Skip to main content
Top

2023 | OriginalPaper | Chapter

4. ZnSe- and CdSe-Based Radiation Detectors

Authors : Shweta Jagtap, Madhushree Bute, Sapana Rane, Suresh Gosavi

Published in: Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Radiation detection is of vital importance in the modern-day world as high-energy ionizing radiation is utilized in several areas such as health care and energy generation. Heavy or prolonged radiation exposure proves detrimental to human health as it has the capacity to penetrate human cells and cause deadly diseases. ZnSe and CdSe are some of the most widely used inorganic materials for efficient radiation detection. In this chapter, we have discussed the synthesis techniques used for fabrication of scintillators in detail along with its scintillating performance. Furthermore, the effect of doping-induced enhanced scintillating properties of the parent material and their application in the areas of medicine, space exploration, high-energy physics, etc., are also summarized here.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Tonnessen BH, Pounds L. Radiation physics. J Vasc Surg. 2011;53(1):6S–8S.CrossRef Tonnessen BH, Pounds L. Radiation physics. J Vasc Surg. 2011;53(1):6S–8S.CrossRef
2.
go back to reference Delage M-È, Lecavalier M-È, Larivière D, Allen CN, Beaulieu L. Dosimetric properties of colloidal quantum dot-based systems for scintillation dosimetry. Phys Med Biol. 2019;64(9):095027.CrossRef Delage M-È, Lecavalier M-È, Larivière D, Allen CN, Beaulieu L. Dosimetric properties of colloidal quantum dot-based systems for scintillation dosimetry. Phys Med Biol. 2019;64(9):095027.CrossRef
4.
go back to reference Marques L, Vale A, Vaz P. State-of-the-art mobile radiation detection systems for different scenarios. Sensors. 2021;21(4):1051.ADSCrossRef Marques L, Vale A, Vaz P. State-of-the-art mobile radiation detection systems for different scenarios. Sensors. 2021;21(4):1051.ADSCrossRef
5.
go back to reference Frame PW. A history of radiation detection instrumentation. Health Phys. 2005;87(2):111–35.CrossRef Frame PW. A history of radiation detection instrumentation. Health Phys. 2005;87(2):111–35.CrossRef
6.
go back to reference Knoll GF. Radiation detection and measurement. 4th ed. Hoboken: Wiley; 2010. p. 223–58. Knoll GF. Radiation detection and measurement. 4th ed. Hoboken: Wiley; 2010. p. 223–58.
7.
go back to reference Kim C, Lee W, Melis A, Elmughrabi A, Lee K, Park C, et al. A review of inorganic scintillation crystals for extreme environments. Crystals. 2021;11(2021):669.CrossRef Kim C, Lee W, Melis A, Elmughrabi A, Lee K, Park C, et al. A review of inorganic scintillation crystals for extreme environments. Crystals. 2021;11(2021):669.CrossRef
8.
go back to reference Kim C, Yeom J-Y, Kim G. Digital n-γ pulse shape discrimination in organic scintillators with a high-speed digitizer. J Radiat Prot Res. 2019;44(2):53–63.ADSCrossRef Kim C, Yeom J-Y, Kim G. Digital n-γ pulse shape discrimination in organic scintillators with a high-speed digitizer. J Radiat Prot Res. 2019;44(2):53–63.ADSCrossRef
9.
go back to reference Gu P, Wang P, Guan W, Zheng L, Zhou Y. Research progress on LYSO∶Ce scintillation crystals. J Cryst Growth. 2010;50(10):1858. Gu P, Wang P, Guan W, Zheng L, Zhou Y. Research progress on LYSO∶Ce scintillation crystals. J Cryst Growth. 2010;50(10):1858.
10.
go back to reference Cherepy NJ, Kuntz JD, Roberts JJ, Hurst TA, Drury OB, Sanner RD et al. Transparent ceramic scintillator fabrication, properties and applications. In: Proceedings of international society for optics and photonics, the hard X-ray, vol. 7079. Gamma-Ray, and Neutron Detector Physics X; 2008. p. 70790X. Cherepy NJ, Kuntz JD, Roberts JJ, Hurst TA, Drury OB, Sanner RD et al. Transparent ceramic scintillator fabrication, properties and applications. In: Proceedings of international society for optics and photonics, the hard X-ray, vol. 7079. Gamma-Ray, and Neutron Detector Physics X; 2008. p. 70790X.
11.
go back to reference Takayuki Y. Inorganic scintillating materials and scintillation detectors. Proc Jpn Acad Ser B. 2018;94:75–97.CrossRef Takayuki Y. Inorganic scintillating materials and scintillation detectors. Proc Jpn Acad Ser B. 2018;94:75–97.CrossRef
12.
go back to reference Linardatos D, Konstantinidis A, Valais I, Ninos K, Kalyvas N, Bakas A, et al. On the optical response of tellurium activate Zinc Selenide ZnSe:Te single crystals. Crystals 2020. 2020;10(11):961. Linardatos D, Konstantinidis A, Valais I, Ninos K, Kalyvas N, Bakas A, et al. On the optical response of tellurium activate Zinc Selenide ZnSe:Te single crystals. Crystals 2020. 2020;10(11):961.
13.
go back to reference Valais I, Michail C, David S, Nomicos CD, Panayiotakis GS, Kandarakis I. A comparative study of the luminescence properties of LYSO:Ce, LSO:Ce, GSO:Ce and BGO single crystal scintillators for use in medical X-ray imaging. Phys Med. 2008;24(2):122–5.CrossRef Valais I, Michail C, David S, Nomicos CD, Panayiotakis GS, Kandarakis I. A comparative study of the luminescence properties of LYSO:Ce, LSO:Ce, GSO:Ce and BGO single crystal scintillators for use in medical X-ray imaging. Phys Med. 2008;24(2):122–5.CrossRef
14.
go back to reference van Eijk CWE. Inorganic scintillators in medical imaging. Phys Med Biol. 2002;47(8):R85–R106.CrossRef van Eijk CWE. Inorganic scintillators in medical imaging. Phys Med Biol. 2002;47(8):R85–R106.CrossRef
15.
go back to reference Holl I, Lorenz E, Mageras G. A measurement of the light yield of common inorganic scintillators. IEEE Trans Nucl Sci. 1988;35(1):105–9.ADSCrossRef Holl I, Lorenz E, Mageras G. A measurement of the light yield of common inorganic scintillators. IEEE Trans Nucl Sci. 1988;35(1):105–9.ADSCrossRef
16.
go back to reference Jagtap S, Chopade P, Tadepalli S, Bhalerao A, Gosavi S. A review on the progress of ZnSe as inorganic scintillators. Opto-Electron Rev. 2019;27(1):90–103.ADSCrossRef Jagtap S, Chopade P, Tadepalli S, Bhalerao A, Gosavi S. A review on the progress of ZnSe as inorganic scintillators. Opto-Electron Rev. 2019;27(1):90–103.ADSCrossRef
17.
go back to reference Ryzhikov V, Chernikov V, Gal’chinetskii L, Galkin S, Lisetskaya E, Opolonin A, et al. The use of semiconductor scintillation crystals AII-BVI in radiation instruments. J Cryst Growth. 1999;197(3):655–8.ADSCrossRef Ryzhikov V, Chernikov V, Gal’chinetskii L, Galkin S, Lisetskaya E, Opolonin A, et al. The use of semiconductor scintillation crystals AII-BVI in radiation instruments. J Cryst Growth. 1999;197(3):655–8.ADSCrossRef
18.
go back to reference Czirr JB, MacGillivray GM, MacGillivray RR, Seddon PJ. Performance and characteristics of new scintillators. Nucl Instrum Methods Phys Res, Sect A. 1999;424(1):15–9.ADSCrossRef Czirr JB, MacGillivray GM, MacGillivray RR, Seddon PJ. Performance and characteristics of new scintillators. Nucl Instrum Methods Phys Res, Sect A. 1999;424(1):15–9.ADSCrossRef
19.
go back to reference L’Annunziata MF. Solid scintillation analysis. In: L’Annunziata MF, editor. Handbook of radioactivity analysis. Cambridge: Academic; 2012. p. 1021–115.CrossRef L’Annunziata MF. Solid scintillation analysis. In: L’Annunziata MF, editor. Handbook of radioactivity analysis. Cambridge: Academic; 2012. p. 1021–115.CrossRef
20.
go back to reference Triboulet R, Rabago F, Legros R, Lozykowski H, Didier G. Low-temperature growth of ZnSe crystals. J Cryst Growth. 1982;59(1–2):172–7.ADSCrossRef Triboulet R, Rabago F, Legros R, Lozykowski H, Didier G. Low-temperature growth of ZnSe crystals. J Cryst Growth. 1982;59(1–2):172–7.ADSCrossRef
21.
go back to reference Bhargava RN. Materials growth and its impact on devices from wide band gap II–VI compounds. J Cryst Growth. 1988;86(1–4):873–9.ADSCrossRef Bhargava RN. Materials growth and its impact on devices from wide band gap II–VI compounds. J Cryst Growth. 1988;86(1–4):873–9.ADSCrossRef
22.
go back to reference Unuma H, Higuchi M, Yamakawa Y, Kodairi K, Okano Y, Hoshikawa K, et al. Liquid encapsulated flux growth of ZnSe single crystals from Se solvent. Jpn J Appl. 1992;31(4A):L383.CrossRef Unuma H, Higuchi M, Yamakawa Y, Kodairi K, Okano Y, Hoshikawa K, et al. Liquid encapsulated flux growth of ZnSe single crystals from Se solvent. Jpn J Appl. 1992;31(4A):L383.CrossRef
23.
go back to reference Fischer AG. Preparation and properties of ZnS –type crystals from the melt. J Electrochem Soc. 1959;106(9):838.CrossRef Fischer AG. Preparation and properties of ZnS –type crystals from the melt. J Electrochem Soc. 1959;106(9):838.CrossRef
24.
go back to reference Kulakov MP, Kulakovskii VD, Fadeev AV. Twinning in ZnSe crystals grown from melt under pressure. Inorg Mater. 1976;12(10):1536–8. Kulakov MP, Kulakovskii VD, Fadeev AV. Twinning in ZnSe crystals grown from melt under pressure. Inorg Mater. 1976;12(10):1536–8.
25.
go back to reference Kikuma I, Furukoshi M. Direct observation of the 3C-2H transformation in ZnSe by high-temperature x-ray diffraction. J Cryst Growth. 1985;71(1):136–40.ADSCrossRef Kikuma I, Furukoshi M. Direct observation of the 3C-2H transformation in ZnSe by high-temperature x-ray diffraction. J Cryst Growth. 1985;71(1):136–40.ADSCrossRef
26.
go back to reference Holtan WC, Watts RK, Stinedurf RD. Synthesis and melt growth of doped ZnSe crystals. J Cryst Growth. 1969;6(1):97–100.ADSCrossRef Holtan WC, Watts RK, Stinedurf RD. Synthesis and melt growth of doped ZnSe crystals. J Cryst Growth. 1969;6(1):97–100.ADSCrossRef
27.
go back to reference Omino A, Suzuki T. Bridgman growth of ZnSe crystals with a PBN crucible sealed in a molybdenum capsule. J Cryst Growth. 1992;117(1–4):80–4.ADSCrossRef Omino A, Suzuki T. Bridgman growth of ZnSe crystals with a PBN crucible sealed in a molybdenum capsule. J Cryst Growth. 1992;117(1–4):80–4.ADSCrossRef
28.
go back to reference Wang JF, Omino A, Isshiki M. Melt growth of twin-free ZnSe single crystals. J Cryst Growth. 2000;214–215:875–9.ADSCrossRef Wang JF, Omino A, Isshiki M. Melt growth of twin-free ZnSe single crystals. J Cryst Growth. 2000;214–215:875–9.ADSCrossRef
29.
go back to reference Wang J, Omino A, Isshiki M. Growth and conductive type control of ZnSe single crystals by vertical Bridgman method. J Cryst Growth. 2001;229(1–4):69–73.ADSCrossRef Wang J, Omino A, Isshiki M. Growth and conductive type control of ZnSe single crystals by vertical Bridgman method. J Cryst Growth. 2001;229(1–4):69–73.ADSCrossRef
30.
go back to reference Fischer AG. Methods of growing crystals under pressure. In: Pamplin BR, editor. Crystal growth. Oxford: Pergamon; 1975. p. 357–93. Fischer AG. Methods of growing crystals under pressure. In: Pamplin BR, editor. Crystal growth. Oxford: Pergamon; 1975. p. 357–93.
31.
go back to reference Fischer AG. Techniques for melt-growth of luminescent semiconductor crystals under pressure. J Electrochem Soc. 1970;117(2):41C.CrossRef Fischer AG. Techniques for melt-growth of luminescent semiconductor crystals under pressure. J Electrochem Soc. 1970;117(2):41C.CrossRef
32.
go back to reference Wang JF, Omino A, Isshiki M. Bridgman growth of twin-free ZnSe single crystals. Mater Sci Eng. 2001;83(1–3):1185–91. Wang JF, Omino A, Isshiki M. Bridgman growth of twin-free ZnSe single crystals. Mater Sci Eng. 2001;83(1–3):1185–91.
33.
go back to reference Rudolph P, Schäfer N, Fukuda T. Crystal growth of ZnSe from the melt. Mater Sci Eng Rep. 1995;15(3):85–133.CrossRef Rudolph P, Schäfer N, Fukuda T. Crystal growth of ZnSe from the melt. Mater Sci Eng Rep. 1995;15(3):85–133.CrossRef
34.
go back to reference Schotanus P, Dorenbos P, Ryzhikov VD. Detection of CdS(Te) and ZnSe(Te) scintillation light with silicon photodiodes. IEEE Trans Nucl Sci. 1992;39(4):546–50.ADSCrossRef Schotanus P, Dorenbos P, Ryzhikov VD. Detection of CdS(Te) and ZnSe(Te) scintillation light with silicon photodiodes. IEEE Trans Nucl Sci. 1992;39(4):546–50.ADSCrossRef
35.
go back to reference Eissler EE, Lynn KG. Properties of melt-grown ZnSe solid-state radiation detectors. IEEE Trans Nucl Sci. 1995;42(4):663–7.ADSCrossRef Eissler EE, Lynn KG. Properties of melt-grown ZnSe solid-state radiation detectors. IEEE Trans Nucl Sci. 1995;42(4):663–7.ADSCrossRef
36.
go back to reference Kolesnikov NN, James RB, Berzigiarova NS, Kulakov MP, Kolesnikov NN, James RB, et al. HPVB and HPVZM shaped growth of CdZnTe, CdSe and ZnSe crystals. Proc SPIE. 2002;4784:93–104.ADSCrossRef Kolesnikov NN, James RB, Berzigiarova NS, Kulakov MP, Kolesnikov NN, James RB, et al. HPVB and HPVZM shaped growth of CdZnTe, CdSe and ZnSe crystals. Proc SPIE. 2002;4784:93–104.ADSCrossRef
37.
go back to reference Lee WG, Kim YK, Kim JK, Starzhinskiy N, Ryzhikov V, Grinyov B. Properties of ZnSe:Te,O crystals grown by Bridgman-Stockbarger method. J Nucl Sci Technol. 2008;5:579–81.CrossRef Lee WG, Kim YK, Kim JK, Starzhinskiy N, Ryzhikov V, Grinyov B. Properties of ZnSe:Te,O crystals grown by Bridgman-Stockbarger method. J Nucl Sci Technol. 2008;5:579–81.CrossRef
38.
go back to reference Kim YK, Kim JK, Lee WG, Kim SY, Kim BI, Ha JH. Properties of semiconductor scintillator ZnSe:O. Nucl Instrum Methods Phys Res. 2007;580:258–61.ADSCrossRef Kim YK, Kim JK, Lee WG, Kim SY, Kim BI, Ha JH. Properties of semiconductor scintillator ZnSe:O. Nucl Instrum Methods Phys Res. 2007;580:258–61.ADSCrossRef
39.
go back to reference Seminozhenko VP, Ryzhikov VD, Apolonin AD, Lysetska OK, Galkin SN, Voronkin EF, et al. ZnSe(Te)- based crystals for nondestructive testing and Cargo inspection. Proc SPIE. 2006;6319:63191B.ADSCrossRef Seminozhenko VP, Ryzhikov VD, Apolonin AD, Lysetska OK, Galkin SN, Voronkin EF, et al. ZnSe(Te)- based crystals for nondestructive testing and Cargo inspection. Proc SPIE. 2006;6319:63191B.ADSCrossRef
40.
go back to reference Ryzhikov V, Tamulaitis G, Starzhinskiy N, Gal’chinetskii L, Novickovas A, Kazlauskas K. Luminescence dynamics in ZnSeTe scintillators. J Lumin. 2003;101:45–53.CrossRef Ryzhikov V, Tamulaitis G, Starzhinskiy N, Gal’chinetskii L, Novickovas A, Kazlauskas K. Luminescence dynamics in ZnSeTe scintillators. J Lumin. 2003;101:45–53.CrossRef
41.
go back to reference Trubaieva OG, Chaika MA, Lalayants AI. The growth, structure and luminescence properties of ZnSe1–xSx materials. Lith J Phys. 2018;58(3):254–60.CrossRef Trubaieva OG, Chaika MA, Lalayants AI. The growth, structure and luminescence properties of ZnSe1–xSx materials. Lith J Phys. 2018;58(3):254–60.CrossRef
42.
go back to reference Beeman JW, Bellini F, Cardani L, Casali N, Dafinei I, Di Domizio S, et al. Performance of a large mass ZnSe bolometer to search for rare events. J Instrum. 2013;8:P05021.CrossRef Beeman JW, Bellini F, Cardani L, Casali N, Dafinei I, Di Domizio S, et al. Performance of a large mass ZnSe bolometer to search for rare events. J Instrum. 2013;8:P05021.CrossRef
43.
go back to reference Ryzhikov V, Grinyov B, Galkin S, Starzhinskiy N, Rybalka I. Growing technology and luminescent characteristics of ZnSe doped crystals. J Cryst Growth. 2013;364:111–7.ADSCrossRef Ryzhikov V, Grinyov B, Galkin S, Starzhinskiy N, Rybalka I. Growing technology and luminescent characteristics of ZnSe doped crystals. J Cryst Growth. 2013;364:111–7.ADSCrossRef
44.
go back to reference Tretyak VI. Semi-empirical calculation of quenching factors for ions in scintillators. Astropart Phys. 2010;33(1):40–53.ADSCrossRef Tretyak VI. Semi-empirical calculation of quenching factors for ions in scintillators. Astropart Phys. 2010;33(1):40–53.ADSCrossRef
45.
go back to reference Beeman JW, Bellini F, Benetti P, Cardani L, Casali N, Chiesa D, et al. Current status and future perspectives of the LUCIFER experiment. Adv High Energy Phys. 2013;2013:237973.CrossRef Beeman JW, Bellini F, Benetti P, Cardani L, Casali N, Chiesa D, et al. Current status and future perspectives of the LUCIFER experiment. Adv High Energy Phys. 2013;2013:237973.CrossRef
46.
go back to reference Silva BC, de Oliveira R, Ribeiro GM, Cury LA, Leal AS, Nagorny S, et al. Characterization of high-purity 82Se-enriched ZnSe for double-beta decay bolometer/scintillation detectors. J Appl Phys. 2018;123(8):085704.ADSCrossRef Silva BC, de Oliveira R, Ribeiro GM, Cury LA, Leal AS, Nagorny S, et al. Characterization of high-purity 82Se-enriched ZnSe for double-beta decay bolometer/scintillation detectors. J Appl Phys. 2018;123(8):085704.ADSCrossRef
47.
go back to reference Galkin S, Rybalka I, Sidelnikova L, Voloshinovskii A, Kraus H, Mykhaylyk V. Performance of ZnSe-based scintillators at low temperatures. J Lumin. 2021;239:118360.CrossRef Galkin S, Rybalka I, Sidelnikova L, Voloshinovskii A, Kraus H, Mykhaylyk V. Performance of ZnSe-based scintillators at low temperatures. J Lumin. 2021;239:118360.CrossRef
48.
go back to reference Ryzhikov VD, Starzhinskiy NG, Gal’chinetskii LP, Silin VI, Tamulaitis G, Lisetskay EK. The role of oxygen in formation of radiative recombination centers in ZnSe1–x Tex crystals. Int J Inorg Mater. 2001;3(8):1227–9.CrossRef Ryzhikov VD, Starzhinskiy NG, Gal’chinetskii LP, Silin VI, Tamulaitis G, Lisetskay EK. The role of oxygen in formation of radiative recombination centers in ZnSe1–x Tex crystals. Int J Inorg Mater. 2001;3(8):1227–9.CrossRef
49.
go back to reference Delage MÈ, Lecavalier M-È, Larivière D, Allen CN, Beaulie L. Characterization of a binary system composed of luminescent quantum dots for liquid scintillation. Phys Med Biol. 2018;63(17):175012.CrossRef Delage MÈ, Lecavalier M-È, Larivière D, Allen CN, Beaulie L. Characterization of a binary system composed of luminescent quantum dots for liquid scintillation. Phys Med Biol. 2018;63(17):175012.CrossRef
50.
go back to reference Létant SE, Wanga TF. First study of nano-composite scintillators under alpha irradiation. Appl Phys Lett. 2005; 1–12 Létant SE, Wanga TF. First study of nano-composite scintillators under alpha irradiation. Appl Phys Lett. 2005; 1–12
51.
go back to reference Hines MA, Sionnest PG. Bright UV-blue luminescent colloidal ZnSe nanocrystals. J Phys Chem B. 1998;102(19):3655–7.CrossRef Hines MA, Sionnest PG. Bright UV-blue luminescent colloidal ZnSe nanocrystals. J Phys Chem B. 1998;102(19):3655–7.CrossRef
52.
go back to reference Suemune I, Tawara T, Saitoh T, Uesugi K. Stability of CdSe and ZnSe dots self-organized on semiconductor surfaces. Appl Phys Lett. 1997;71:3886–8.ADSCrossRef Suemune I, Tawara T, Saitoh T, Uesugi K. Stability of CdSe and ZnSe dots self-organized on semiconductor surfaces. Appl Phys Lett. 1997;71:3886–8.ADSCrossRef
53.
go back to reference Chen L, Jiang Y, Wang C, Liu X, Chen Y, Jie J. Green chemical approaches to ZnSe quantum dots: preparation, characterization and formation mechanism. J Exp Nanosci. 2010;5(2):106–17.CrossRef Chen L, Jiang Y, Wang C, Liu X, Chen Y, Jie J. Green chemical approaches to ZnSe quantum dots: preparation, characterization and formation mechanism. J Exp Nanosci. 2010;5(2):106–17.CrossRef
54.
go back to reference Ryzhikov VD, Silin VI, Starzhinsky NG. A new ZnSe1–xTex scintillator: luminescence mechanism. Nucl Tracks Radiat Meas. 1993;21(1):53–4.CrossRef Ryzhikov VD, Silin VI, Starzhinsky NG. A new ZnSe1–xTex scintillator: luminescence mechanism. Nucl Tracks Radiat Meas. 1993;21(1):53–4.CrossRef
55.
go back to reference Ryzhikov V, Starzhinskiy N. Properties and peculiar features of application of iso- electronically doped A2B6 compound – based scintillators. J Korean Assoc Radiat. 2005;30(2):77–84. Ryzhikov V, Starzhinskiy N. Properties and peculiar features of application of iso- electronically doped A2B6 compound – based scintillators. J Korean Assoc Radiat. 2005;30(2):77–84.
56.
go back to reference Cho YH, Park SH, Lee WG, Ha JH, Kim HS, Starzinskiy N. Comparative study of a CsI and a ZnSe(Te/O) scintillation detector’s properties for a Gamma-ray measurement. J Nucl Sci Technol. 2008;45(5):534–7.CrossRef Cho YH, Park SH, Lee WG, Ha JH, Kim HS, Starzinskiy N. Comparative study of a CsI and a ZnSe(Te/O) scintillation detector’s properties for a Gamma-ray measurement. J Nucl Sci Technol. 2008;45(5):534–7.CrossRef
57.
go back to reference Baltramiejunas R, Ryzhikov VD, Raciukaitis G, Gavryushin V, Juodzbalis D, Kazlauskas A. Centres of radiative and nonradiative recombination in isoelectronically doped ZnSe:Te crystal. Physica B. 1993;185(1–4):245–9.ADSCrossRef Baltramiejunas R, Ryzhikov VD, Raciukaitis G, Gavryushin V, Juodzbalis D, Kazlauskas A. Centres of radiative and nonradiative recombination in isoelectronically doped ZnSe:Te crystal. Physica B. 1993;185(1–4):245–9.ADSCrossRef
58.
go back to reference Ryzhikov V, Starzhinskiy N, Gal’Chinetskii L, Gashin P, Kozin D, Danshin E. New semiconductor scintillators ZnSe(Te,O) and integrated radiation detectors based thereon. IEEE Trans Nucl Sci. 2001;48(3):356–9.ADSCrossRef Ryzhikov V, Starzhinskiy N, Gal’Chinetskii L, Gashin P, Kozin D, Danshin E. New semiconductor scintillators ZnSe(Te,O) and integrated radiation detectors based thereon. IEEE Trans Nucl Sci. 2001;48(3):356–9.ADSCrossRef
59.
go back to reference Ryzhikov VD. Scintillation crystals of A2B6 semiconductors. Moscow: NIITEHIM; 1989. (in Russian) Ryzhikov VD. Scintillation crystals of A2B6 semiconductors. Moscow: NIITEHIM; 1989. (in Russian)
60.
go back to reference Lee WG, Kim YK, Kim JK, Sec HJ, Ryzhikov V, Starzhinskiy N. Particularities of ZnSe-based scintillators for a spectrometry of charged particles and gamma quanta. J Korean Phys Soc. 2006;48(1):47–50.CrossRef Lee WG, Kim YK, Kim JK, Sec HJ, Ryzhikov V, Starzhinskiy N. Particularities of ZnSe-based scintillators for a spectrometry of charged particles and gamma quanta. J Korean Phys Soc. 2006;48(1):47–50.CrossRef
61.
go back to reference Pranciškus V, Gintautas T, Shevchenko D, Žukauskas A, Strarzhinskiy N, Katrunov K. Luminescence study of ZnSe based scintillators in frequency domain. Lith J Phys. 2008;48(3):243–7.CrossRef Pranciškus V, Gintautas T, Shevchenko D, Žukauskas A, Strarzhinskiy N, Katrunov K. Luminescence study of ZnSe based scintillators in frequency domain. Lith J Phys. 2008;48(3):243–7.CrossRef
62.
go back to reference Berends AC, de Mello Donegá C. Ultrathin one- and two-dimensional colloidal semiconductor nanocrystals: pushing quantum confinement to the limit. J Phys Chem Lett. 2017;8(17):4077–90.CrossRef Berends AC, de Mello Donegá C. Ultrathin one- and two-dimensional colloidal semiconductor nanocrystals: pushing quantum confinement to the limit. J Phys Chem Lett. 2017;8(17):4077–90.CrossRef
63.
go back to reference Lecavalier M-E, Goulet M, Allen CN, Beaulieu L, Larivière D. Water-dispersable colloidal quantum dots for the detection of ionizing radiation. Chem Commun. 2013;49(99):11629–31.CrossRef Lecavalier M-E, Goulet M, Allen CN, Beaulieu L, Larivière D. Water-dispersable colloidal quantum dots for the detection of ionizing radiation. Chem Commun. 2013;49(99):11629–31.CrossRef
64.
go back to reference Groeneveld E, van Berkum S, van Schooneveld MM, Gloter A, Meeldijk JD, van den Heuvel DJ, et al. Highly luminescent (Zn,Cd)Te/CdSe colloidal heteronanowires with tunable electron–hole overlap. Nano Lett. 2012;12(2):749–57.ADSCrossRef Groeneveld E, van Berkum S, van Schooneveld MM, Gloter A, Meeldijk JD, van den Heuvel DJ, et al. Highly luminescent (Zn,Cd)Te/CdSe colloidal heteronanowires with tunable electron–hole overlap. Nano Lett. 2012;12(2):749–57.ADSCrossRef
65.
go back to reference Kim K, Kim JK, Lee WG, Kim SY, Kim BI, Ha JH, et al. Properties of semiconductor scintillator ZnSe:O. Nucl Instrum Methods Phys Res Sect A. 2007;580(1):258–61.ADSCrossRef Kim K, Kim JK, Lee WG, Kim SY, Kim BI, Ha JH, et al. Properties of semiconductor scintillator ZnSe:O. Nucl Instrum Methods Phys Res Sect A. 2007;580(1):258–61.ADSCrossRef
66.
go back to reference Shevchenko D, Gavryushin V, Mickevičius J, Starzhinskiy N, Zenya I, Zhukov A, et al. Emission properties of ZnSe scintillation crystals co-doped by oxygen and aluminium. J Lumin. 2013;143:473–8.CrossRef Shevchenko D, Gavryushin V, Mickevičius J, Starzhinskiy N, Zenya I, Zhukov A, et al. Emission properties of ZnSe scintillation crystals co-doped by oxygen and aluminium. J Lumin. 2013;143:473–8.CrossRef
67.
go back to reference Hizhnyi YA, Nedilko SG, Borysiuk VI, Chornii VP, Rybalka IA, Galkin SM, et al. Effect of annealing in zinc vapours on charge trapping properties of ZnSe, ZnSe(Te) and ZnSe(Al) scintillation crystals: revealing the mechanisms by DFT computational studies. Opt Mater. 2019;97:109402.CrossRef Hizhnyi YA, Nedilko SG, Borysiuk VI, Chornii VP, Rybalka IA, Galkin SM, et al. Effect of annealing in zinc vapours on charge trapping properties of ZnSe, ZnSe(Te) and ZnSe(Al) scintillation crystals: revealing the mechanisms by DFT computational studies. Opt Mater. 2019;97:109402.CrossRef
68.
go back to reference Nasieka I, Boyko M, Strelchuk V, Kovalenko N, Gerasimenko A, Starzhinskiy N, et al. Optical characterization of Er-doped ZnSe for scintillation applications. Opt Mater. 2014;38:272–7.ADSCrossRef Nasieka I, Boyko M, Strelchuk V, Kovalenko N, Gerasimenko A, Starzhinskiy N, et al. Optical characterization of Er-doped ZnSe for scintillation applications. Opt Mater. 2014;38:272–7.ADSCrossRef
69.
go back to reference Atroshchenko LV, Burachas SF, Gal’chinetskii LP, Grinev BV, Ryzhikov VD, Starzhinskiy NG. Scintillator crystals and detectors of ionizing radiation on their basis. Kiev: Naukova Dumka; 1998. p. 167–310. (in Russian) Atroshchenko LV, Burachas SF, Gal’chinetskii LP, Grinev BV, Ryzhikov VD, Starzhinskiy NG. Scintillator crystals and detectors of ionizing radiation on their basis. Kiev: Naukova Dumka; 1998. p. 167–310. (in Russian)
70.
go back to reference Focsha AA, Gashin PA, Ryzhikov VD, Starzhinskiy NG, Gal’chinetskii LP, Silin VI. Properties of semiconductor scintillators and combined detectors of ionizing radiation based on ZnSe(Te,O)/pZnTe–nCdSe structures. Opt Mater. 2002;19(1):213–7.ADSCrossRef Focsha AA, Gashin PA, Ryzhikov VD, Starzhinskiy NG, Gal’chinetskii LP, Silin VI. Properties of semiconductor scintillators and combined detectors of ionizing radiation based on ZnSe(Te,O)/pZnTe–nCdSe structures. Opt Mater. 2002;19(1):213–7.ADSCrossRef
71.
go back to reference Katrunov K, Starezhinskiy N, Malyukin Y, Silin V, Zenya I, Tamulaitis G. Effect of rare-earth elements on luminescence properties of ZnSe-based chalcogenide scintillators. Nucl Instrum Methods Phys Res Sect A. 2010;622(1):139–41.ADSCrossRef Katrunov K, Starezhinskiy N, Malyukin Y, Silin V, Zenya I, Tamulaitis G. Effect of rare-earth elements on luminescence properties of ZnSe-based chalcogenide scintillators. Nucl Instrum Methods Phys Res Sect A. 2010;622(1):139–41.ADSCrossRef
72.
go back to reference Xu Z, Zhang Z, Gamage KAA, Liu Y, Ye H, Tang X. Synergistic enhancement of CdSe/ZnS quantum dot and liquid scintillator for radioluminescent nuclear batteries. Energy Resour. 2021;45(8):12195–202.CrossRef Xu Z, Zhang Z, Gamage KAA, Liu Y, Ye H, Tang X. Synergistic enhancement of CdSe/ZnS quantum dot and liquid scintillator for radioluminescent nuclear batteries. Energy Resour. 2021;45(8):12195–202.CrossRef
73.
go back to reference Ryzhikov VD, Starzhinskiy NG, Gal’chinetskii LP, Guttormsen M, Kist AA, Klamra W. Behavior of new ZnSe(Te,O) semiconductor scintillators under high doses of ionizing radiation. IEEE Trans Nucl Sci. 2001;48(4):1561–4.ADSCrossRef Ryzhikov VD, Starzhinskiy NG, Gal’chinetskii LP, Guttormsen M, Kist AA, Klamra W. Behavior of new ZnSe(Te,O) semiconductor scintillators under high doses of ionizing radiation. IEEE Trans Nucl Sci. 2001;48(4):1561–4.ADSCrossRef
74.
go back to reference Xu Z, Zhang Z, Gamage KAA, Liu Y, Ye H, et al. Synergistic enhancement of CdSe/ZnS quantum dot and liquid scintillator for radioluminescent nuclear batteries. Int J Energy Res. 2021;45(8):12195–202.CrossRef Xu Z, Zhang Z, Gamage KAA, Liu Y, Ye H, et al. Synergistic enhancement of CdSe/ZnS quantum dot and liquid scintillator for radioluminescent nuclear batteries. Int J Energy Res. 2021;45(8):12195–202.CrossRef
75.
go back to reference Ryzhikov VD, Opolonin AD, Pashko PV, Svishch VM, Volkov VG, Lysetskay EK, et al. Instruments and detectors on the base of scintillator crystals ZnSe(Te), CWO, CsI(Tl) for systems of security and customs inspection systems. Nucl Instrum Methods Phys Res A. 2005;537:424–30.ADSCrossRef Ryzhikov VD, Opolonin AD, Pashko PV, Svishch VM, Volkov VG, Lysetskay EK, et al. Instruments and detectors on the base of scintillator crystals ZnSe(Te), CWO, CsI(Tl) for systems of security and customs inspection systems. Nucl Instrum Methods Phys Res A. 2005;537:424–30.ADSCrossRef
76.
go back to reference Kwak S-W, Cho G, Kim B-H, Kim I, Jae MS. Comparative study of CWO and ZnSe(Te) scintillation detector on the performance of X-ray imaging system. Nucl Instrum Methods Phys Res A. 2005;537:449–53.ADSCrossRef Kwak S-W, Cho G, Kim B-H, Kim I, Jae MS. Comparative study of CWO and ZnSe(Te) scintillation detector on the performance of X-ray imaging system. Nucl Instrum Methods Phys Res A. 2005;537:449–53.ADSCrossRef
77.
go back to reference Ryzhikov VD, Opolonin AD, Pashko PV, Svishch VM, Volkov VG, Lysetskaya EK. Instruments and detectors on the base of scintillator crystals ZnSe(Te), CWO, CsI(Tl) for systems of security and customs inspection systems. Nucl Instrum Methods Phys Res, Sect A. 2005;537(1–2):424–30.ADSCrossRef Ryzhikov VD, Opolonin AD, Pashko PV, Svishch VM, Volkov VG, Lysetskaya EK. Instruments and detectors on the base of scintillator crystals ZnSe(Te), CWO, CsI(Tl) for systems of security and customs inspection systems. Nucl Instrum Methods Phys Res, Sect A. 2005;537(1–2):424–30.ADSCrossRef
78.
go back to reference Hamers S, Freyschmid J. Digital radiography with an electronic flat-panel detector: first clinical experience in skeletal diagnostics. Medicamundi. 1998;42(3):2–6. Hamers S, Freyschmid J. Digital radiography with an electronic flat-panel detector: first clinical experience in skeletal diagnostics. Medicamundi. 1998;42(3):2–6.
79.
go back to reference Fedorov A, Katrunov K, Lalayants A, Lebedinsky A, Shiran N, Mateychenko P. Properties of vacuum deposited CsI(Tl) and ZnSe(Te) scintillator layers. IEEE Trans Nucl Sci. 2009;56(3):955–7.ADSCrossRef Fedorov A, Katrunov K, Lalayants A, Lebedinsky A, Shiran N, Mateychenko P. Properties of vacuum deposited CsI(Tl) and ZnSe(Te) scintillator layers. IEEE Trans Nucl Sci. 2009;56(3):955–7.ADSCrossRef
80.
go back to reference Yoneyama A, Baba R, Kawamoto M. Quantitative analysis of the physical properties of CsI, GAGG, LuAG, CWO, YAG, BGO, and GOS scintillators using 10-, 20- and 34-keV monochromated synchrotron radiation. Opt Mater Express. 2021;11(2):398–411.ADSCrossRef Yoneyama A, Baba R, Kawamoto M. Quantitative analysis of the physical properties of CsI, GAGG, LuAG, CWO, YAG, BGO, and GOS scintillators using 10-, 20- and 34-keV monochromated synchrotron radiation. Opt Mater Express. 2021;11(2):398–411.ADSCrossRef
81.
go back to reference Beeman JW, Bellini F, Cardani L, Casali N, Dafinei I, Di Domizio S. Performances of a large mass ZnSe bolometer to search for rare events. J Instrum. 2013;8:P05021.CrossRef Beeman JW, Bellini F, Cardani L, Casali N, Dafinei I, Di Domizio S. Performances of a large mass ZnSe bolometer to search for rare events. J Instrum. 2013;8:P05021.CrossRef
Metadata
Title
ZnSe- and CdSe-Based Radiation Detectors
Authors
Shweta Jagtap
Madhushree Bute
Sapana Rane
Suresh Gosavi
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-24000-3_4

Premium Partners