Skip to main content
Top

2023 | OriginalPaper | Chapter

3. ZnS-Based Neutron and Alpha Radiation Detectors

Authors : Ghenadii Korotcenkov, Michail Ivanov

Published in: Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Problems requiring the detection of neutron radiation are considered, and a description of approaches that can be used for this is given. It is shown that the use of ZnS doped with Ag as a scintillator and 6LiF as a converter converting neutron radiation into a beam of alpha particles and tritons is the best combination for developing neutron detectors. The methods used for the synthesis of ZnS(Ag) aimed for use in detectors are considered. The analysis of possible designs of neutron detectors is given. It is shown that the use of wave length shifting fibers and multi-anode PMTs and flat-panel multi-anode PMTs can significantly simplify the development of position-sensitive neutron detectors. The results of testing the detectors are presented. An analysis of the market for neutron detectors and ZnS-based scintillator screens is given. The approaches used to detect fast neutrons are considered. Devices for large scientific projects developed on the basis of ZnS/6LiF scintillators are described. Possibilities of simultaneous detection of various ionizing radiations using phoswich technology are shown.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abdalla AM, Ali AM, Al-Jarallah M. Characterization and radiation detection application of ZnS(Ag) nanoparticles. Physica B. 2018;550:235–43.ADSCrossRef Abdalla AM, Ali AM, Al-Jarallah M. Characterization and radiation detection application of ZnS(Ag) nanoparticles. Physica B. 2018;550:235–43.ADSCrossRef
2.
go back to reference Abreu Y, Amhis Y, Arnold L, Ban G, Beaumont W, Bongrand M, et al. A novel segmented-scintillator antineutrino detector. J Instrum. 2017;12:1–18.CrossRef Abreu Y, Amhis Y, Arnold L, Ban G, Beaumont W, Bongrand M, et al. A novel segmented-scintillator antineutrino detector. J Instrum. 2017;12:1–18.CrossRef
3.
go back to reference Aza E, Dinar N, Manessi GP, Silari M. A Bonner sphere spectrometer for pulsed fields. Radiat Prot Dosim. 2016;168:149–53. Aza E, Dinar N, Manessi GP, Silari M. A Bonner sphere spectrometer for pulsed fields. Radiat Prot Dosim. 2016;168:149–53.
4.
go back to reference Bachman CH, Sawner ML, Allen WM. Spectral energy distribution curves of ZnS:Ag and ZnCdS:Ag after thermal vacuum treatment. J Electrochem Soc. 1956;103(2):117–22.CrossRef Bachman CH, Sawner ML, Allen WM. Spectral energy distribution curves of ZnS:Ag and ZnCdS:Ag after thermal vacuum treatment. J Electrochem Soc. 1956;103(2):117–22.CrossRef
5.
go back to reference Ban G, Beaumont W, Buhour JM, Coupé B, Cucoanes AS, D’Hondt J, et al. SoLid: search for oscillations with Lithium-6 detector at the SCK-CEN BR2 reactor. Nucl Part Phys Proc. 2016;273–275:2690–2.CrossRef Ban G, Beaumont W, Buhour JM, Coupé B, Cucoanes AS, D’Hondt J, et al. SoLid: search for oscillations with Lithium-6 detector at the SCK-CEN BR2 reactor. Nucl Part Phys Proc. 2016;273–275:2690–2.CrossRef
6.
go back to reference Belushkin AV, Kuzmin ES, Shvetsov VN. Status of the FLNP project on neutron position-sensitive detectors. Nucl Instrum Methods Phys Res A. 2004;529:249–53.ADSCrossRef Belushkin AV, Kuzmin ES, Shvetsov VN. Status of the FLNP project on neutron position-sensitive detectors. Nucl Instrum Methods Phys Res A. 2004;529:249–53.ADSCrossRef
7.
go back to reference Birks JB. The theory and practice of scintillation counting. Oxford: Pergamon Press; 1964. Birks JB. The theory and practice of scintillation counting. Oxford: Pergamon Press; 1964.
8.
9.
go back to reference Bouchama I, Dmitrieva AN, Gromushkin DM. Study of the properties of neutron detector based on ZnS(Ag)+6LiF for monitoring of radiation situation near nuclear setups. Mosc Univ Phys Bull. 2018;4:1840202. (in Russian) Bouchama I, Dmitrieva AN, Gromushkin DM. Study of the properties of neutron detector based on ZnS(Ag)+6LiF for monitoring of radiation situation near nuclear setups. Mosc Univ Phys Bull. 2018;4:1840202. (in Russian)
10.
go back to reference Castle B. Improved neutron detection using Zinc Sulfide with Boron. PhD thesis, Merton College, University of Oxford, UK; 2018. Castle B. Improved neutron detection using Zinc Sulfide with Boron. PhD thesis, Merton College, University of Oxford, UK; 2018.
11.
go back to reference Chander H, Shanker V, Haranath D, Dudeja S, Sharma P. Characterization of ZnS:Cu, Br electroluminescent phosphor prepared by new route. Mater Res Bull. 2003;38:279–88.CrossRef Chander H, Shanker V, Haranath D, Dudeja S, Sharma P. Characterization of ZnS:Cu, Br electroluminescent phosphor prepared by new route. Mater Res Bull. 2003;38:279–88.CrossRef
12.
go back to reference Chen YY, Duh JG, Chiou BS, Peng CG. Luminescent mechanisms of ZnS:Cu:Cl and ZnS:Cu:Al phosphors. Thin Solid Films. 2001;392:50–5.ADSCrossRef Chen YY, Duh JG, Chiou BS, Peng CG. Luminescent mechanisms of ZnS:Cu:Cl and ZnS:Cu:Al phosphors. Thin Solid Films. 2001;392:50–5.ADSCrossRef
13.
go back to reference Childress NL, Miller WH. MCNP analysis and optimization of a triple crystal phoswich detector. Nucl Instrum Methods Phys Res A. 2002;490:263–70.ADSCrossRef Childress NL, Miller WH. MCNP analysis and optimization of a triple crystal phoswich detector. Nucl Instrum Methods Phys Res A. 2002;490:263–70.ADSCrossRef
14.
go back to reference Chu MC, Fung KY, Kwok T, Leung JKC, Lin YC, Liu H, et al. Development of a Bonner sphere neutron spectrometer from a commercial neutron dosimeter. JINST. 2016;11:P11005.CrossRef Chu MC, Fung KY, Kwok T, Leung JKC, Lin YC, Liu H, et al. Development of a Bonner sphere neutron spectrometer from a commercial neutron dosimeter. JINST. 2016;11:P11005.CrossRef
15.
go back to reference Crow ML, Hodges JP, Copper RG. Shifting scintillator prototype large pixel wavelength-shifting fiber detector for the POWGEN3 powder diffractometer. Nucl Instrum Methods Phys Res A. 2004;529:287–92.ADSCrossRef Crow ML, Hodges JP, Copper RG. Shifting scintillator prototype large pixel wavelength-shifting fiber detector for the POWGEN3 powder diffractometer. Nucl Instrum Methods Phys Res A. 2004;529:287–92.ADSCrossRef
16.
go back to reference Davies DA, Silver J, Vecht A, Marsh PJ, Rose JA. A novel method for the synthesis of ZnS for use in the preparation of phosphors for CRT devices. J Electrochem Soc. 2001;148(10):H143–8.CrossRef Davies DA, Silver J, Vecht A, Marsh PJ, Rose JA. A novel method for the synthesis of ZnS for use in the preparation of phosphors for CRT devices. J Electrochem Soc. 2001;148(10):H143–8.CrossRef
17.
go back to reference Dorenbos P. Light output and energy resolution of Ce3+-doped scintillators. Nucl Instrum Methods Phys Res A. 2002;486:208–13.ADSCrossRef Dorenbos P. Light output and energy resolution of Ce3+-doped scintillators. Nucl Instrum Methods Phys Res A. 2002;486:208–13.ADSCrossRef
18.
go back to reference Fang X, Zhai T, Gautam UK, Li L, Wu L, Bando Y, et al. ZnS nanostructures: from synthesis to applications. Prog Mater Sci. 2011;56(2):175–287.CrossRef Fang X, Zhai T, Gautam UK, Li L, Wu L, Bando Y, et al. ZnS nanostructures: from synthesis to applications. Prog Mater Sci. 2011;56(2):175–287.CrossRef
19.
go back to reference Feldman WC, Barraclough BL, Fuller KR, Lawrence DJ, Maurice S, Miller MC, et al. The lunar prospector gamma-ray and neutron spectrometers. Nucl Instrum Methods Phys Res A. 1999;422:562–6.ADSCrossRef Feldman WC, Barraclough BL, Fuller KR, Lawrence DJ, Maurice S, Miller MC, et al. The lunar prospector gamma-ray and neutron spectrometers. Nucl Instrum Methods Phys Res A. 1999;422:562–6.ADSCrossRef
20.
go back to reference Gozani T. The role of neutron based inspection techniques in the post 9/11/01 era. Nucl Instrum Methods Phys Res B. 2004;213:460.ADSCrossRef Gozani T. The role of neutron based inspection techniques in the post 9/11/01 era. Nucl Instrum Methods Phys Res B. 2004;213:460.ADSCrossRef
21.
go back to reference Gromushkin DM, Alekseenko VV, Petrukhin AA. Registration of the thermal neutron flux near the Earth’s surface. Izvestiya RAN, ser. Phys. 2009;73(3):425–7. (in Russian) Gromushkin DM, Alekseenko VV, Petrukhin AA. Registration of the thermal neutron flux near the Earth’s surface. Izvestiya RAN, ser. Phys. 2009;73(3):425–7. (in Russian)
22.
go back to reference Guzman-Garcia KA, Vega-Carrillo HR, Gallego E, Gonzalez-Gonzalez JA, Lorente A, Ibañez-Fernandez S. 10B+ZnS(Ag) as an alternative to 3 He-based detectors for radiation portal monitors. EPJ Web Conf. 2017;153:07008.CrossRef Guzman-Garcia KA, Vega-Carrillo HR, Gallego E, Gonzalez-Gonzalez JA, Lorente A, Ibañez-Fernandez S. 10B+ZnS(Ag) as an alternative to 3 He-based detectors for radiation portal monitors. EPJ Web Conf. 2017;153:07008.CrossRef
23.
go back to reference Hoa TTQ, Vu LV, Canh TD, Long NN. Preparation of ZnS nanoparticles by hydrothermal method. J Phys. 2009;187:012081. Hoa TTQ, Vu LV, Canh TD, Long NN. Preparation of ZnS nanoparticles by hydrothermal method. J Phys. 2009;187:012081.
24.
go back to reference Hosoya T, Nakamura T, Katagiri M, Birumachi A, Ebine M, Soyama K. Development of a new detector and DAQ systems for iBIX. Nucl Instrum Methods Phys Res A. 2009;600:217–9.ADSCrossRef Hosoya T, Nakamura T, Katagiri M, Birumachi A, Ebine M, Soyama K. Development of a new detector and DAQ systems for iBIX. Nucl Instrum Methods Phys Res A. 2009;600:217–9.ADSCrossRef
25.
go back to reference Iwanowska J, Swiderski L, Moszynski M, Wolski D, Kniest F, Catto G The BC-704 scintillation screen with light readout by wavelength shifting fibers as a highly efficient neutron detector. In: Proceedings of 2011 IEEE nuclear science symposium conference record, NP1.M-210, 2011. p. 423–426. Iwanowska J, Swiderski L, Moszynski M, Wolski D, Kniest F, Catto G The BC-704 scintillation screen with light readout by wavelength shifting fibers as a highly efficient neutron detector. In: Proceedings of 2011 IEEE nuclear science symposium conference record, NP1.M-210, 2011. p. 423–426.
26.
go back to reference Johnson LC, Barnes C, Krasilnikov A, Marcus FB, Nishitani T. Neutron diagnostics for ITER. Rev Sci Instrum. 1997;68:569.ADSCrossRef Johnson LC, Barnes C, Krasilnikov A, Marcus FB, Nishitani T. Neutron diagnostics for ITER. Rev Sci Instrum. 1997;68:569.ADSCrossRef
27.
go back to reference Katagiri M. Development status of position-sensitive neutron detectors for J-PARC in JAERI—a comprehensive overview. Nucl Instrum Methods Phys Res A. 2004;529(2004):254–9.ADSCrossRef Katagiri M. Development status of position-sensitive neutron detectors for J-PARC in JAERI—a comprehensive overview. Nucl Instrum Methods Phys Res A. 2004;529(2004):254–9.ADSCrossRef
28.
go back to reference Katagiri M, Nakamura T, Ebine M, Birumachi A, Sato S, Schooneveld EM, Rhodes NJ. High-position-resolution neutron imaging detector with crossed wavelength shifting fiber read-out using two ZnS/6LiF scintillator sheets. Nucl Instrum Methods Phys Res A. 2007;573(2007):149–52.ADSCrossRef Katagiri M, Nakamura T, Ebine M, Birumachi A, Sato S, Schooneveld EM, Rhodes NJ. High-position-resolution neutron imaging detector with crossed wavelength shifting fiber read-out using two ZnS/6LiF scintillator sheets. Nucl Instrum Methods Phys Res A. 2007;573(2007):149–52.ADSCrossRef
29.
go back to reference Knoll GF. Radiation detection and measurement, vol. 3. Hoboken: Wiley; 2000. Knoll GF. Radiation detection and measurement, vol. 3. Hoboken: Wiley; 2000.
30.
go back to reference Kojima T, Katagiri M, Tsutsui N, Imai K, Matsubayashi M, Sakasai K. Neutron scintillators with high detection efficiency. Nucl Instrum Methods Phys Res A. 2004;529:325–8.ADSCrossRef Kojima T, Katagiri M, Tsutsui N, Imai K, Matsubayashi M, Sakasai K. Neutron scintillators with high detection efficiency. Nucl Instrum Methods Phys Res A. 2004;529:325–8.ADSCrossRef
31.
go back to reference Koontz PG, Keepin GR, Aahley JE. ZnS(Ag) phosphor mixtures for neutron scintillation counting. Rev Sci Instrum. 1955;26(4):352–6.ADSCrossRef Koontz PG, Keepin GR, Aahley JE. ZnS(Ag) phosphor mixtures for neutron scintillation counting. Rev Sci Instrum. 1955;26(4):352–6.ADSCrossRef
32.
go back to reference Kotera Y, Naraoka K. Electrophotoluminescence of zinc sulfide phosphors. Bull Chem Soc Jpn. 1960;33(6):721–6.CrossRef Kotera Y, Naraoka K. Electrophotoluminescence of zinc sulfide phosphors. Bull Chem Soc Jpn. 1960;33(6):721–6.CrossRef
33.
go back to reference Kouzes RT, Ely JH, Erikson LE, Kernan WJ, Lintereur AT, Siciliano ER, et al. Neutron detection alternatives to 3He for national security applications. Nucl Instrum Methods Phys Res A. 2010;623:1035–45.ADSCrossRef Kouzes RT, Ely JH, Erikson LE, Kernan WJ, Lintereur AT, Siciliano ER, et al. Neutron detection alternatives to 3He for national security applications. Nucl Instrum Methods Phys Res A. 2010;623:1035–45.ADSCrossRef
34.
go back to reference L’Annunziata MI. Solid scintillation analysis. In: L’Annunziata MI, editor. Handbook of radioactivity analysis, vol. 1. Oxford: Academic; 2020. p. 899–1045.CrossRef L’Annunziata MI. Solid scintillation analysis. In: L’Annunziata MI, editor. Handbook of radioactivity analysis, vol. 1. Oxford: Academic; 2020. p. 899–1045.CrossRef
35.
go back to reference Litvin VS, Belyaev AD, Ignatov SM, Nedorezov VG, Sadykov RA, Alekseev AA, et al. Application of scintillators based on ZnS(Ag)/6LiF and LiI(Eu) in combination with silicon photomultipliers in thermal neutron detectors with high coordinate and time resolution. Proc Russ Acad Sci Ser Phys. 2009;73(2):230–2. (in Russian) Litvin VS, Belyaev AD, Ignatov SM, Nedorezov VG, Sadykov RA, Alekseev AA, et al. Application of scintillators based on ZnS(Ag)/6LiF and LiI(Eu) in combination with silicon photomultipliers in thermal neutron detectors with high coordinate and time resolution. Proc Russ Acad Sci Ser Phys. 2009;73(2):230–2. (in Russian)
36.
go back to reference Lu H-Y, Chu S-Y. The mechanism andcharacteristics of ZnS-based phosphor powders. J Cryst Growth. 2004;265:476–81.ADSCrossRef Lu H-Y, Chu S-Y. The mechanism andcharacteristics of ZnS-based phosphor powders. J Cryst Growth. 2004;265:476–81.ADSCrossRef
37.
go back to reference Lucas HF. Improved low-level alpha-scintillation counter for radon. Rev Sci Instrum. 1957;28:680–3.ADSCrossRef Lucas HF. Improved low-level alpha-scintillation counter for radon. Rev Sci Instrum. 1957;28:680–3.ADSCrossRef
38.
go back to reference Marin VN, Sadykov RA, Trunov DN, Litvin VS, Aksenov SN, Stolyarov AA. A new type of thermal neutron scintillation detectors based on ZnS(Ag)/LiF and avalanche photodiodes. Lett JTF. 2015;41(18):96–101. (in Russian) Marin VN, Sadykov RA, Trunov DN, Litvin VS, Aksenov SN, Stolyarov AA. A new type of thermal neutron scintillation detectors based on ZnS(Ag)/LiF and avalanche photodiodes. Lett JTF. 2015;41(18):96–101. (in Russian)
39.
go back to reference Mauri G, Sykora GJ, Schooneveld EM, Rhodes NJ. Enhanced position resolution for ZnS:Ag/6LiF wavelength shifting fibre thermal neutron detectors. Eur Phys J Plus. 2021;136:286.CrossRef Mauri G, Sykora GJ, Schooneveld EM, Rhodes NJ. Enhanced position resolution for ZnS:Ag/6LiF wavelength shifting fibre thermal neutron detectors. Eur Phys J Plus. 2021;136:286.CrossRef
40.
go back to reference McCloy JS, Bliss M, Miller B, Wang Z, Stave S. Scintillation and luminescence in transparent colorless single and 3 polycrystalline bulk ceramic ZnS. J Lumin. 2015;157:416–23.CrossRef McCloy JS, Bliss M, Miller B, Wang Z, Stave S. Scintillation and luminescence in transparent colorless single and 3 polycrystalline bulk ceramic ZnS. J Lumin. 2015;157:416–23.CrossRef
41.
go back to reference McGregor DS, Vernon SM, Gersch HK, et al. Self-biased Boron-10 coated high-purity epitaxial GaAs thermal neutron detectors. IEEE Trans Nucl Sci. 2000;NS-47:1364–70.ADSCrossRef McGregor DS, Vernon SM, Gersch HK, et al. Self-biased Boron-10 coated high-purity epitaxial GaAs thermal neutron detectors. IEEE Trans Nucl Sci. 2000;NS-47:1364–70.ADSCrossRef
42.
go back to reference Medvedev MN. Scintillation detectors. Moscow: Atomizdat; 1977. (in Russian) Medvedev MN. Scintillation detectors. Moscow: Atomizdat; 1977. (in Russian)
43.
go back to reference Milbrath AD, Peurrung AJ, Bliss M, Webe WJ. Radiation detector materials: an overview. J Mater Res. 2008;23(10):2561–81.ADSCrossRef Milbrath AD, Peurrung AJ, Bliss M, Webe WJ. Radiation detector materials: an overview. J Mater Res. 2008;23(10):2561–81.ADSCrossRef
44.
go back to reference Miller BW, Gregory SJ, Fuller ES, Barrett HH, Bradford BH, Furenlid LR. The iQID camera: An ionizing-radiation quantum imaging detector. Nucl Instrum Methods Phys Res A. 2014;767:146–52.ADSCrossRef Miller BW, Gregory SJ, Fuller ES, Barrett HH, Bradford BH, Furenlid LR. The iQID camera: An ionizing-radiation quantum imaging detector. Nucl Instrum Methods Phys Res A. 2014;767:146–52.ADSCrossRef
45.
go back to reference Mori C, Uritani A, Miyahara H, Iguchi T, Shiroya S, Kobayashi K, et al. Measurement of neutron and γ-ray intensity distributions with an optical fiber-scintillator detector. Nucl Instrum Methods Phys Res A. 1999;422:129–32.ADSCrossRef Mori C, Uritani A, Miyahara H, Iguchi T, Shiroya S, Kobayashi K, et al. Measurement of neutron and γ-ray intensity distributions with an optical fiber-scintillator detector. Nucl Instrum Methods Phys Res A. 1999;422:129–32.ADSCrossRef
46.
go back to reference Morris CL, Adamek ER, Broussard LJ, Callahan NB, Clayton SM, Cude-Woods C, et al. A new method for measuring the neutron lifetime using an in situ neutron detector. Rev Sci Instrum. 2017;88:053508.ADSCrossRef Morris CL, Adamek ER, Broussard LJ, Callahan NB, Clayton SM, Cude-Woods C, et al. A new method for measuring the neutron lifetime using an in situ neutron detector. Rev Sci Instrum. 2017;88:053508.ADSCrossRef
47.
go back to reference Mosset J-B, Stoykov A, Greuter U, Hildebrandt M, Schlumpf N, Van Swygenhoven H. Evaluation of two thermal neutron detection units consisting of ZnS/6LiF scintillating layers with embedded WLS fibers read out with a SiPM. Nucl Instrum Methods Phys Res A. 2014;764:299–304.ADSCrossRef Mosset J-B, Stoykov A, Greuter U, Hildebrandt M, Schlumpf N, Van Swygenhoven H. Evaluation of two thermal neutron detection units consisting of ZnS/6LiF scintillating layers with embedded WLS fibers read out with a SiPM. Nucl Instrum Methods Phys Res A. 2014;764:299–304.ADSCrossRef
48.
go back to reference Murugadoss G. Synthesis and photoluminescence properties of zinc sulfide nanoparticles doped with copper using effective surfactants. Particuology. 2013;11(5):566–73.CrossRef Murugadoss G. Synthesis and photoluminescence properties of zinc sulfide nanoparticles doped with copper using effective surfactants. Particuology. 2013;11(5):566–73.CrossRef
49.
go back to reference Nakamura T, Schooneveld EM, Rhodes NJ, Katagiri M, Toh K, Sakasai K, Soyama K. A half-millimetre spatial resolution fibre-coded linear position-sensitive scintillator detector with wavelength-shifting fibre read-out for neutron detection. Nucl Instrum Methods Phys Res A. 2009;606:675–80.ADSCrossRef Nakamura T, Schooneveld EM, Rhodes NJ, Katagiri M, Toh K, Sakasai K, Soyama K. A half-millimetre spatial resolution fibre-coded linear position-sensitive scintillator detector with wavelength-shifting fibre read-out for neutron detection. Nucl Instrum Methods Phys Res A. 2009;606:675–80.ADSCrossRef
50.
go back to reference Nakamura T, Schooneveld EM, Rhodes NJ, Katagiri M, Sakasai K, Soyama K. Evaluation of the performance of a fibre-coded neutron detector with a ZnS/10B2O3 ceramic scintillator. Nucl Instrum Methods Phys Res A. 2009b;600:164–6.ADSCrossRef Nakamura T, Schooneveld EM, Rhodes NJ, Katagiri M, Sakasai K, Soyama K. Evaluation of the performance of a fibre-coded neutron detector with a ZnS/10B2O3 ceramic scintillator. Nucl Instrum Methods Phys Res A. 2009b;600:164–6.ADSCrossRef
51.
go back to reference Nakamura T, Kawasaki T, Hosoya T, Toh K, Oikawa K, Sakasai K, et al. A large-area two-dimensional scintillator detector with a wavelength-shifting fibre readout for a time-of-flight single-crystal neutron diffractometer. Nucl Instrum Methods Phys Res A. 2012;686:64–70.ADSCrossRef Nakamura T, Kawasaki T, Hosoya T, Toh K, Oikawa K, Sakasai K, et al. A large-area two-dimensional scintillator detector with a wavelength-shifting fibre readout for a time-of-flight single-crystal neutron diffractometer. Nucl Instrum Methods Phys Res A. 2012;686:64–70.ADSCrossRef
52.
go back to reference Nakamura T, Toh K, Kawasaki T, Honda K, Suzuki H, Ebine M, et al. A scintillator-based detector with sub-100-μm spatial resolution comprising a fibre-optic taper with wavelength-shifting fibre readout for time-of-flight neutron imaging. Nucl Instrum Methods Phys Res A. 2014;737:176–83.ADSCrossRef Nakamura T, Toh K, Kawasaki T, Honda K, Suzuki H, Ebine M, et al. A scintillator-based detector with sub-100-μm spatial resolution comprising a fibre-optic taper with wavelength-shifting fibre readout for time-of-flight neutron imaging. Nucl Instrum Methods Phys Res A. 2014;737:176–83.ADSCrossRef
53.
go back to reference Nakamura T, Toh K, Kawasaki T, Ebine M, Birumachi A, Sakasai K, Soyama K. A two-dimensional scintillation-based neutron detector with wavelength-shifting fibers and incorporating an interpolation method. Nucl Instrum Methods Phys Res A. 2015;784:202–7.ADSCrossRef Nakamura T, Toh K, Kawasaki T, Ebine M, Birumachi A, Sakasai K, Soyama K. A two-dimensional scintillation-based neutron detector with wavelength-shifting fibers and incorporating an interpolation method. Nucl Instrum Methods Phys Res A. 2015;784:202–7.ADSCrossRef
54.
go back to reference Nakamura T, Kawasaki T, Tohi K, Harjo S, Sakasi K, Alzawa K. Two-dimensional scintillation neutron detector for TAKUMI diffractometer in J-PARC MLF. JPS Conf Proc. 2021;33:011097. Nakamura T, Kawasaki T, Tohi K, Harjo S, Sakasi K, Alzawa K. Two-dimensional scintillation neutron detector for TAKUMI diffractometer in J-PARC MLF. JPS Conf Proc. 2021;33:011097.
55.
go back to reference Ollinger M, Craciun V, Singh RK. Nano-encapsulated ZnS:Ag phosphors for field emission flat panel display applications. MRS Proc. 2002;704:W8.4.1–6.CrossRef Ollinger M, Craciun V, Singh RK. Nano-encapsulated ZnS:Ag phosphors for field emission flat panel display applications. MRS Proc. 2002;704:W8.4.1–6.CrossRef
56.
go back to reference Ortiz-Rodríguez JM, del Rosario Martinez-Blanco M, Cervantes Viramontes JM, Vega-Carrillo HR. Robust design of artificial neural networks methodology in neutron spectrometry. In: Suzuki K, editor. Artificial neural networks: architectures and applications. London: INTECH; 2013. p. 83–111. Ortiz-Rodríguez JM, del Rosario Martinez-Blanco M, Cervantes Viramontes JM, Vega-Carrillo HR. Robust design of artificial neural networks methodology in neutron spectrometry. In: Suzuki K, editor. Artificial neural networks: architectures and applications. London: INTECH; 2013. p. 83–111.
57.
go back to reference Peng WQ, Cong GW, Qu SC, Wang ZG. Synthesis and photoluminescence of ZnS:Cu nanoparticles. Opt Mater. 2006;29:313–7.ADSCrossRef Peng WQ, Cong GW, Qu SC, Wang ZG. Synthesis and photoluminescence of ZnS:Cu nanoparticles. Opt Mater. 2006;29:313–7.ADSCrossRef
58.
go back to reference Peurrung AJ. Recent developments in neutron detection. Nucl Instrum Methods Phys Res A. 2000;443:400–15.ADSCrossRef Peurrung AJ. Recent developments in neutron detection. Nucl Instrum Methods Phys Res A. 2000;443:400–15.ADSCrossRef
59.
go back to reference Pino F, Stevanato L, Cester D, Nebbia G, Sajo-Bohus L, Viesti G. Study of the thermal neutron detector ZnS(Ag)/LiF response using digital pulse processing. JINST. 2015;10:T08005.CrossRef Pino F, Stevanato L, Cester D, Nebbia G, Sajo-Bohus L, Viesti G. Study of the thermal neutron detector ZnS(Ag)/LiF response using digital pulse processing. JINST. 2015;10:T08005.CrossRef
60.
go back to reference Polte J. Fundamental growth principles of colloidal metal nanoparticles – a new perspective. CrystEngComm. 2005;17:6809–30.CrossRef Polte J. Fundamental growth principles of colloidal metal nanoparticles – a new perspective. CrystEngComm. 2005;17:6809–30.CrossRef
61.
go back to reference Price WJ. Nuclear radiation detection. 2nd ed. New York: McGraw-Hill; 1964. Price WJ. Nuclear radiation detection. 2nd ed. New York: McGraw-Hill; 1964.
62.
go back to reference Rhodes NJ. Scientific reviews: status and future development of neutron scintillation detectors. Neutron News. 2006;17(1):16–8.CrossRef Rhodes NJ. Scientific reviews: status and future development of neutron scintillation detectors. Neutron News. 2006;17(1):16–8.CrossRef
63.
go back to reference Rhodes NJ, Johnson MW, van Eijik CWE. The future of scintillator detectors in neutron scattering instrumentation. J Neutron Res. 1996;4:129–33.CrossRef Rhodes NJ, Johnson MW, van Eijik CWE. The future of scintillator detectors in neutron scattering instrumentation. J Neutron Res. 1996;4:129–33.CrossRef
64.
go back to reference Rhodes NJ, Wardle AG, Boram AJ, Johnson MW. Pixelated neutron scintillation detectors using fibre optic coded arrays. Nucl Instrum Methods Phys Res A. 1997;392:315–8.ADSCrossRef Rhodes NJ, Wardle AG, Boram AJ, Johnson MW. Pixelated neutron scintillation detectors using fibre optic coded arrays. Nucl Instrum Methods Phys Res A. 1997;392:315–8.ADSCrossRef
65.
go back to reference Rhodes NJ, Schooneveld EM, Eccleston RS. Current status and future directions of position sensitive neutron detectors at ISIS. Nucl Instrum Methods Phys Res A. 2004;529:243–8.ADSCrossRef Rhodes NJ, Schooneveld EM, Eccleston RS. Current status and future directions of position sensitive neutron detectors at ISIS. Nucl Instrum Methods Phys Res A. 2004;529:243–8.ADSCrossRef
66.
go back to reference Rodnyi PA. Physical processes in inorganic scintillators. London: CRC Press; 1997. Rodnyi PA. Physical processes in inorganic scintillators. London: CRC Press; 1997.
67.
go back to reference Rodnyi PA, Dorenbos P, van Eijk CWE. Energy loss in inorganic scintillators. Phys Status Solidi B. 1995;187(1):15–29.ADSCrossRef Rodnyi PA, Dorenbos P, van Eijk CWE. Energy loss in inorganic scintillators. Phys Status Solidi B. 1995;187(1):15–29.ADSCrossRef
68.
go back to reference SAVER. The neutron-detecting personal radiation detectors (PRDs) and spectroscopic PRDs market survey report. The National Urban Security Technology Laboratory, U.S. Department of Homeland Security, Science and Technology Directorate; 2015. SAVER. The neutron-detecting personal radiation detectors (PRDs) and spectroscopic PRDs market survey report. The National Urban Security Technology Laboratory, U.S. Department of Homeland Security, Science and Technology Directorate; 2015.
69.
go back to reference Shionoya S, Yen WM, Yamamoto H. Phosphor handbook. 2nd ed. London: Taylor & Francis Group; 2006. Shionoya S, Yen WM, Yamamoto H. Phosphor handbook. 2nd ed. London: Taylor & Francis Group; 2006.
70.
go back to reference Souriau J-C, Jiang YD, Penczek J, Paris HG, Summers CJ. Cathodoluminescent properties of coated SrGa2S4:Eu2+ and ZnS:Ag, Cl phosphors for field emission display applications. Mater Sci Eng B. 2000;76:165–8.CrossRef Souriau J-C, Jiang YD, Penczek J, Paris HG, Summers CJ. Cathodoluminescent properties of coated SrGa2S4:Eu2+ and ZnS:Ag, Cl phosphors for field emission display applications. Mater Sci Eng B. 2000;76:165–8.CrossRef
71.
go back to reference Spowart AR. Measurement of the absolute scintillation efficiency of granular and glass neutron scintillators. Nucl Instrum Methods. 1969;75:35–42.ADSCrossRef Spowart AR. Measurement of the absolute scintillation efficiency of granular and glass neutron scintillators. Nucl Instrum Methods. 1969;75:35–42.ADSCrossRef
72.
go back to reference Spowart A. Measurement of the gamma sensitivity of granular and glass neutron scintillators and films. Nucl Instrum Methods. 1970;82:1–6.ADSCrossRef Spowart A. Measurement of the gamma sensitivity of granular and glass neutron scintillators and films. Nucl Instrum Methods. 1970;82:1–6.ADSCrossRef
73.
go back to reference Stefanescu I, Christensen M, Fenske J, Hall-Wilton R, Henry P, Kirstein O, et al. Neutron detectors for the ESS diffractometers. J Instrum. 2017;12:01019.CrossRef Stefanescu I, Christensen M, Fenske J, Hall-Wilton R, Henry P, Kirstein O, et al. Neutron detectors for the ESS diffractometers. J Instrum. 2017;12:01019.CrossRef
74.
go back to reference Swart HC, Greeff AP, Holloway PH, Berning GLP. The difference in degradation behaviour of ZnS:Cu,Al,Au and ZnS:Ag,Cl phosphor powders. Appl Surf Sci. 1999;140:63–9.ADSCrossRef Swart HC, Greeff AP, Holloway PH, Berning GLP. The difference in degradation behaviour of ZnS:Cu,Al,Au and ZnS:Ag,Cl phosphor powders. Appl Surf Sci. 1999;140:63–9.ADSCrossRef
75.
go back to reference Sykora J, Schooneveld EM, Rhodes NJ. Development and future prospects of wavelength shifting fibre detectors at ISIS. Proceedings of the conference: international collaboration on advanced neutron sources XXI, Mito, Japan; 2014. p. 410–320. Sykora J, Schooneveld EM, Rhodes NJ. Development and future prospects of wavelength shifting fibre detectors at ISIS. Proceedings of the conference: international collaboration on advanced neutron sources XXI, Mito, Japan; 2014. p. 410–320.
76.
go back to reference Tojo T, Nakajima T. Preparation of thermal neutron scintillators based on a mixture of ZnS(Ag), 6LiF and polyethylene. Nucl Instrum Methods. 1967;53:163–6.ADSCrossRef Tojo T, Nakajima T. Preparation of thermal neutron scintillators based on a mixture of ZnS(Ag), 6LiF and polyethylene. Nucl Instrum Methods. 1967;53:163–6.ADSCrossRef
77.
go back to reference Tripathi LN, Chaubey BR, Mishra CP. Luminescence in ZnS: (Cu, Tb) and ZnS: (Ag, Tb) phosphors. Phys Stat Sol A. 1980;60:185–92.ADSCrossRef Tripathi LN, Chaubey BR, Mishra CP. Luminescence in ZnS: (Cu, Tb) and ZnS: (Ag, Tb) phosphors. Phys Stat Sol A. 1980;60:185–92.ADSCrossRef
78.
go back to reference Usuda S. Development of ZnS(Ag)/NE102A and ZnS(Ag)/Stilbene phoswich detectors for simultaneous α and β(γ) counting. J Nucl Sci Technol. 1992;29:927–9.CrossRef Usuda S. Development of ZnS(Ag)/NE102A and ZnS(Ag)/Stilbene phoswich detectors for simultaneous α and β(γ) counting. J Nucl Sci Technol. 1992;29:927–9.CrossRef
79.
go back to reference Usuda S, Abe H, Mihara A. Phoswich detectors combining doubly or triply ZnS(Ag), NE102A, BGO and/or NaI(Tl) scintillators for simultaneous counting of α, β and γ rays. Nucl Instrum Methods Phys Res A. 1994;340(3):540–5.ADSCrossRef Usuda S, Abe H, Mihara A. Phoswich detectors combining doubly or triply ZnS(Ag), NE102A, BGO and/or NaI(Tl) scintillators for simultaneous counting of α, β and γ rays. Nucl Instrum Methods Phys Res A. 1994;340(3):540–5.ADSCrossRef
80.
go back to reference Usuda S, Sakurai S, Yasuda K. Phoswich detectors for simultaneous counting of α-, β(γ)-rays and neutrons. Nucl Instrum Methods Phys Res A. 1997;388(1–2):193–8.ADSCrossRef Usuda S, Sakurai S, Yasuda K. Phoswich detectors for simultaneous counting of α-, β(γ)-rays and neutrons. Nucl Instrum Methods Phys Res A. 1997;388(1–2):193–8.ADSCrossRef
81.
go back to reference van Eijk CWE. Inorganic scintillators for thermal neutron detection. IEEE Trans Nucl Sci. 2012;59(2012):2242–7.ADSCrossRef van Eijk CWE. Inorganic scintillators for thermal neutron detection. IEEE Trans Nucl Sci. 2012;59(2012):2242–7.ADSCrossRef
82.
go back to reference Wang X, Shi J, Feng Z, Li M, Li C. Visible emission characteristics from different defects of ZnS nanocrystals. Phys Chem Chem Phys. 2011;13:4715–23.CrossRef Wang X, Shi J, Feng Z, Li M, Li C. Visible emission characteristics from different defects of ZnS nanocrystals. Phys Chem Chem Phys. 2011;13:4715–23.CrossRef
83.
go back to reference White L, Miller WH. A triple-crystal phoswich detector with digital pulse shape discrimination for alpha/beta/gamma spectroscopy. Nucl Instrum Methods Phys Res A. 1999;422(1–3):144–7.ADSCrossRef White L, Miller WH. A triple-crystal phoswich detector with digital pulse shape discrimination for alpha/beta/gamma spectroscopy. Nucl Instrum Methods Phys Res A. 1999;422(1–3):144–7.ADSCrossRef
84.
go back to reference Wilhelm K, Nattress J, Jovanovic I. Development and operation of a 6LiF:ZnS(Ag)—scintillating plastic capture-gated detector. Nucl Instrum Methods Phys Res A. 2017;842:54–61.ADSCrossRef Wilhelm K, Nattress J, Jovanovic I. Development and operation of a 6LiF:ZnS(Ag)—scintillating plastic capture-gated detector. Nucl Instrum Methods Phys Res A. 2017;842:54–61.ADSCrossRef
85.
go back to reference Wu C, Tang B, Sun ZJ, Zhang Q, Yang Z, Zhang J, et al. A study of ZnS(Ag)/6LiF with different mass ratios. Radiat Meas. 2013;58:128–32.CrossRef Wu C, Tang B, Sun ZJ, Zhang Q, Yang Z, Zhang J, et al. A study of ZnS(Ag)/6LiF with different mass ratios. Radiat Meas. 2013;58:128–32.CrossRef
86.
go back to reference Yamamoto S, Hatazawa J. Development of an alpha/beta/gamma detector for radiation monitoring. Rev Sci Instrum. 2011;82:113503.ADSCrossRef Yamamoto S, Hatazawa J. Development of an alpha/beta/gamma detector for radiation monitoring. Rev Sci Instrum. 2011;82:113503.ADSCrossRef
87.
go back to reference Yamane Y, Linden P, Karlsson JK-H, Pazsit I. Measurement of 14.1 MeV neutrons with a Th-scintillator optical fibre detector. Nucl Instrum Methods Phys Res A. 1998;416:371–80.ADSCrossRef Yamane Y, Linden P, Karlsson JK-H, Pazsit I. Measurement of 14.1 MeV neutrons with a Th-scintillator optical fibre detector. Nucl Instrum Methods Phys Res A. 1998;416:371–80.ADSCrossRef
88.
89.
go back to reference Yanagida T. Inorganic scintillating materials and scintillation detectors. Proc Jpn Acad Ser B. 2018;94:75–97.ADSCrossRef Yanagida T. Inorganic scintillating materials and scintillation detectors. Proc Jpn Acad Ser B. 2018;94:75–97.ADSCrossRef
90.
go back to reference Yasuda K, Usuda S, Gunji H. Development of scintillation-light-transmission type phoswich detector for simultaneous alpha- and beta (gamma)-ray counting. IEEE Trans Nucl Sci. 2000;47:1337–40.ADSCrossRef Yasuda K, Usuda S, Gunji H. Development of scintillation-light-transmission type phoswich detector for simultaneous alpha- and beta (gamma)-ray counting. IEEE Trans Nucl Sci. 2000;47:1337–40.ADSCrossRef
91.
go back to reference Yen WM, Weber MJ. Inorganic phosphors: compositions, preparation and optical properties. Boca Raton: CRC Press; 2004. p. 302.CrossRef Yen WM, Weber MJ. Inorganic phosphors: compositions, preparation and optical properties. Boca Raton: CRC Press; 2004. p. 302.CrossRef
92.
go back to reference Yoshiro O. On the crystal growth of zinc sulfide phosphor. Bull Chem Soc Jpn. 1959;32(8):804–8.CrossRef Yoshiro O. On the crystal growth of zinc sulfide phosphor. Bull Chem Soc Jpn. 1959;32(8):804–8.CrossRef
93.
go back to reference Ziegler JF, Ziegler M, Biersack J. SRIM – the stopping and range of ions in matter. Nucl Instrum Methods Phys Res B. 2010;268(11–12):1818–23.ADSCrossRef Ziegler JF, Ziegler M, Biersack J. SRIM – the stopping and range of ions in matter. Nucl Instrum Methods Phys Res B. 2010;268(11–12):1818–23.ADSCrossRef
Metadata
Title
ZnS-Based Neutron and Alpha Radiation Detectors
Authors
Ghenadii Korotcenkov
Michail Ivanov
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-24000-3_3

Premium Partners