Skip to main content
Top
Published in:

01-10-2022 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

X-ray Analysis of Short-Range Order in Iron–Gallium Solid Solutions

Authors: Yu. P. Chernenkov, N. V. Ershov, Yu. N. Gornostyrev, V. A. Lukshina, O. P. Smirnov, D. A. Shishkin

Published in: Physics of Metals and Metallography | Issue 10/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The atomic structure of single crystal specimens of Fe–Ga alloys containing 4, 9, and 18 at % gallium has been studied by the X-ray diffraction method. The specimens were heat treated via two modes: annealing in paramagnetic state with subsequent quenching in water and annealing in ferromagnetic state with slow cooling to room temperature. Analysis of X-ray diffraction patterns indicates that the short-range order of the D03 type is formed in the alloy with 18 at % gallium; moreover the volume fraction of regions of the D03 phase considerably increases upon annealing. In the alloys with 4 and 9 at % gallium, the short-range order of the D03 type is absent. For all compositions, near the nodes (001), (003), and (111) we observe diffuse peaks whose intensities are independent of the heat treatment mode. It is shown that their appearance is related to the presence of small clusters of B2 type. The role of the observed structural peculiarities in the formation of magnetoelastic properties of Fe–Ga alloys is discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. E. Clark, J. B. Restorff, M. Wun-Fogle, T. A. Lograsso, and D. L. Schlagel, “Magnetostrictive properties of body-centered cubic Fe–Ga and Fe–Ga–Al alloys,” IEEE Trans. Magn. 36 (5), 3238–3240 (2019).CrossRef A. E. Clark, J. B. Restorff, M. Wun-Fogle, T. A. Lograsso, and D. L. Schlagel, “Magnetostrictive properties of body-centered cubic Fe–Ga and Fe–Ga–Al alloys,” IEEE Trans. Magn. 36 (5), 3238–3240 (2019).CrossRef
2.
go back to reference J. R. Cullen, A. E. Clark, M. Wun-Fogle, J. B. Restorff, and T. A. Lograsso, “Magnetoelasticity of Fe–Ga and Fe–Al alloys,” J. Magn. Magn. Mater. 226–230, 948–949 (2001), Part 1. J. R. Cullen, A. E. Clark, M. Wun-Fogle, J. B. Restorff, and T. A. Lograsso, “Magnetoelasticity of Fe–Ga and Fe–Al alloys,” J. Magn. Magn. Mater. 226–230, 948–949 (2001), Part 1.
3.
go back to reference A. E. Clark, K. B. Hathaway, M. Wun-Fogle, J. B. Restorff, T. A. Lograsso, V. M. Keppens, G. Petculescu, and R. A. Taylor, “Extraordinary magnetoelasticity and lattice softening in bcc Fe–Ga alloys,” J. Appl. Phys. 93 (10), 8621–8623 (2003).CrossRef A. E. Clark, K. B. Hathaway, M. Wun-Fogle, J. B. Restorff, T. A. Lograsso, V. M. Keppens, G. Petculescu, and R. A. Taylor, “Extraordinary magnetoelasticity and lattice softening in bcc Fe–Ga alloys,” J. Appl. Phys. 93 (10), 8621–8623 (2003).CrossRef
4.
go back to reference A. E. Clark, J. B. Restorff, M. Wun-Fogle, K. W. Dennis, T. A. Lograsso, and R. W. McCallum, “Temperature dependence of the magnetic anisotropy and magnetostriction of Fe100 – xGax (x = 8.6, 16.6, 28.5),” J. Appl. Phys. 97 (10), 10M316(1–3) (2005). A. E. Clark, J. B. Restorff, M. Wun-Fogle, K. W. Dennis, T. A. Lograsso, and R. W. McCallum, “Temperature dependence of the magnetic anisotropy and magnetostriction of Fe100 – xGax (x = 8.6, 16.6, 28.5),” J. Appl. Phys. 97 (10), 10M316(1–3) (2005).
5.
go back to reference E. M. Summers, T. A. Lograsso, and M. Wun-Fogle, “Magnetostriction of binary and ternary Fe–Ga alloys,” J. Mater. Sci. 42, 9582–9594 (2007).CrossRef E. M. Summers, T. A. Lograsso, and M. Wun-Fogle, “Magnetostriction of binary and ternary Fe–Ga alloys,” J. Mater. Sci. 42, 9582–9594 (2007).CrossRef
6.
go back to reference A. E. Clark, J. -H. Yoo, J. R. Cullen, M. Wun-Fogle, G. Petculescu, and A. Flatau, “Stress dependent magnetostriction in highly magnetostrictive Fe100 – xGax, 20 < x < 30,” J. Appl. Phys. 105 (7), 07A913(1–3) (2009). A. E. Clark, J. -H. Yoo, J. R. Cullen, M. Wun-Fogle, G. Petculescu, and A. Flatau, “Stress dependent magnetostriction in highly magnetostrictive Fe100 – xGax, 20 < x < 30,” J. Appl. Phys. 105 (7), 07A913(1–3) (2009).
7.
go back to reference J. B. Restorff, M. Wun-Fogle, K. B. Hathaway, A. E. Clark, T. A. Lograsso, and G. Petculescu, “Tetragonal magnetostriction and magnetoelastic coupling in Fe–Al, Fe–Ga, Fe–Ge, Fe–Si, Fe–Ga–Al and Fe–Ga–Ge alloys,” J. Appl. Phys. 111, 023905(1–12) (2009). J. B. Restorff, M. Wun-Fogle, K. B. Hathaway, A. E. Clark, T. A. Lograsso, and G. Petculescu, “Tetragonal magnetostriction and magnetoelastic coupling in Fe–Al, Fe–Ga, Fe–Ge, Fe–Si, Fe–Ga–Al and Fe–Ga–Ge alloys,” J. Appl. Phys. 111, 023905(1–12) (2009).
8.
go back to reference I. S. Golovin, V. V. Palacheva, A. K. Mokhamed, and A. M. Balagurov, “Structure and properties of Fe–Ga alloys as promising materials for electronics,” Phys. Met. Metallogr. 121, 851–893 (2020).CrossRef I. S. Golovin, V. V. Palacheva, A. K. Mokhamed, and A. M. Balagurov, “Structure and properties of Fe–Ga alloys as promising materials for electronics,” Phys. Met. Metallogr. 121, 851–893 (2020).CrossRef
9.
go back to reference J. Atulasimha and A. B. Flatau, “A review of magnetostrictive iron–gallium alloys,” Smart Mater. Struct. 20 (4), 043001(1–15) (2011). J. Atulasimha and A. B. Flatau, “A review of magnetostrictive iron–gallium alloys,” Smart Mater. Struct. 20 (4), 043001(1–15) (2011).
10.
go back to reference O. Kubaschewski, Iron-Binary Phase Diagrams (Springer, Berlin, 1982). O. Kubaschewski, Iron-Binary Phase Diagrams (Springer, Berlin, 1982).
11.
go back to reference O. Ikeda, R. Kainuma, I. Ohnuma, K. Fukamichi, and K. J. Ishida, “Phase equilibria and stability of ordered b.c.c. phases in the Fe-rich portion of the Fe–Ga system,” J. Alloys Compd. 347 (1–2), 198–205 (2002).CrossRef O. Ikeda, R. Kainuma, I. Ohnuma, K. Fukamichi, and K. J. Ishida, “Phase equilibria and stability of ordered b.c.c. phases in the Fe-rich portion of the Fe–Ga system,” J. Alloys Compd. 347 (1–2), 198–205 (2002).CrossRef
12.
go back to reference A. K. Mohamed, V. V. Cheverikin, S. V. Medvedeva, I. A. Bobrikov, A. M. Balagurov, and I. S. Golovin, “First- and second-order phase transitions in Fe–(17–19) at. % Ga alloys,” Mater. Lett. 279, 128508(1–4) (2020). A. K. Mohamed, V. V. Cheverikin, S. V. Medvedeva, I. A. Bobrikov, A. M. Balagurov, and I. S. Golovin, “First- and second-order phase transitions in Fe–(17–19) at. % Ga alloys,” Mater. Lett. 279, 128508(1–4) (2020).
13.
go back to reference M. C. Zhang, H. L. Jiang, X. X. Gao, J. Zhu, and S. Z. Zhou, “Magnetostriction and microstructure of the melt-spun Fe83Ga17 alloy,” J. Appl. Phys. 99 (2), 023903(1–3) (2006). M. C. Zhang, H. L. Jiang, X. X. Gao, J. Zhu, and S. Z. Zhou, “Magnetostriction and microstructure of the melt-spun Fe83Ga17 alloy,” J. Appl. Phys. 99 (2), 023903(1–3) (2006).
14.
go back to reference S. Pascarelli, M. P. Ruffoni, R. S. Turtelli, F. Kubel, and R. Grössinger, “Local structure in magnetostrictive melt-spun Fe80Ga20 alloys,” Phys. Rev. B 77, 184406(1–8) (2008). S. Pascarelli, M. P. Ruffoni, R. S. Turtelli, F. Kubel, and R. Grössinger, “Local structure in magnetostrictive melt-spun Fe80Ga20 alloys,” Phys. Rev. B 77, 184406(1–8) (2008).
15.
go back to reference G. Petculescu, R. Wu, and R. J. McQueeney, “Magnetoelasticity of bcc Fe–Ga Alloys,” in Handbook of Magnetic Materials, Ed. by K. H. J. Buschow (Elsevier, Oxford, 2012), Vol. 20, pp. 123–226. G. Petculescu, R. Wu, and R. J. McQueeney, “Magnetoelasticity of bcc Fe–Ga Alloys,” in Handbook of Magnetic Materials, Ed. by K. H. J. Buschow (Elsevier, Oxford, 2012), Vol. 20, pp. 123–226.
16.
go back to reference H. Wang, Y. N. Zhang, R. Q. Wu, L. Z. Sun, D. S. Xu, and Z. D. Zhang, “Understanding strong magnetostriction in Fe100 – xGax alloys,” Sci. Rep. 3 (1), 3521(1–5) (2013). H. Wang, Y. N. Zhang, R. Q. Wu, L. Z. Sun, D. S. Xu, and Z. D. Zhang, “Understanding strong magnetostriction in Fe100 – xGax alloys,” Sci. Rep. 3 (1), 3521(1–5) (2013).
17.
go back to reference D. Viehland, J. F. Li, T. Lograsso, and M. Wuttig, “Structural studies of Fe0.81Ga0.19 by reciprocal space mapping,” Appl. Phys. Lett. 81 (17), 3185–3187 (2013).CrossRef D. Viehland, J. F. Li, T. Lograsso, and M. Wuttig, “Structural studies of Fe0.81Ga0.19 by reciprocal space mapping,” Appl. Phys. Lett. 81 (17), 3185–3187 (2013).CrossRef
18.
go back to reference T. A. Lograsso and E. M. Summers, “Detection and quantification of D03 chemical order in Fe–Ga alloys using high resolution X-ray diffraction,” Mater. Sci. Eng., A 416 (1–2), 240–245 (2006).CrossRef T. A. Lograsso and E. M. Summers, “Detection and quantification of D03 chemical order in Fe–Ga alloys using high resolution X-ray diffraction,” Mater. Sci. Eng., A 416 (1–2), 240–245 (2006).CrossRef
19.
go back to reference H. Cao, P. M. Gehring, C. P. Devreugd, J. A. Rodriguez-Rivera, J. Li, and D. Viehland, “Role of nanoscale precipitates on the enhanced magnetostriction of heat-treated Galfenol (Fe1 – xGax) alloys,” Phys. Rev. Lett. 102, 127201(1–4) (2009). H. Cao, P. M. Gehring, C. P. Devreugd, J. A. Rodriguez-Rivera, J. Li, and D. Viehland, “Role of nanoscale precipitates on the enhanced magnetostriction of heat-treated Galfenol (Fe1 – xGax) alloys,” Phys. Rev. Lett. 102, 127201(1–4) (2009).
20.
go back to reference Y. Du, M. Huang, S. Chang, D. L. Schlagel, T. A. Lograsso, and R. J. McQueeney, “Relation between Ga ordering and magnetostriction of Fe–Ga alloys studied by X-ray diffuse scattering,” Phys. Rev. B 81 (5), 054432(1–9) (2010). Y. Du, M. Huang, S. Chang, D. L. Schlagel, T. A. Lograsso, and R. J. McQueeney, “Relation between Ga ordering and magnetostriction of Fe–Ga alloys studied by X-ray diffuse scattering,” Phys. Rev. B 81 (5), 054432(1–9) (2010).
21.
go back to reference Y. Du, M. Huang, T. A. Lograsso, and R. J. McQueeney, “X-ray diffuse scattering measurements of chemical short-range order and lattice strains in a highly magnetostrictive Fe0.813Ga0.187 alloy in an applied magnetic field,” Phys. Rev. B 85 (21), 214437(1–6) (2012). Y. Du, M. Huang, T. A. Lograsso, and R. J. McQueeney, “X-ray diffuse scattering measurements of chemical short-range order and lattice strains in a highly magnetostrictive Fe0.813Ga0.187 alloy in an applied magnetic field,” Phys. Rev. B 85 (21), 214437(1–6) (2012).
22.
go back to reference Y. Ke, C. Jianga, J. Tao, and H. Duan, “Local inhomogeneous structural origin of giant magnetostriction in Fe–Ga alloys,” J. Alloys Compd. 725 (1–2), 14–22 (2017).CrossRef Y. Ke, C. Jianga, J. Tao, and H. Duan, “Local inhomogeneous structural origin of giant magnetostriction in Fe–Ga alloys,” J. Alloys Compd. 725 (1–2), 14–22 (2017).CrossRef
23.
go back to reference N. Rahman, M. Li, T. Ma, and M. Yan, “Microstructural origin of the magnetostriction deterioration in slowly cooled Fe81Ga19,” J. Alloys Compd. 786, 300–305 (2019).CrossRef N. Rahman, M. Li, T. Ma, and M. Yan, “Microstructural origin of the magnetostriction deterioration in slowly cooled Fe81Ga19,” J. Alloys Compd. 786, 300–305 (2019).CrossRef
24.
go back to reference T. A. Lograsso, A. R. Ross, D. L. Schlagel, A. E. Clark, and M. Wun-Fogled, “Structural transformations in quenched Fe–Ga alloys,” J. Alloys Compd. 350 (1–2), 95–101 (2003).CrossRef T. A. Lograsso, A. R. Ross, D. L. Schlagel, A. E. Clark, and M. Wun-Fogled, “Structural transformations in quenched Fe–Ga alloys,” J. Alloys Compd. 350 (1–2), 95–101 (2003).CrossRef
25.
go back to reference Y. K. He, X. Ke, C. Jiang, N. Miao, H. Wang, J. M. D. Coey, Y. Wang, and H. Xu, “Interaction of trace rare-earth dopants and nanoheterogeneities induces giant magnetostriction in Fe-Ga alloys,” Adv. Funct. Mater. 28 (20), 1800858(1–9) (2018). Y. K. He, X. Ke, C. Jiang, N. Miao, H. Wang, J. M. D. Coey, Y. Wang, and H. Xu, “Interaction of trace rare-earth dopants and nanoheterogeneities induces giant magnetostriction in Fe-Ga alloys,” Adv. Funct. Mater. 28 (20), 1800858(1–9) (2018).
26.
go back to reference R. Wu, “Origin of large magnetostriction in FeGa alloys,” J. Appl. Phys. 91, 7358–7360 (2002).CrossRef R. Wu, “Origin of large magnetostriction in FeGa alloys,” J. Appl. Phys. 91, 7358–7360 (2002).CrossRef
27.
go back to reference Y. N. Zhang, J. X. Cao, and R. Q. Wu, “Rigid band model for prediction of magnetostriction of iron- gallium alloys,” Appl. Phys. Lett. 96, 062508 (2010).CrossRef Y. N. Zhang, J. X. Cao, and R. Q. Wu, “Rigid band model for prediction of magnetostriction of iron- gallium alloys,” Appl. Phys. Lett. 96, 062508 (2010).CrossRef
28.
go back to reference Y. Zhang and R. Wu, “Mechanism of large magnetostriction of Galfenol,” IEEE Trans Magn. 47, 4044–4049 (2011).CrossRef Y. Zhang and R. Wu, “Mechanism of large magnetostriction of Galfenol,” IEEE Trans Magn. 47, 4044–4049 (2011).CrossRef
29.
go back to reference Y. Zhang, H. Wang, and R. Wu, “First-principles determination of the rhombohedral magnetostriction of Fe100 – xAlx and Fe100 – xGax alloys,” Phys. Rev. B 86, 224410(1–6) (2012). Y. Zhang, H. Wang, and R. Wu, “First-principles determination of the rhombohedral magnetostriction of Fe100 – xAlx and Fe100 – xGax alloys,” Phys. Rev. B 86, 224410(1–6) (2012).
30.
go back to reference G. A. Marchant, C. E. Patrick, and J. B. Staunton, “Ab initio calculations of temperature-dependent magnetostriction of Fe and A2 Fe1 – xGax within the disordered local moment picture,” Phys. Rev. B 99, 054415(1–12) (2019). G. A. Marchant, C. E. Patrick, and J. B. Staunton, “Ab initio calculations of temperature-dependent magnetostriction of Fe and A2 Fe1 – xGax within the disordered local moment picture,” Phys. Rev. B 99, 054415(1–12) (2019).
31.
go back to reference G. A. Marchant, C. D. Woodgate, C. E. Patrick, and J. B. Staunton, “Ab initio calculations of the phase behavior and subsequent magnetostriction of Fe1 – xGax within the disordered local moment picture,” Phys. Rev. B 103, 094414(1–14) (2021). G. A. Marchant, C. D. Woodgate, C. E. Patrick, and J. B. Staunton, “Ab initio calculations of the phase behavior and subsequent magnetostriction of Fe1 – xGax within the disordered local moment picture,” Phys. Rev. B 103, 094414(1–14) (2021).
32.
go back to reference A. G. Lesnik, Induced Magnetic Anisotropy (Naukova dumka, Kiev, 1976) [in Russian]. A. G. Lesnik, Induced Magnetic Anisotropy (Naukova dumka, Kiev, 1976) [in Russian].
33.
go back to reference Yu. P. Chernenkov, N. V. Ershov, V. A. Lukshina, V. I. Fedorov, and B. K. Sokolov, “An X-ray diffraction study of the short-range ordering in the soft-magnetic Fe–Si alloys with induced magnetic anisotropy,” Phys. B: Condens. Matter 396 (1–2), 220–230 (2007).CrossRef Yu. P. Chernenkov, N. V. Ershov, V. A. Lukshina, V. I. Fedorov, and B. K. Sokolov, “An X-ray diffraction study of the short-range ordering in the soft-magnetic Fe–Si alloys with induced magnetic anisotropy,” Phys. B: Condens. Matter 396 (1–2), 220–230 (2007).CrossRef
34.
go back to reference N. V. Ershov, Yu. P. Chernenkov, V. A. Lukshina, and V. I. Fedorov, “ Structure of α-FeSi alloys with 8 and 10 at % silicon,” Phys. Solid State 54 (9), 1935–1942 (2012).CrossRef N. V. Ershov, Yu. P. Chernenkov, V. A. Lukshina, and V. I. Fedorov, “ Structure of α-FeSi alloys with 8 and 10 at % silicon,” Phys. Solid State 54 (9), 1935–1942 (2012).CrossRef
35.
go back to reference Yu. P. Chernenkov, N. V. Ershov, and V. A. Lukshina, “Effect of annealing in a ferromagnetic state on the structure of an Fe–18 at % Ga alloy,” Phys. Solid State 60, 2370–2380 (2018).CrossRef Yu. P. Chernenkov, N. V. Ershov, and V. A. Lukshina, “Effect of annealing in a ferromagnetic state on the structure of an Fe–18 at % Ga alloy,” Phys. Solid State 60, 2370–2380 (2018).CrossRef
36.
go back to reference N. V. Ershov, Yu. P. Chernenkov, V. A. Lukshina, and O. P. Smirnov, “Short-range order in α-FeAl soft magnetic alloy,” Phys. Solid State 60 (9), 1661‒1673 (2018).CrossRef N. V. Ershov, Yu. P. Chernenkov, V. A. Lukshina, and O. P. Smirnov, “Short-range order in α-FeAl soft magnetic alloy,” Phys. Solid State 60 (9), 1661‒1673 (2018).CrossRef
37.
go back to reference Yu. P. Chernenkov, V. I. Fedorov, V. A. Lukshina, B. K. Sokolov, and N. V. Ershov, “X-ray diffuse scattering from a-Fe and a-Fe1 – xSix single crystals,” Phys. Met. Metallogr. 100 (3), 235 (2005). Yu. P. Chernenkov, V. I. Fedorov, V. A. Lukshina, B. K. Sokolov, and N. V. Ershov, “X-ray diffuse scattering from a-Fe and a-Fe1 – xSix single crystals,” Phys. Met. Metallogr. 100 (3), 235 (2005).
38.
go back to reference B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction (Prentice-Hall, New York, 2001). B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction (Prentice-Hall, New York, 2001).
39.
go back to reference C. Dasarathy and W. Hume-Rothery, “The system iron-gallium,” Proc. RSL Ser. A 286, 141–157 (1965). C. Dasarathy and W. Hume-Rothery, “The system iron-gallium,” Proc. RSL Ser. A 286, 141–157 (1965).
40.
go back to reference V. A. Lukshina, D. A. Shishkin, A. R. Kuznetsov, H. V. Ershov, and Yu. N. Gornostyrev, “ Effect of magnetic field annealing on magnetic properties of iron–gallium alloys,” Phys. Solid State 62 (10), 1746–1754 (2020).CrossRef V. A. Lukshina, D. A. Shishkin, A. R. Kuznetsov, H. V. Ershov, and Yu. N. Gornostyrev, “ Effect of magnetic field annealing on magnetic properties of iron–gallium alloys,” Phys. Solid State 62 (10), 1746–1754 (2020).CrossRef
41.
go back to reference Q. Xing, Y. Du, R. J. McQueeney, and T. A. Lograsso, “Structural investigations of Fe–Ga alloys: Phase relations and magnetostrictive behavior,” Acta Mater. 56, 4536–4546 (2008).CrossRef Q. Xing, Y. Du, R. J. McQueeney, and T. A. Lograsso, “Structural investigations of Fe–Ga alloys: Phase relations and magnetostrictive behavior,” Acta Mater. 56, 4536–4546 (2008).CrossRef
Metadata
Title
X-ray Analysis of Short-Range Order in Iron–Gallium Solid Solutions
Authors
Yu. P. Chernenkov
N. V. Ershov
Yu. N. Gornostyrev
V. A. Lukshina
O. P. Smirnov
D. A. Shishkin
Publication date
01-10-2022
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 10/2022
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22600944

Other articles of this Issue 10/2022

Physics of Metals and Metallography 10/2022 Go to the issue

STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Calorimetric Studies of Phase Transformations in Fe–Ni Alloys