary layer flow. PhD thesis, Royal Institute of Technology, Stockholm, Sweden
Zurück zum Zitat Österlund JM, Johansson AV, Nagib HM, Hites MH (2000) A note on the overlap region in turbulent boundary layers. Phys Fluids 12:1–4MATHCrossRef Österlund JM, Johansson AV, Nagib HM, Hites MH (2000) A note on the overlap region in turbulent boundary layers. Phys Fluids 12:1–4MATHCrossRef
Zurück zum Zitat Pailhas G, Barricau P, Touvet Y, Perret L (2009) Friction measurement in zero and adverse pressure gradient boundary layer using oil droplet interferometric method. Exp Fluids 47(2):195–207CrossRef Pailhas G, Barricau P, Touvet Y, Perret L (2009) Friction measurement in zero and adverse pressure gradient boundary layer using oil droplet interferometric method. Exp Fluids 47(2):195–207CrossRef
Zurück zum Zitat Panton RL (2005) Review of wall turbulence as described by composite expansions. Appl Mech Rev 58:1–36CrossRef Panton RL (2005) Review of wall turbulence as described by composite expansions. Appl Mech Rev 58:1–36CrossRef
Zurück zum Zitat Prandtl L (1925) Bericht über Untersuchungen zur ausgebildeten Turbulenz. ZAMM 5:136–139MATH Prandtl L (1925) Bericht über Untersuchungen zur ausgebildeten Turbulenz. ZAMM 5:136–139MATH
Zurück zum Zitat Prandtl L (1930) Vortrag in Tokyo. J Aeronaut Res Inst 5(65):12–24 Prandtl L (1930) Vortrag in Tokyo. J Aeronaut Res Inst 5(65):12–24
Zurück zum Zitat Prandtl L (1932) Zur turbulenten Strömung in Rohren und längs Platten. Ergebnisse der Aerodynamischen Versuchsanstalt zu Göttingen, IV Lief München-Berlin: Oldenbourg 4:18–29 Prandtl L (1932) Zur turbulenten Strömung in Rohren und längs Platten. Ergebnisse der Aerodynamischen Versuchsanstalt zu Göttingen, IV Lief München-Berlin: Oldenbourg 4:18–29
Zurück zum Zitat Rüedi JD, Nagib HM, Österlund JM, Monkewitz PA (2003) Evaluation of three techniques for wall-shear measurements in three-dimensional flows. Exp Fluids 35:389–396CrossRef Rüedi JD, Nagib HM, Österlund JM, Monkewitz PA (2003) Evaluation of three techniques for wall-shear measurements in three-dimensional flows. Exp Fluids 35:389–396CrossRef
Zurück zum Zitat Schlichting H (1965) Grenzschicht-theorie, 5th edn. Verlag G Braun, WeinheimMATH Schlichting H (1965) Grenzschicht-theorie, 5th edn. Verlag G Braun, WeinheimMATH
Zurück zum Zitat Spalart PR (1988) Direct simulation of a turbulent boundary layer up to R θ=1410. J Fluid Mech 187:61–98MATHCrossRef Spalart PR (1988) Direct simulation of a turbulent boundary layer up to R θ=1410. J Fluid Mech 187:61–98MATHCrossRef
Zurück zum Zitat Spalart PR (2006) Turbulence: are we getting smarter? Fluid dynamics award lecture, 36th fluid dynamics conference and exhibit. San Francisco, CA Spalart PR (2006) Turbulence: are we getting smarter? Fluid dynamics award lecture, 36th fluid dynamics conference and exhibit. San Francisco, CA
Zurück zum Zitat Sreenivasan KR (1989) The turbulent boundary layer. In: Gad-El-Hak M (ed) Frontiers in experimental fluid mechanics, 5th edn. Springer, New York Sreenivasan KR (1989) The turbulent boundary layer. In: Gad-El-Hak M (ed) Frontiers in experimental fluid mechanics, 5th edn. Springer, New York
Zurück zum Zitat Stanton T (1911) The mechanical viscosity of fluids. Philos Roy Soc Lond A Mat 85:366–376CrossRef Stanton T (1911) The mechanical viscosity of fluids. Philos Roy Soc Lond A Mat 85:366–376CrossRef
Zurück zum Zitat Stanton T, Pannell J (1914) Similarity of motion in relation to the surface friction of fluids. Philos Roy Soc Lond A Mat pp 199–224 Stanton T, Pannell J (1914) Similarity of motion in relation to the surface friction of fluids. Philos Roy Soc Lond A Mat pp 199–224
Zurück zum Zitat Tennekes H (1982) Similarity relations, scaling laws and spectral dynamics. In: Nieuwstadt FTM, Van Dop H (eds) Atmospheric turbulence and air pollution modelling. pp 37–68. doi:10.1007/s10546-009-9411-5 Tennekes H (1982) Similarity relations, scaling laws and spectral dynamics. In: Nieuwstadt FTM, Van Dop H (eds) Atmospheric turbulence and air pollution modelling. pp 37–68. doi:10.​1007/​s10546-009-9411-5
Zurück zum Zitat von Kármán T (1930) Mechanische Ähnlichkeit und Turbulenz. Nachr Ges Wiss 68:58–76 von Kármán T (1930) Mechanische Ähnlichkeit und Turbulenz. Nachr Ges Wiss 68:58–76
Zurück zum Zitat von Kármán T (1930b) Mechanische Ähnlichkeit und Turbulenz. In: Proceedings of 3rd international congress on applied mechanics, Stockholm, Sweden, pp 85–93 von Kármán T (1930b) Mechanische Ähnlichkeit und Turbulenz. In: Proceedings of 3rd international congress on applied mechanics, Stockholm, Sweden, pp 85–93
Zurück zum Zitat von Kármán T (1932) Theorie des Reibungswiderstandes. Aus dem Buchwerk der Konferenz über hydromechanische Probleme des Schiffsantriebs, Hamburg, pp 394–414 von Kármán T (1932) Theorie des Reibungswiderstandes. Aus dem Buchwerk der Konferenz über hydromechanische Probleme des Schiffsantriebs, Hamburg, pp 394–414
Zurück zum Zitat von Kármán T (1934) Turbulence and skin friction. J Aero Sci 1:1–20 von Kármán T (1934) Turbulence and skin friction. J Aero Sci 1:1–20
Zurück zum Zitat White F (1991) Viscous fluid flow, 2nd edn. McGraw-Hill, New York White F (1991) Viscous fluid flow, 2nd edn. McGraw-Hill, New York
Zurück zum Zitat Zagarola MV, Smits AJ (1998) Mean-flow scaling of turbulent pipe flow. J Fluid Mech 373:33–79MATHCrossRef Zagarola MV, Smits AJ (1998) Mean-flow scaling of turbulent pipe flow. J Fluid Mech 373:33–79MATHCrossRef
Zurück zum Zitat Zanoun ES (2003) Answers to some open questions in wall bounded laminar and turbulent shear flows. PhD thesis, University of Erlangen, Germany Zanoun ES (2003) Answers to some open questions in wall bounded laminar and turbulent shear flows. PhD thesis, University of Erlangen, Germany
Zurück zum Zitat Zanoun ES, Durst F, Nagib HM (2003) Evaluating the law of the wall in two-dimensional fully developed turbulent channel flows. Phys Fluids 15:3079–3089CrossRef Zanoun ES, Durst F, Nagib HM (2003) Evaluating the law of the wall in two-dimensional fully developed turbulent channel flows. Phys Fluids 15:3079–3089CrossRef
Metadaten
Titel
Uncertainty analysis of the von Kármán constant
verfasst von
Antonio Segalini
Ramis Örlü
P. Henrik Alfredsson
Publikationsdatum
01.02.2013
Verlag
Springer-Verlag
Erschienen in
Experiments in Fluids / Ausgabe 2/2013
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-013-1460-3

Weitere Artikel der Ausgabe 2/2013

Experiments in Fluids 2/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.