Skip to main content
Erschienen in: Experiments in Fluids 2/2013

01.02.2013 | Research Article

Finite-span rotating wings: three-dimensional vortex formation and variations with aspect ratio

verfasst von: Z. R. Carr, C. Chen, M. J. Ringuette

Erschienen in: Experiments in Fluids | Ausgabe 2/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We investigate experimentally the effect of aspect ratio ( https://static-content.springer.com/image/art%3A10.1007%2Fs00348-012-1444-8/MediaObjects/348_2012_1444_Figa_HTML.gif ) on the time-varying, three-dimensional flow structure of flat-plate wings rotating from rest at 45° angle of attack. Plates of https://static-content.springer.com/image/art%3A10.1007%2Fs00348-012-1444-8/MediaObjects/348_2012_1444_Figa_HTML.gif = 2 and 4 are tested in a 50 % by mass glycerin–water mixture, with a total rotation of ϕ = 120° and a matched tip Reynolds number of 5,000. The time-varying, three-component volumetric velocity field is reconstructed using phase-locked, phase-averaged stereoscopic digital particle image velocimetry in multiple, closely-spaced chordwise planes. The vortex structure is analyzed using the \(\mathcal{Q}\)-criterion, helicity density, and spanwise quantities. For both https://static-content.springer.com/image/art%3A10.1007%2Fs00348-012-1444-8/MediaObjects/348_2012_1444_Figa_HTML.gif s, the flow initially consists of a connected and coherent leading-edge vortex (LEV), tip vortex (TV), and trailing-edge vortex (TEV) loop; the LEV increases in size with span and tilts aft. Smaller, discrete vortices are present in the separated shear layers at the trailing and tip edges, which wrap around the primary TEV and TV. After about ϕ = 20°, the outboard-span LEV lifts off the plate and becomes arch-like. A second, smaller LEV and the formation of corner vortex structures follow. For https://static-content.springer.com/image/art%3A10.1007%2Fs00348-012-1444-8/MediaObjects/348_2012_1444_Figa_HTML.gif = 4, the outboard LEV moves farther aft, multiple LEVs form ahead of it, and after about ϕ = 50° a breakdown of the lifted-off LEV and the TV occurs. However, for https://static-content.springer.com/image/art%3A10.1007%2Fs00348-012-1444-8/MediaObjects/348_2012_1444_Figa_HTML.gif = 2, the outboard LEV lift-off is not progressive, and the overall LEV-TV flow remains more coherent and closer to the plate, with evidence of breakdown late in the motion. Inboard of about 50 % span, the https://static-content.springer.com/image/art%3A10.1007%2Fs00348-012-1444-8/MediaObjects/348_2012_1444_Figa_HTML.gif = 4 LEV is stable for the motion duration. Up to approximately 60 % span, the https://static-content.springer.com/image/art%3A10.1007%2Fs00348-012-1444-8/MediaObjects/348_2012_1444_Figa_HTML.gif = 2 LEV is distinct from the TV and is similarly stable. The https://static-content.springer.com/image/art%3A10.1007%2Fs00348-012-1444-8/MediaObjects/348_2012_1444_Figa_HTML.gif = 2 LEV exhibits substantially higher spanwise vorticity and velocity. The latter possesses a “four-lobed” distribution at the periphery of the LEV core having adjacent positive (outboard) and negative (inboard) components, corresponding to a helical streamline structure. Both https://static-content.springer.com/image/art%3A10.1007%2Fs00348-012-1444-8/MediaObjects/348_2012_1444_Figa_HTML.gif s show substantial root-to-tip velocity aft of the stable LEV, which drives outboard spanwise vorticity flux; flux toward the root is also present in the front portion of the LEV. For https://static-content.springer.com/image/art%3A10.1007%2Fs00348-012-1444-8/MediaObjects/348_2012_1444_Figa_HTML.gif = 2, there is a strong flux of spanwise vorticity from the outboard LEV to the tip, which may mitigate LEV lift-off and is not found for https://static-content.springer.com/image/art%3A10.1007%2Fs00348-012-1444-8/MediaObjects/348_2012_1444_Figa_HTML.gif = 4. The TV circulation for each https://static-content.springer.com/image/art%3A10.1007%2Fs00348-012-1444-8/MediaObjects/348_2012_1444_Figa_HTML.gif is similar in magnitude and growth when plotted versus the chord lengths travelled by the tip, prior to breakdown. Streamwise vorticity due to the TV induces high spanwise velocity, and for https://static-content.springer.com/image/art%3A10.1007%2Fs00348-012-1444-8/MediaObjects/348_2012_1444_Figa_HTML.gif = 2, the tilted LEV creates further streamwise vorticity which corresponds well to spanwise-elongated regions of spanwise velocity. For https://static-content.springer.com/image/art%3A10.1007%2Fs00348-012-1444-8/MediaObjects/348_2012_1444_Figa_HTML.gif = 2, the TV influences a relatively greater portion of the span and is more coherent at later times, which coupled with the tilted LEV strongly contributes to the higher overall spanwise velocity and vorticity flux.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adrian RJ, Westerweel J (2011) Chap 5: particle image velocimetry systems. In: Particle image velocimetry. Cambridge University Press, Cambridge, pp 165–240 Adrian RJ, Westerweel J (2011) Chap 5: particle image velocimetry systems. In: Particle image velocimetry. Cambridge University Press, Cambridge, pp 165–240
Zurück zum Zitat Altshuler DL, Princevac M, Pan H, Lozano J (2009) Wake patterns of the wings and tail of hovering hummingbirds. Exp Fluids 46:835–846CrossRef Altshuler DL, Princevac M, Pan H, Lozano J (2009) Wake patterns of the wings and tail of hovering hummingbirds. Exp Fluids 46:835–846CrossRef
Zurück zum Zitat Anderson JM, Streitlien K, Barrett DS, Triantafyllou MS (1998) Oscillating foils of high propulsive efficiency. J Fluid Mech 360:41–72MathSciNetMATHCrossRef Anderson JM, Streitlien K, Barrett DS, Triantafyllou MS (1998) Oscillating foils of high propulsive efficiency. J Fluid Mech 360:41–72MathSciNetMATHCrossRef
Zurück zum Zitat Ansari SA, Phillips N, Stabler G, Wilkins PC, Zbikowski R, Knowles K (2009) Experimental investigation of some aspects of insect-like flapping flight aerodynamics for application to micro air vehicles. Exp Fluids 46:777–798CrossRef Ansari SA, Phillips N, Stabler G, Wilkins PC,  Zbikowski R, Knowles K (2009) Experimental investigation of some aspects of insect-like flapping flight aerodynamics for application to micro air vehicles. Exp Fluids 46:777–798CrossRef
Zurück zum Zitat Aono H, Liu H (2006) Vortical structure and aerodynamics of hawkmoth hovering. J Biomech Sci Eng 1:234–245CrossRef Aono H, Liu H (2006) Vortical structure and aerodynamics of hawkmoth hovering. J Biomech Sci Eng 1:234–245CrossRef
Zurück zum Zitat Aono H, Liang F, Liu H (2008) Near- and far-field aerodynamics in insect hovering flight: an integrated computational study. J Exp Biol 211:239–257CrossRef Aono H, Liang F, Liu H (2008) Near- and far-field aerodynamics in insect hovering flight: an integrated computational study. J Exp Biol 211:239–257CrossRef
Zurück zum Zitat Birch JM, Dickinson MH (2001) Spanwise flow and the attachment of the leading-edge vortex on insect wings. Nature 412:729–733 (Letters to Nature)CrossRef Birch JM, Dickinson MH (2001) Spanwise flow and the attachment of the leading-edge vortex on insect wings. Nature 412:729–733 (Letters to Nature)CrossRef
Zurück zum Zitat Birch JM, Dickinson MH (2003) The influence of wing-wake interactions on the production of aerodynamic forces in flapping flight. J Exp Biol 206:2257–2272CrossRef Birch JM, Dickinson MH (2003) The influence of wing-wake interactions on the production of aerodynamic forces in flapping flight. J Exp Biol 206:2257–2272CrossRef
Zurück zum Zitat Birch JM, Dickson WB, Dickinson MH (2004) Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers. J Exp Biol 207:1063–1072CrossRef Birch JM, Dickson WB, Dickinson MH (2004) Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers. J Exp Biol 207:1063–1072CrossRef
Zurück zum Zitat Bomphrey RJ, Lawson NJ, Taylor GK, Thomas ALR (2006) Application of digital particle image velocimetry to insect aerodynamics: measurement of the leading-edge vortex and near wake of a hawkmoth. Exp Fluids 40:546–554CrossRef Bomphrey RJ, Lawson NJ, Taylor GK, Thomas ALR (2006) Application of digital particle image velocimetry to insect aerodynamics: measurement of the leading-edge vortex and near wake of a hawkmoth. Exp Fluids 40:546–554CrossRef
Zurück zum Zitat Bomphrey RJ, Taylor GK, Thomas ALR (2009) Smoke visualization of free-flying bumblebees indicates independent leading-edge vortices on each wing pair. Exp Fluids 46:811–821CrossRef Bomphrey RJ, Taylor GK, Thomas ALR (2009) Smoke visualization of free-flying bumblebees indicates independent leading-edge vortices on each wing pair. Exp Fluids 46:811–821CrossRef
Zurück zum Zitat Carr Z, Chen C, Ringuette MJ (2012) The effect of aspect ratio on the three-dimensional vortex formation of rotating flat-plate wings. In: 50th AIAA aerospace sciences meeting and exhibit, 2012-0912, pp 1–26 Carr Z, Chen C, Ringuette MJ (2012) The effect of aspect ratio on the three-dimensional vortex formation of rotating flat-plate wings. In: 50th AIAA aerospace sciences meeting and exhibit, 2012-0912, pp 1–26
Zurück zum Zitat Chakraborty P, Balachandar S, Adrian RJ (2005) On the relationship between local vortex identification schemes. J Fluid Mech 535:189–214MathSciNetMATHCrossRef Chakraborty P, Balachandar S, Adrian RJ (2005) On the relationship between local vortex identification schemes. J Fluid Mech 535:189–214MathSciNetMATHCrossRef
Zurück zum Zitat Chen KK, Colonius T, Taira K (2010) The leading-edge vortex and quasisteady vortex shedding on an accelerating plate. Phys Fluids 22:1–11 Chen KK, Colonius T, Taira K (2010) The leading-edge vortex and quasisteady vortex shedding on an accelerating plate. Phys Fluids 22:1–11
Zurück zum Zitat Cheng NS (2008) Formula for the viscosity of a glycerol-water mixture. Ind Eng Chem Res 47:3285–3288CrossRef Cheng NS (2008) Formula for the viscosity of a glycerol-water mixture. Ind Eng Chem Res 47:3285–3288CrossRef
Zurück zum Zitat DeVoria A, Mahajan P, Ringuette MJ (2011) Vortex formation and saturation for low-aspect-ratio rotating flat plates at low Reynolds number. In: 48th AIAA aerospace sciences meeting and exhibit, AIAA, 2011-396, pp 1–35 DeVoria A, Mahajan P, Ringuette MJ (2011) Vortex formation and saturation for low-aspect-ratio rotating flat plates at low Reynolds number. In: 48th AIAA aerospace sciences meeting and exhibit, AIAA, 2011-396, pp 1–35
Zurück zum Zitat DeVoria AC, Ringuette MJ (2012) Vortex formation and saturation for low-aspect-ratio rotating flat-plate fins. Exp Fluids 52(2):441–462CrossRef DeVoria AC, Ringuette MJ (2012) Vortex formation and saturation for low-aspect-ratio rotating flat-plate fins. Exp Fluids 52(2):441–462CrossRef
Zurück zum Zitat Dickinson MH, Götz KG (1993) Unsteady aerodynamic performance of model wings at low Reynolds numbers. J Exp Biol 174:45–64 Dickinson MH, Götz KG (1993) Unsteady aerodynamic performance of model wings at low Reynolds numbers. J Exp Biol 174:45–64
Zurück zum Zitat Dickinson MH, Lehmann FO, Sane SP (1999) Wing rotation and the aerodynamic basis of insect flight. Science 284:1954–1960CrossRef Dickinson MH, Lehmann FO, Sane SP (1999) Wing rotation and the aerodynamic basis of insect flight. Science 284:1954–1960CrossRef
Zurück zum Zitat Dong H, Koehler C, Liang Z, Wan H, Gaston Z (2010) An integrated analysis of a dragonfly in free flight. In: 28th AIAA applied aerodynamics conference, 2010-4390, pp 1–10 Dong H, Koehler C, Liang Z, Wan H, Gaston Z (2010) An integrated analysis of a dragonfly in free flight. In: 28th AIAA applied aerodynamics conference, 2010-4390, pp 1–10
Zurück zum Zitat Ellington CP, van den Berg C, Willmott AP, Thomas ALR (1996) Leading-edge vortices in insect flight. Nature 384:626–630 (Letters to Nature)CrossRef Ellington CP, van den Berg C, Willmott AP, Thomas ALR (1996) Leading-edge vortices in insect flight. Nature 384:626–630 (Letters to Nature)CrossRef
Zurück zum Zitat Forliti DJ, Strykowski PJ, Debatin K (2000) Bias and precision errors of digital particle image velocimetry. Exp Fluids 28:436–447CrossRef Forliti DJ, Strykowski PJ, Debatin K (2000) Bias and precision errors of digital particle image velocimetry. Exp Fluids 28:436–447CrossRef
Zurück zum Zitat Freymuth P (1989) Visualizing the connectivity of vortex systems for pitching wings. J Fluid Eng 111:217–220CrossRef Freymuth P (1989) Visualizing the connectivity of vortex systems for pitching wings. J Fluid Eng 111:217–220CrossRef
Zurück zum Zitat Garmann D, Visbal M, Orkwis P (2012) Three-dimensional flow structure and aerodynamic loading on a low aspect ratio, revolving wing. In: 42nd AIAA fluid dynamics conference and exhibit, 2012-3277, pp 1–22 Garmann D, Visbal M, Orkwis P (2012) Three-dimensional flow structure and aerodynamic loading on a low aspect ratio, revolving wing. In: 42nd AIAA fluid dynamics conference and exhibit, 2012-3277, pp 1–22
Zurück zum Zitat Gopalakrishnan P, Tafti DK (2009) Effect of rotation kinematics and angle of attack on flapping flight. AIAA J 47(11):2505–2519CrossRef Gopalakrishnan P, Tafti DK (2009) Effect of rotation kinematics and angle of attack on flapping flight. AIAA J 47(11):2505–2519CrossRef
Zurück zum Zitat Graftieaux L, Michard M, Grosjean N (2001) Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows. Meas Sci Technol 12:1422–1429CrossRef Graftieaux L, Michard M, Grosjean N (2001) Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows. Meas Sci Technol 12:1422–1429CrossRef
Zurück zum Zitat Granlund K, Ol M, Bernal L, Kast S (2010) Experiments on free-to-pivot hover motions of flat plates. In: 40th AIAA fluid dynamics conference, 2010-4456, pp 1–18 Granlund K, Ol M, Bernal L, Kast S (2010) Experiments on free-to-pivot hover motions of flat plates. In: 40th AIAA fluid dynamics conference, 2010-4456, pp 1–18
Zurück zum Zitat Gursul I, Gordnier R, Visbal M (2005) Unsteady aerodynamics of nonslender delta wings. Prog Aerosp Sci 41:515–556CrossRef Gursul I, Gordnier R, Visbal M (2005) Unsteady aerodynamics of nonslender delta wings. Prog Aerosp Sci 41:515–556CrossRef
Zurück zum Zitat Harbig RR, Sheridan J, Thompson MC, Ozen CA, Rockwell D (2012) Observations of flow structure changes with aspect ratio for rotating insect wing planforms. In: 42nd AIAA Fluid dynamics conference and exhibit, 2012-3282, pp 1–8 Harbig RR, Sheridan J, Thompson MC, Ozen CA, Rockwell D (2012) Observations of flow structure changes with aspect ratio for rotating insect wing planforms. In: 42nd AIAA Fluid dynamics conference and exhibit, 2012-3282, pp 1–8
Zurück zum Zitat Hedenström A, Johansson LC, Wolf M, von Busse R, Winter Y, Spedding GR (2007) Bat flight generates complex aerodynamic tracks. Science 316:894–897CrossRef Hedenström A, Johansson LC, Wolf M, von Busse R, Winter Y, Spedding GR (2007) Bat flight generates complex aerodynamic tracks. Science 316:894–897CrossRef
Zurück zum Zitat Hunt JCR, Wray AA, Moin P (1988) Eddies, streams and convergence zones in turbulent flows. In: Proceedings of the 1988 summer program: studying turbulence using numerical simulation databases, 2., vol 1, Center for Turbulence Research, pp 193–208 Hunt JCR, Wray AA, Moin P (1988) Eddies, streams and convergence zones in turbulent flows. In: Proceedings of the 1988 summer program: studying turbulence using numerical simulation databases, 2., vol 1, Center for Turbulence Research, pp 193–208
Zurück zum Zitat Jardin T, Farcy A, David L (2012) Three-dimensional effects in hovering flapping flight. J Fluid Mech 702:102–125MATHCrossRef Jardin T, Farcy A, David L (2012) Three-dimensional effects in hovering flapping flight. J Fluid Mech 702:102–125MATHCrossRef
Zurück zum Zitat Jones AR, Babinsky H (2011) Reynolds number effects on leading edge vortex development on a waving wing. Exp Fluids 51:197–210CrossRef Jones AR, Babinsky H (2011) Reynolds number effects on leading edge vortex development on a waving wing. Exp Fluids 51:197–210CrossRef
Zurück zum Zitat Jones AR, Pitt Ford CW, Babinsky H (2011) Three-dimensional effects on sliding and waving wings. J Aircraft 48(2):633–644CrossRef Jones AR, Pitt Ford CW, Babinsky H (2011) Three-dimensional effects on sliding and waving wings. J Aircraft 48(2):633–644CrossRef
Zurück zum Zitat Keane RD, Adrian RJ (1990) Optimization of particle image velocimeters. Part I: double pulsed systems. Meas Sci Technol 1:1202–1215CrossRef Keane RD, Adrian RJ (1990) Optimization of particle image velocimeters. Part I: double pulsed systems. Meas Sci Technol 1:1202–1215CrossRef
Zurück zum Zitat Kim D, Gharib M (2010) Experimental study of three-dimensional vortex structures in translating and rotating plates. Exp Fluids 49:329–339CrossRef Kim D, Gharib M (2010) Experimental study of three-dimensional vortex structures in translating and rotating plates. Exp Fluids 49:329–339CrossRef
Zurück zum Zitat Koochesfahani mm (1989) Vortical patterns in the wake of an oscillating airfoil. AIAA J 27(9):1200–1205CrossRef Koochesfahani mm (1989) Vortical patterns in the wake of an oscillating airfoil. AIAA J 27(9):1200–1205CrossRef
Zurück zum Zitat Koumoutsakos P, Shiels D (1996) Simulations of the viscous flow normal to an impulsively started and uniformly accelerated flat plate. J Fluid Mech 328:177–227MATHCrossRef Koumoutsakos P, Shiels D (1996) Simulations of the viscous flow normal to an impulsively started and uniformly accelerated flat plate. J Fluid Mech 328:177–227MATHCrossRef
Zurück zum Zitat Lawson NJ, Wu J (1997) Three-dimensional particle image velocimetry: error analysis of stereoscopic techniques. Meas Sci Technol 8:894–900CrossRef Lawson NJ, Wu J (1997) Three-dimensional particle image velocimetry: error analysis of stereoscopic techniques. Meas Sci Technol 8:894–900CrossRef
Zurück zum Zitat Le TB, Borazjani I, Kang S, Sotiropoulos F (2011) On the structure of vortex rings from inclined nozzles. J Fluid Mech 686:451–483MATHCrossRef Le TB, Borazjani I, Kang S, Sotiropoulos F (2011) On the structure of vortex rings from inclined nozzles. J Fluid Mech 686:451–483MATHCrossRef
Zurück zum Zitat Lentink D, Dickinson MH (2009) Biofluiddynamic scaling of flapping, spinning and translating fins and wings. J Exp Biol 212:2691–2704CrossRef Lentink D, Dickinson MH (2009) Biofluiddynamic scaling of flapping, spinning and translating fins and wings. J Exp Biol 212:2691–2704CrossRef
Zurück zum Zitat Lentink D, Dickinson MH (2009) Rotational accelerations stabilize leading edge vortices on revolving fly wings. J Exp Biol 212:2705–2719CrossRef Lentink D, Dickinson MH (2009) Rotational accelerations stabilize leading edge vortices on revolving fly wings. J Exp Biol 212:2705–2719CrossRef
Zurück zum Zitat Lian QX, Huang Z (1989) Starting flow and structures of the starting vortex behind bluff bodies with sharp edges. Exp Fluids 8:95–103CrossRef Lian QX, Huang Z (1989) Starting flow and structures of the starting vortex behind bluff bodies with sharp edges. Exp Fluids 8:95–103CrossRef
Zurück zum Zitat Liu H, Ellington CP, Kawachi K, van den Berg C, Willmott AP (1998) A computational fluid dynamic study of hawkmoth hovering. J Exp Biol 201:461–477 Liu H, Ellington CP, Kawachi K, van den Berg C, Willmott AP (1998) A computational fluid dynamic study of hawkmoth hovering. J Exp Biol 201:461–477
Zurück zum Zitat Lu Y, Shen GX (2008) Three-dimensional flow structures and evolution of the leading-edge vortices on a flapping wing. J Exp Biol 211:1221–1230CrossRef Lu Y, Shen GX (2008) Three-dimensional flow structures and evolution of the leading-edge vortices on a flapping wing. J Exp Biol 211:1221–1230CrossRef
Zurück zum Zitat Lucca-Negro O, O’Doherty T (2001) Vortex breakdown: a review. Prog Energ Combust 27:431–481CrossRef Lucca-Negro O, O’Doherty T (2001) Vortex breakdown: a review. Prog Energ Combust 27:431–481CrossRef
Zurück zum Zitat Maxworthy T (1979) Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering flight. Part 1. Dynamics of the ‘fling’. J Fluid Mech 93:47–63CrossRef Maxworthy T (1979) Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering flight. Part 1. Dynamics of the ‘fling’. J Fluid Mech 93:47–63CrossRef
Zurück zum Zitat Maxworthy T (2007) The formation and maintenance of a leading-edge vortex during the forward motion of an animal wing. J Fluid Mech 587:471–475MATHCrossRef Maxworthy T (2007) The formation and maintenance of a leading-edge vortex during the forward motion of an animal wing. J Fluid Mech 587:471–475MATHCrossRef
Zurück zum Zitat Milano M, Gharib M (2005) Uncovering the physics of flapping flat plates with artificial evolution. J Fluid Mech 534:403–409MATHCrossRef Milano M, Gharib M (2005) Uncovering the physics of flapping flat plates with artificial evolution. J Fluid Mech 534:403–409MATHCrossRef
Zurück zum Zitat Moffatt HK (1969) The degree of knottedness of tangled vortex lines. J Fluid Mech 35:117–129MATHCrossRef Moffatt HK (1969) The degree of knottedness of tangled vortex lines. J Fluid Mech 35:117–129MATHCrossRef
Zurück zum Zitat Muijres FT, Johansson LC, Barfield R, Wolf M, Spedding GR, Hedenström A (2008) Leading-edge vortex improves lift in slow-flying bats. Science 319:1250–1253CrossRef Muijres FT, Johansson LC, Barfield R, Wolf M, Spedding GR, Hedenström A (2008) Leading-edge vortex improves lift in slow-flying bats. Science 319:1250–1253CrossRef
Zurück zum Zitat Ol M, Bernal L, Kang CK, Shyy W (2009) Shallow and deep dynamic stall for flapping low Reynolds number airfoils. Exp Fluids 46:883–901CrossRef Ol M, Bernal L, Kang CK, Shyy W (2009) Shallow and deep dynamic stall for flapping low Reynolds number airfoils. Exp Fluids 46:883–901CrossRef
Zurück zum Zitat Ol MV, Granlund K (2012) Abstraction of aerodynamics of flapping-wings: Is it quasi-steady? In: 50th AIAA aerospace sciences meeting and exhibit, 2012-0587, pp 1–14 Ol MV, Granlund K (2012) Abstraction of aerodynamics of flapping-wings: Is it quasi-steady? In: 50th AIAA aerospace sciences meeting and exhibit, 2012-0587, pp 1–14
Zurück zum Zitat Ozen CA, Rockwell D (2012) Flow structure on a rotating plate. Exp Fluids 52:207–223CrossRef Ozen CA, Rockwell D (2012) Flow structure on a rotating plate. Exp Fluids 52:207–223CrossRef
Zurück zum Zitat Ozen CA, Rockwell D (2012) Three-dimensional vortex structure on a rotating wing. J Fluid Mech 707:541–550CrossRef Ozen CA, Rockwell D (2012) Three-dimensional vortex structure on a rotating wing. J Fluid Mech 707:541–550CrossRef
Zurück zum Zitat Parker K, von Ellenrieder KD, Soria J (2007) Morphology of the forced oscillatory flow past a finite-span wing at low Reynolds number. J Fluid Mech 571:327–357MATHCrossRef Parker K, von Ellenrieder KD, Soria J (2007) Morphology of the forced oscillatory flow past a finite-span wing at low Reynolds number. J Fluid Mech 571:327–357MATHCrossRef
Zurück zum Zitat Pick S, Lehmann FO (2009) Stereoscopic PIV on multiple color-coded light sheets and its application to axial flow in flapping robotic insect wings. Exp Fluids 47:1009–1023CrossRef Pick S, Lehmann FO (2009) Stereoscopic PIV on multiple color-coded light sheets and its application to axial flow in flapping robotic insect wings. Exp Fluids 47:1009–1023CrossRef
Zurück zum Zitat Platzer MF, Jones KD, Young J, Lai JCS (2008) Flapping wing aerodynamics: progress and challenges. AIAA J 46(9):2136–2149CrossRef Platzer MF, Jones KD, Young J, Lai JCS (2008) Flapping wing aerodynamics: progress and challenges. AIAA J 46(9):2136–2149CrossRef
Zurück zum Zitat Poelma C, Dickson WB, Dickinson MH (2006) Time-resolved reconstruction of the full velocity field around a dynamically-scaled flapping wing. Exp Fluids 41:213–225CrossRef Poelma C, Dickson WB, Dickinson MH (2006) Time-resolved reconstruction of the full velocity field around a dynamically-scaled flapping wing. Exp Fluids 41:213–225CrossRef
Zurück zum Zitat Prasad AK (2000) Stereoscopic particle image velocimetry. Exp Fluids 29:103–116CrossRef Prasad AK (2000) Stereoscopic particle image velocimetry. Exp Fluids 29:103–116CrossRef
Zurück zum Zitat Prasad AK, Adrian RJ (1993) Stereoscopic particle image velocimetry applied to liquid flows. Exp Fluids 15:49–60CrossRef Prasad AK, Adrian RJ (1993) Stereoscopic particle image velocimetry applied to liquid flows. Exp Fluids 15:49–60CrossRef
Zurück zum Zitat Prasad AK, Jensen K (1995) Scheimpflug stereocamera for particle image velocimetry in liquid flows. Appl Optics 34(30):7092–7099CrossRef Prasad AK, Jensen K (1995) Scheimpflug stereocamera for particle image velocimetry in liquid flows. Appl Optics 34(30):7092–7099CrossRef
Zurück zum Zitat Prasad AK, Adrian RJ, Landreth CC, Offutt PW (1992) Effect of resolution on the speed and accuracy of particle image velocimetry interrogation. Exp Fluids 13:105–116CrossRef Prasad AK, Adrian RJ, Landreth CC, Offutt PW (1992) Effect of resolution on the speed and accuracy of particle image velocimetry interrogation. Exp Fluids 13:105–116CrossRef
Zurück zum Zitat Pullin DI, Perry AE (1980) Some flow visualization experiments on the starting vortex. J Fluid Mech 97(2):239–255CrossRef Pullin DI, Perry AE (1980) Some flow visualization experiments on the starting vortex. J Fluid Mech 97(2):239–255CrossRef
Zurück zum Zitat Raffel M, Willert CE, Wereley ST, Kompenhans J (2007a) Chap 2: physical and technical background. In: Particle image velocimetry: a practical guide, 2nd edn. Springer, Berlin, pp 15–77 Raffel M, Willert CE, Wereley ST, Kompenhans J (2007a) Chap 2: physical and technical background. In: Particle image velocimetry: a practical guide, 2nd edn. Springer, Berlin, pp 15–77
Zurück zum Zitat Raffel M, Willert CE, Wereley ST, Kompenhans J (2007b) Chap 5: image evaluation methods for PIV. In: Particle image velocimetry: a practical guide, 2nd edn. Springer, Berlin, pp 123–176 Raffel M, Willert CE, Wereley ST, Kompenhans J (2007b) Chap 5: image evaluation methods for PIV. In: Particle image velocimetry: a practical guide, 2nd edn. Springer, Berlin, pp 123–176
Zurück zum Zitat Ramamurti R, Sandberg WC (2007) A computational investigation of the three-dimensional unsteady aerodynamics of Drosophila hovering and maneuvering. J Exp Biol 210:881–896CrossRef Ramamurti R, Sandberg WC (2007) A computational investigation of the three-dimensional unsteady aerodynamics of Drosophila hovering and maneuvering. J Exp Biol 210:881–896CrossRef
Zurück zum Zitat Ramasamy M, Leishman JG (2006) Phase-locked particle image velocimetry measurements of a flapping wing. J Aircraft 43:1867–1875CrossRef Ramasamy M, Leishman JG (2006) Phase-locked particle image velocimetry measurements of a flapping wing. J Aircraft 43:1867–1875CrossRef
Zurück zum Zitat Ringuette MJ, Milano M, Gharib M (2007) Role of the tip vortex in the force generation of low-aspect-ratio normal flat plates. J Fluid Mech 581:453–468MATHCrossRef Ringuette MJ, Milano M, Gharib M (2007) Role of the tip vortex in the force generation of low-aspect-ratio normal flat plates. J Fluid Mech 581:453–468MATHCrossRef
Zurück zum Zitat Rival D, Prangemeier T, Tropea C (2009) The influence of airfoil kinematics on the formation of leading-edge vortices in bio-inspired flight. Exp Fluids 46:823–833CrossRef Rival D, Prangemeier T, Tropea C (2009) The influence of airfoil kinematics on the formation of leading-edge vortices in bio-inspired flight. Exp Fluids 46:823–833CrossRef
Zurück zum Zitat Sane SP (2003) The aerodynamics of insect flight. J Exp Biol 206:4191–4208CrossRef Sane SP (2003) The aerodynamics of insect flight. J Exp Biol 206:4191–4208CrossRef
Zurück zum Zitat Shyy W, Trizila P, Kang C, Aono H (2009) Can tip vortices enhance lift of a flapping wing? AIAA J 47(2):289–293 (Aerospace Letters)CrossRef Shyy W, Trizila P, Kang C, Aono H (2009) Can tip vortices enhance lift of a flapping wing? AIAA J 47(2):289–293 (Aerospace Letters)CrossRef
Zurück zum Zitat Shyy W, Aono H, Chimakurthi SK, Trizila P, Kang CK, Cesnik CES, Liu H (2010) Recent progress in flapping wing aerodynamics and aeroelasticity. Prog Aerosp Sci 46:284–327CrossRef Shyy W, Aono H, Chimakurthi SK, Trizila P, Kang CK, Cesnik CES, Liu H (2010) Recent progress in flapping wing aerodynamics and aeroelasticity. Prog Aerosp Sci 46:284–327CrossRef
Zurück zum Zitat Soloff SM, Adrian RJ, Liu ZC (1997) Distortion compensation for generalized stereoscopic particle image velocimetry. Meas Sci Technol 8:1441–1454CrossRef Soloff SM, Adrian RJ, Liu ZC (1997) Distortion compensation for generalized stereoscopic particle image velocimetry. Meas Sci Technol 8:1441–1454CrossRef
Zurück zum Zitat Spedding GR, Rosén M, Hedenström A (2003) A family of vortex wakes generated by a thrush nightingale in free flight in a wind tunnel over its entire natural range of flight speeds. J Exp Biol 206:2313–2344CrossRef Spedding GR, Rosén M, Hedenström A (2003) A family of vortex wakes generated by a thrush nightingale in free flight in a wind tunnel over its entire natural range of flight speeds. J Exp Biol 206:2313–2344CrossRef
Zurück zum Zitat Stanley D, Altman A (2009) Experiments in vortex formation on flapping flat plates. In: 47th AIAA aerospace sciences meeting and exhibit, 2009-389, pp 1–15 Stanley D, Altman A (2009) Experiments in vortex formation on flapping flat plates. In: 47th AIAA aerospace sciences meeting and exhibit, 2009-389, pp 1–15
Zurück zum Zitat Taira K, Colonius T (2009) Three-dimensional flows around low-aspect-ratio flat-plate wings at low Reynolds numbers. J Fluid Mech 623:187–207MATHCrossRef Taira K, Colonius T (2009) Three-dimensional flows around low-aspect-ratio flat-plate wings at low Reynolds numbers. J Fluid Mech 623:187–207MATHCrossRef
Zurück zum Zitat Taira K, Rowley CW, Colonius T, Williams DR (2010) Lift enhancement for low-aspect-ratio wings with periodic excitation. AIAA J 48(8):1785–1790CrossRef Taira K, Rowley CW, Colonius T, Williams DR (2010) Lift enhancement for low-aspect-ratio wings with periodic excitation. AIAA J 48(8):1785–1790CrossRef
Zurück zum Zitat Tarascio MJ, Ramasamy M, Chopra I, Leishman JG (2005) Flow visualization of micro air vehicle scaled insect-based flapping wings. J Aircraft 42(2):385–390CrossRef Tarascio MJ, Ramasamy M, Chopra I, Leishman JG (2005) Flow visualization of micro air vehicle scaled insect-based flapping wings. J Aircraft 42(2):385–390CrossRef
Zurück zum Zitat Tobalske BW (2007) Biomechanics of bird flight. J Exp Biol 210:3135–3146CrossRef Tobalske BW (2007) Biomechanics of bird flight. J Exp Biol 210:3135–3146CrossRef
Zurück zum Zitat Tobalske BW, Warrick DR, Clark CJ, Powers DR, Hedrick TL, Hyder GA, Biewener AA (2007) Three-dimensional kinematics of hummingbird flight. J Exp Biol 210:2368–2382CrossRef Tobalske BW, Warrick DR, Clark CJ, Powers DR, Hedrick TL, Hyder GA, Biewener AA (2007) Three-dimensional kinematics of hummingbird flight. J Exp Biol 210:2368–2382CrossRef
Zurück zum Zitat Usherwood JR (2009) The aerodynamic forces and pressure distribution of a revolving pigeon wing. Exp Fluids 46:991–1003CrossRef Usherwood JR (2009) The aerodynamic forces and pressure distribution of a revolving pigeon wing. Exp Fluids 46:991–1003CrossRef
Zurück zum Zitat Usherwood JR, Ellington CP (2002) The aerodynamics of revolving wings: I. Model hawkmoth wings. J Exp Biol 205:1547–1564 Usherwood JR, Ellington CP (2002) The aerodynamics of revolving wings: I. Model hawkmoth wings. J Exp Biol 205:1547–1564
Zurück zum Zitat Usherwood JR, Ellington CP (2002) The aerodynamics of revolving wings: II. Propeller force coefficients from mayfly to quail. J Exp Biol 205:1565–1576 Usherwood JR, Ellington CP (2002) The aerodynamics of revolving wings: II. Propeller force coefficients from mayfly to quail. J Exp Biol 205:1565–1576
Zurück zum Zitat van den Berg C, Ellington CP (1997) The vortex wake of a “hovering” model hawkmoth. Philos Trans R Soc B 352(1351):317–328CrossRef van den Berg C, Ellington CP (1997) The vortex wake of a “hovering” model hawkmoth. Philos Trans R Soc B 352(1351):317–328CrossRef
Zurück zum Zitat Visbal MR (2009) High-fidelity simulation of transitional flows past a plunging airfoil. AIAA J 47(11):2685–2697CrossRef Visbal MR (2009) High-fidelity simulation of transitional flows past a plunging airfoil. AIAA J 47(11):2685–2697CrossRef
Zurück zum Zitat Viswanath K, Tafti DK (2012) Effect of stroke deviation on forward flapping flight. In: 50th AIAA aerospace sciences meeting and exhibit, 2012-0297, pp 1–19 Viswanath K, Tafti DK (2012) Effect of stroke deviation on forward flapping flight. In: 50th AIAA aerospace sciences meeting and exhibit, 2012-0297, pp 1–19
Zurück zum Zitat von Ellenrieder KD, Parker K, Soria J (2003) Flow structures behind a heaving and pitching finite-span wing. J Fluid Mech 490:129–138MATHCrossRef von Ellenrieder KD, Parker K, Soria J (2003) Flow structures behind a heaving and pitching finite-span wing. J Fluid Mech 490:129–138MATHCrossRef
Zurück zum Zitat Wang ZJ (2000) Two dimensional mechanism for insect hovering. Phys Rev Lett 85(10):2216–2219CrossRef Wang ZJ (2000) Two dimensional mechanism for insect hovering. Phys Rev Lett 85(10):2216–2219CrossRef
Zurück zum Zitat Wang ZJ (2000) Vortex shedding and frequency selection in flapping flight. J Fluid Mech 410:323–341MATHCrossRef Wang ZJ (2000) Vortex shedding and frequency selection in flapping flight. J Fluid Mech 410:323–341MATHCrossRef
Zurück zum Zitat Wang ZJ (2005) Dissecting insect flight. Annu Rev Fluid Mech 37:183–210CrossRef Wang ZJ (2005) Dissecting insect flight. Annu Rev Fluid Mech 37:183–210CrossRef
Zurück zum Zitat Wang ZJ, Russell D (2007) Effect of forewing and hindwing interactions on aerodynamic forces and power in hovering dragonfly flight. Phys Rev Lett 99:148101-1–148101-4 Wang ZJ, Russell D (2007) Effect of forewing and hindwing interactions on aerodynamic forces and power in hovering dragonfly flight. Phys Rev Lett 99:148101-1–148101-4
Zurück zum Zitat Warrick DR, Tobalske BW, Powers DR (2005) Aerodynamics of the hovering hummingbird. Nature 435:1094–1097 (Letters)CrossRef Warrick DR, Tobalske BW, Powers DR (2005) Aerodynamics of the hovering hummingbird. Nature 435:1094–1097 (Letters)CrossRef
Zurück zum Zitat Westerweel J (2000) Theoretical analysis of the measurement precision in particle image velocimetry. Exp Fluids Suppl.:S3–S12 Westerweel J (2000) Theoretical analysis of the measurement precision in particle image velocimetry. Exp Fluids Suppl.:S3–S12
Zurück zum Zitat Wieneke B (2005) Stereo-PIV using self-calibration on particle images. Exp Fluids 39:267–280CrossRef Wieneke B (2005) Stereo-PIV using self-calibration on particle images. Exp Fluids 39:267–280CrossRef
Zurück zum Zitat Willert C (1997) Stereoscopic digital particle image velocimetry for application in wind tunnel flows. Meas Sci Technol 8:1465–1479CrossRef Willert C (1997) Stereoscopic digital particle image velocimetry for application in wind tunnel flows. Meas Sci Technol 8:1465–1479CrossRef
Zurück zum Zitat Willert CE, Gharib M (1997) The interaction of spatially modulated vortex pairs with free surfaces. J Fluid Mech 345:227–250MathSciNetCrossRef Willert CE, Gharib M (1997) The interaction of spatially modulated vortex pairs with free surfaces. J Fluid Mech 345:227–250MathSciNetCrossRef
Zurück zum Zitat Willmott AP, Ellington CP, Thomas ALR (1997) Flow visualization and unsteady aerodynamics in the flight of the hawkmoth, (Manduca sexta). Philos Trans R Soc B 352:303–316CrossRef Willmott AP, Ellington CP, Thomas ALR (1997) Flow visualization and unsteady aerodynamics in the flight of the hawkmoth, (Manduca sexta). Philos Trans R Soc B 352:303–316CrossRef
Zurück zum Zitat Wojcik CJ, Buchholz JHJ (2012) The dynamics of spanwise vorticity on a rotating flat plate. In: 50th AIAA aerospace sciences meeting and exhibit, 2012-0915, pp 1–17 Wojcik CJ, Buchholz JHJ (2012) The dynamics of spanwise vorticity on a rotating flat plate. In: 50th AIAA aerospace sciences meeting and exhibit, 2012-0915, pp 1–17
Zurück zum Zitat Yilmaz TO, Rockwell D (2010) Three-dimensional flow structure on a maneuvering wing. Exp Fluids 48:539–544CrossRef Yilmaz TO, Rockwell D (2010) Three-dimensional flow structure on a maneuvering wing. Exp Fluids 48:539–544CrossRef
Zurück zum Zitat Yilmaz TO, Rockwell D (2012) Flow structure on finite-span wings due to pitch-up motion. J Fluid Mech 691:518–545MATHCrossRef Yilmaz TO, Rockwell D (2012) Flow structure on finite-span wings due to pitch-up motion. J Fluid Mech 691:518–545MATHCrossRef
Metadaten
Titel
Finite-span rotating wings: three-dimensional vortex formation and variations with aspect ratio
verfasst von
Z. R. Carr
C. Chen
M. J. Ringuette
Publikationsdatum
01.02.2013
Verlag
Springer-Verlag
Erschienen in
Experiments in Fluids / Ausgabe 2/2013
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-012-1444-8

Weitere Artikel der Ausgabe 2/2013

Experiments in Fluids 2/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.