Skip to main content
Top
Published in: International Journal of Machine Learning and Cybernetics 9/2020

12-03-2020 | Original Article

A novel learning-based approach for efficient dismantling of networks

Authors: Changjun Fan, Li Zeng, Yanghe Feng, Guangquan Cheng, Jincai Huang, Zhong Liu

Published in: International Journal of Machine Learning and Cybernetics | Issue 9/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Dismantling of complex networks is a problem to find a minimal set of nodes in which the removal leaves the network broken into connected components of sub-extensive size. It has a wide spectrum of important applications, including network immunization and network destruction. Due to its NP-hard computational complexity, this problem cannot be solved exactly with polynomial time. Traditional solutions, including manually-designed and considerably sub-optimal heuristic algorithms, and accurate message-passing ones, all suffer from low efficiency in large-scale problems. In this paper, we introduce a simple learning-based approach, CoreGQN, which seeks to train an agent that is able to smartly choose nodes that would accumulate the maximum rewards. CoreGQN is trained by hundreds of thousands self-plays on small synthetic graphs, and can then be able to generalize well on real-world networks across different types with different scales. Extensive experiments demonstrate that CoreGQN performs on par with the state-of-art algorithms at greatly reduced computational costs, suggesting that CoreGQN should be the better choice for practical network dismantling purposes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Show more products
Literature
2.
go back to reference Altarelli F, Braunstein A, Dall’Asta L, Zecchina R (2013) Large deviations of cascade processes on graphs. Phys Rev E 87(6):062,115CrossRef Altarelli F, Braunstein A, Dall’Asta L, Zecchina R (2013) Large deviations of cascade processes on graphs. Phys Rev E 87(6):062,115CrossRef
3.
go back to reference Altarelli F, Braunstein A, Dall’Asta L, Zecchina R (2013) Optimizing spread dynamics on graphs by message passing. J Stat Mech Theory Exp 2013(09):P09,011MathSciNetCrossRef Altarelli F, Braunstein A, Dall’Asta L, Zecchina R (2013) Optimizing spread dynamics on graphs by message passing. J Stat Mech Theory Exp 2013(09):P09,011MathSciNetCrossRef
5.
go back to reference Bavelas A (1950) Communication patterns in task-oriented groups. J Acoust Soc Am 22(6):725–730CrossRef Bavelas A (1950) Communication patterns in task-oriented groups. J Acoust Soc Am 22(6):725–730CrossRef
6.
7.
go back to reference Braunstein A, Dall’Asta L, Semerjian G, Zdeborová L (2016) Network dismantling. Proc Natl Acad Sci 113(44):12368–12373CrossRef Braunstein A, Dall’Asta L, Semerjian G, Zdeborová L (2016) Network dismantling. Proc Natl Acad Sci 113(44):12368–12373CrossRef
8.
go back to reference Brin S, Page L (1998) The anatomy of a large-scale hypertextual web search engine. Comput Netw ISDN Syst 30(1–7):107–117CrossRef Brin S, Page L (1998) The anatomy of a large-scale hypertextual web search engine. Comput Netw ISDN Syst 30(1–7):107–117CrossRef
9.
go back to reference Clusella P, Grassberger P, Pérez-Reche FJ, Politi A (2016) Immunization and targeted destruction of networks using explosive percolation. Phys Rev Lett 117(20):208,301CrossRef Clusella P, Grassberger P, Pérez-Reche FJ, Politi A (2016) Immunization and targeted destruction of networks using explosive percolation. Phys Rev Lett 117(20):208,301CrossRef
10.
go back to reference Cohen R, Erez K, Ben-Avraham D, Havlin S (2001) Breakdown of the internet under intentional attack. Phys Rev Lett 86(16):3682CrossRef Cohen R, Erez K, Ben-Avraham D, Havlin S (2001) Breakdown of the internet under intentional attack. Phys Rev Lett 86(16):3682CrossRef
11.
go back to reference Dai H, Dai B, Song L (2016) Discriminative embeddings of latent variable models for structured data. In: International conference on machine learning, pp 2702–2711 Dai H, Dai B, Song L (2016) Discriminative embeddings of latent variable models for structured data. In: International conference on machine learning, pp 2702–2711
12.
go back to reference Fan C, Liu Z, Lu X, Xiu B, Chen Q (2017) An efficient link prediction index for complex military organization. Physica A Stat Mech Appl 469:572–587CrossRef Fan C, Liu Z, Lu X, Xiu B, Chen Q (2017) An efficient link prediction index for complex military organization. Physica A Stat Mech Appl 469:572–587CrossRef
13.
go back to reference Fan C, Sun Y, Zeng L, Liu YY, Chen M, Liu Z (2019) Dismantle large networks through deep reinforcement learning. In: ICLR representation learning on graphs and manifolds workshop Fan C, Sun Y, Zeng L, Liu YY, Chen M, Liu Z (2019) Dismantle large networks through deep reinforcement learning. In: ICLR representation learning on graphs and manifolds workshop
14.
go back to reference Fan C, Xiao K, Xiu B, Lv G (2014) A fuzzy clustering algorithm to detect criminals without prior information. In: Proceedings of the 2014 IEEE/ACM international conference on advances in social networks analysis and mining, pp 238–243. IEEE Press Fan C, Xiao K, Xiu B, Lv G (2014) A fuzzy clustering algorithm to detect criminals without prior information. In: Proceedings of the 2014 IEEE/ACM international conference on advances in social networks analysis and mining, pp 238–243. IEEE Press
15.
go back to reference Fan C, Zeng L, Ding Y, Chen M, Sun Y, Liu Z (2019) Learning to identify high betweenness centrality nodes from scratch: A novel graph neural network approach. arXiv:1905.10418 Fan C, Zeng L, Ding Y, Chen M, Sun Y, Liu Z (2019) Learning to identify high betweenness centrality nodes from scratch: A novel graph neural network approach. arXiv:​1905.​10418
16.
go back to reference Freeman LC (1977) A set of measures of centrality based on betweenness. Sociometry 40:35–41CrossRef Freeman LC (1977) A set of measures of centrality based on betweenness. Sociometry 40:35–41CrossRef
17.
go back to reference Hamilton W, Ying Z, Leskovec J (2017) Inductive representation learning on large graphs. In: Advances in neural information processing systems, pp 1024–1034 Hamilton W, Ying Z, Leskovec J (2017) Inductive representation learning on large graphs. In: Advances in neural information processing systems, pp 1024–1034
18.
go back to reference Hessel M, Modayil J, Van Hasselt H, Schaul T, Ostrovski G, Dabney W, Horgan D, Piot B, Azar M, Silver D (2018) Rainbow: combining improvements in deep reinforcement learning. In: Thirty-Second AAAI conference on artificial intelligence Hessel M, Modayil J, Van Hasselt H, Schaul T, Ostrovski G, Dabney W, Horgan D, Piot B, Azar M, Silver D (2018) Rainbow: combining improvements in deep reinforcement learning. In: Thirty-Second AAAI conference on artificial intelligence
20.
go back to reference Kempe D, Kleinberg J, Tardos É (2003) Maximizing the spread of influence through a social network. In: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, pp 137–146. ACM Kempe D, Kleinberg J, Tardos É (2003) Maximizing the spread of influence through a social network. In: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, pp 137–146. ACM
21.
go back to reference Khalil E, Dai H, Zhang Y, Dilkina B, Song L (2017) Learning combinatorial optimization algorithms over graphs. In: Advances in neural information processing systems, pp 6348–6358 Khalil E, Dai H, Zhang Y, Dilkina B, Song L (2017) Learning combinatorial optimization algorithms over graphs. In: Advances in neural information processing systems, pp 6348–6358
22.
go back to reference Kunegis J (2013) Konect: the koblenz network collection. In: Proceedings of the 22nd international conference on world wide web, pp 1343–1350. ACM Kunegis J (2013) Konect: the koblenz network collection. In: Proceedings of the 22nd international conference on world wide web, pp 1343–1350. ACM
23.
go back to reference Leskovec J, Kleinberg J, Faloutsos C (2007) Graph evolution: densification and shrinking diameters. ACM Trans Knowl Discov Data 1(1):2CrossRef Leskovec J, Kleinberg J, Faloutsos C (2007) Graph evolution: densification and shrinking diameters. ACM Trans Knowl Discov Data 1(1):2CrossRef
24.
go back to reference Leskovec J, Lang KJ, Dasgupta A, Mahoney MW (2009) Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters. Internet Math 6(1):29–123MathSciNetCrossRef Leskovec J, Lang KJ, Dasgupta A, Mahoney MW (2009) Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters. Internet Math 6(1):29–123MathSciNetCrossRef
25.
go back to reference Li Z, Chen Q, Koltun V (2018) Combinatorial optimization with graph convolutional networks and guided tree search. In: Advances in neural information processing systems, pp 539–548 Li Z, Chen Q, Koltun V (2018) Combinatorial optimization with graph convolutional networks and guided tree search. In: Advances in neural information processing systems, pp 539–548
26.
go back to reference Ma Z, Li M, Wang Y (2019) Pan: Path integral based convolution for deep graph neural networks Ma Z, Li M, Wang Y (2019) Pan: Path integral based convolution for deep graph neural networks
27.
go back to reference Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G et al (2015) Human-level control through deep reinforcement learning. Nature 518(7540):529CrossRef Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G et al (2015) Human-level control through deep reinforcement learning. Nature 518(7540):529CrossRef
28.
go back to reference Morone F, Makse HA (2015) Influence maximization in complex networks through optimal percolation. Nature 524(7563):65CrossRef Morone F, Makse HA (2015) Influence maximization in complex networks through optimal percolation. Nature 524(7563):65CrossRef
29.
go back to reference Mugisha S, Zhou HJ (2016) Identifying optimal targets of network attack by belief propagation. Phys Rev E 94(1):012,305CrossRef Mugisha S, Zhou HJ (2016) Identifying optimal targets of network attack by belief propagation. Phys Rev E 94(1):012,305CrossRef
30.
go back to reference Pastor-Satorras R, Vespignani A (2001) Epidemic spreading in scale-free networks. Phys Rev Lett 86(14):3200CrossRef Pastor-Satorras R, Vespignani A (2001) Epidemic spreading in scale-free networks. Phys Rev Lett 86(14):3200CrossRef
31.
go back to reference Ren XL, Gleinig N, Helbing D, Antulov-Fantulin N (2019) Generalized network dismantling. In: Proceedings of the national academy of sciences, p 201806108 Ren XL, Gleinig N, Helbing D, Antulov-Fantulin N (2019) Generalized network dismantling. In: Proceedings of the national academy of sciences, p 201806108
32.
go back to reference Schneider CM, Moreira AA, Andrade JS, Havlin S, Herrmann HJ (2011) Mitigation of malicious attacks on networks. Proc Natl Acad Sci 108(10):3838–3841CrossRef Schneider CM, Moreira AA, Andrade JS, Havlin S, Herrmann HJ (2011) Mitigation of malicious attacks on networks. Proc Natl Acad Sci 108(10):3838–3841CrossRef
33.
go back to reference Sutton RS, Barto AG (2018) Reinforcement learning: an introduction. MIT Press, CambridgeMATH Sutton RS, Barto AG (2018) Reinforcement learning: an introduction. MIT Press, CambridgeMATH
34.
go back to reference Velickovic P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y (2018) Graph attention networks. In: ICLR Velickovic P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y (2018) Graph attention networks. In: ICLR
35.
go back to reference Zdeborová L, Zhang P, Zhou HJ (2016) Fast and simple decycling and dismantling of networks. Sci Rep 6:37,954CrossRef Zdeborová L, Zhang P, Zhou HJ (2016) Fast and simple decycling and dismantling of networks. Sci Rep 6:37,954CrossRef
Metadata
Title
A novel learning-based approach for efficient dismantling of networks
Authors
Changjun Fan
Li Zeng
Yanghe Feng
Guangquan Cheng
Jincai Huang
Zhong Liu
Publication date
12-03-2020
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Machine Learning and Cybernetics / Issue 9/2020
Print ISSN: 1868-8071
Electronic ISSN: 1868-808X
DOI
https://doi.org/10.1007/s13042-020-01104-8

Other articles of this Issue 9/2020

International Journal of Machine Learning and Cybernetics 9/2020 Go to the issue