Skip to main content
Top

2019 | OriginalPaper | Chapter

4. Biocomposite Reinforced with Nanocellulose for Packaging Applications

Authors : Anand Babu Perumal, Periyar Selvam Sellamuthu, Reshma B. Nambiar, Emmanuel Rotimi Sadiku, O. A. Adeyeye

Published in: Green Biopolymers and their Nanocomposites

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The extraction of nanocellulose from cellulosic fibers and development of nanocellulose-based composites and materials have revolutionized the field of renewable and sustainable materials. Nanocellulose is rod-like nanoparticles, which can be obtained from various sources like cotton, wood, agricultural residues, and bacteria. There are mainly two types of nanocellulose: cellulose nanocrystals (CNCs) which are produced by chemical treatment method and cellulose nanofibrils (CNFs) which are obtained by mechanical or chemical treatments. Both materials exhibit unique and useful properties like abundance, renewability, excellent mechanical property, optical property, non-toxicity, tunable surface chemistry, eco-friendliness, and low cost. These properties make nanocellulose of great interest for the application in the field of food packaging. This book chapter aims to provide an overview of the recent developments in nanocellulose-reinforced composites for packaging applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Fischer HR, Gielgens LH, Koster TPM (1999) Nanocomposites from polymers and layered minerals. Acta Polym 50:122–126CrossRef Fischer HR, Gielgens LH, Koster TPM (1999) Nanocomposites from polymers and layered minerals. Acta Polym 50:122–126CrossRef
3.
go back to reference Azeredo HMC, Rosa MF, Mattoso LHC (2017) Nanocellulose in bio-based food packaging applications. Ind Crops Prod 97:664–671CrossRef Azeredo HMC, Rosa MF, Mattoso LHC (2017) Nanocellulose in bio-based food packaging applications. Ind Crops Prod 97:664–671CrossRef
4.
go back to reference Croisier F, Jerome C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polymer J 49:780–792CrossRef Croisier F, Jerome C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polymer J 49:780–792CrossRef
5.
go back to reference Bhatnagar A, Sillanpää M (2009) Applications of chitin- and chitosanderivatives for the detoxification of water and wastewater—a short review. Adv Coll Interface Sci 152:26–38CrossRef Bhatnagar A, Sillanpää M (2009) Applications of chitin- and chitosanderivatives for the detoxification of water and wastewater—a short review. Adv Coll Interface Sci 152:26–38CrossRef
6.
go back to reference Harish Prashanth KV, Tharanathan RN (2007) Chitin/chitosan: modifications and their unlimited application potential—an overview. Trends Food Sci Technol 18:117–131CrossRef Harish Prashanth KV, Tharanathan RN (2007) Chitin/chitosan: modifications and their unlimited application potential—an overview. Trends Food Sci Technol 18:117–131CrossRef
7.
go back to reference Kanatt SR, Rao MS, Chawla SP, Sharma A (2012) Active chitosanpolyvinyl alcohol films with natural extracts. Food Hydrocolloids 29:290–297CrossRef Kanatt SR, Rao MS, Chawla SP, Sharma A (2012) Active chitosanpolyvinyl alcohol films with natural extracts. Food Hydrocolloids 29:290–297CrossRef
8.
go back to reference Costa-Júnior ES, Barbosa-Stancioli EF, Mansur AAP, Vasconcelos WL, Mansur HS (2009) Preparation and characterization of chitosan/ poly(vinyl alcohol) chemically crosslinked blends for biomedical applications. Carbohydr Polym 76:472–481CrossRef Costa-Júnior ES, Barbosa-Stancioli EF, Mansur AAP, Vasconcelos WL, Mansur HS (2009) Preparation and characterization of chitosan/ poly(vinyl alcohol) chemically crosslinked blends for biomedical applications. Carbohydr Polym 76:472–481CrossRef
9.
go back to reference Abdelrazek EM, Abdelghany A, Tarabih A (2012) Characterization and physical properties of silver/PVA nanocomposite. Res J Pharm Biol Chem Sci 3:448–459 Abdelrazek EM, Abdelghany A, Tarabih A (2012) Characterization and physical properties of silver/PVA nanocomposite. Res J Pharm Biol Chem Sci 3:448–459
10.
go back to reference Chen Y, Cao X, Chang PR, Huneault MA (2008) Comparative study on the films of poly(vinyl alcohol)/pea starch nanocrystals and poly(vinyl alcohol)/native pea starch. Carbohydr Polym 73:8–17CrossRef Chen Y, Cao X, Chang PR, Huneault MA (2008) Comparative study on the films of poly(vinyl alcohol)/pea starch nanocrystals and poly(vinyl alcohol)/native pea starch. Carbohydr Polym 73:8–17CrossRef
11.
go back to reference Ardanuy M, Claramunt J, Garcia-Hortal JA, Barra M (2011) Fiber-matrix interactions in cement mortar composites reinforced with cellulosic fibers. Cellulose 18:281–289CrossRef Ardanuy M, Claramunt J, Garcia-Hortal JA, Barra M (2011) Fiber-matrix interactions in cement mortar composites reinforced with cellulosic fibers. Cellulose 18:281–289CrossRef
12.
go back to reference Lu P, Hsieh YL (2012) Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydr Polym 87:564–573CrossRef Lu P, Hsieh YL (2012) Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydr Polym 87:564–573CrossRef
13.
go back to reference Morais JPS, Rosa MS, Filho MMS, Nascimento LD, Nascimento DM, Cassales AR (2013) Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohydr Polym 91:229–235CrossRef Morais JPS, Rosa MS, Filho MMS, Nascimento LD, Nascimento DM, Cassales AR (2013) Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohydr Polym 91:229–235CrossRef
14.
go back to reference Zhao X-B, Wang L, Liu D-H (2008) Peracetic acid pretreatment of sugarcane bagasse for enzymatic hydrolysis: a continued work. J Chem Technol Biotechnol 83:950–956CrossRef Zhao X-B, Wang L, Liu D-H (2008) Peracetic acid pretreatment of sugarcane bagasse for enzymatic hydrolysis: a continued work. J Chem Technol Biotechnol 83:950–956CrossRef
15.
go back to reference Abraham E, Deepa B, Pothen LA, Cintil J, Thomas S, John MJ, Anandjiwala R, Narine SS (2013) Environmentally-friendly method for the extraction of coir fibre and isolation of nanofibre. Carbohydr Polym 92:1477–1483CrossRef Abraham E, Deepa B, Pothen LA, Cintil J, Thomas S, John MJ, Anandjiwala R, Narine SS (2013) Environmentally-friendly method for the extraction of coir fibre and isolation of nanofibre. Carbohydr Polym 92:1477–1483CrossRef
16.
go back to reference Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276(277):1–24CrossRef Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276(277):1–24CrossRef
17.
go back to reference Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and application. Chem Rev 110:3479–3500CrossRef Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and application. Chem Rev 110:3479–3500CrossRef
18.
go back to reference Jeihanipour A, Taherzadeh MJ (2009) Ethanol production from cotton-based waste textiles. Biores Technol 100:1007–1010CrossRef Jeihanipour A, Taherzadeh MJ (2009) Ethanol production from cotton-based waste textiles. Biores Technol 100:1007–1010CrossRef
19.
go back to reference Wang QQ, Zhu JY, Reiner RS, Verrill SP, Baxa U, MeNeil SE (2012) Approaching zero cellulose loss in cellulose nanocrystal (CNC) production: recovery and characterization of cellulosic solid residues (CSR) and CNC. Cellulose 19:2033–2047CrossRef Wang QQ, Zhu JY, Reiner RS, Verrill SP, Baxa U, MeNeil SE (2012) Approaching zero cellulose loss in cellulose nanocrystal (CNC) production: recovery and characterization of cellulosic solid residues (CSR) and CNC. Cellulose 19:2033–2047CrossRef
20.
go back to reference Krishnan VN, Ramesh A (2013) Synthesis and characterisation of CNF from Coconut coir fibres. IOSR-J Appl Chem 6:18–23CrossRef Krishnan VN, Ramesh A (2013) Synthesis and characterisation of CNF from Coconut coir fibres. IOSR-J Appl Chem 6:18–23CrossRef
21.
go back to reference Zhou Y, Canek FH, Talha MK, Liu JC, James H, Shim JW, Amir D, Youngblood PJ, Robert JM, Bernard K (2013) Recyclable organic solar cells on cellulose nanocrystal substrate. Sci Rep 3:1536CrossRef Zhou Y, Canek FH, Talha MK, Liu JC, James H, Shim JW, Amir D, Youngblood PJ, Robert JM, Bernard K (2013) Recyclable organic solar cells on cellulose nanocrystal substrate. Sci Rep 3:1536CrossRef
22.
go back to reference Zoppe JO, Habibi Y, Rojas OJ, Venditti RA, Johansson LS, Efimenko K, Osterberg M, Laine J (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromol 11:674–681CrossRef Zoppe JO, Habibi Y, Rojas OJ, Venditti RA, Johansson LS, Efimenko K, Osterberg M, Laine J (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromol 11:674–681CrossRef
24.
go back to reference Terech P, Chazeau L, Cavaille JY (1999) A small-angle scattering study of cellulose whiskers in aqueous suspensions. Macromolecules 32:1872–1875CrossRef Terech P, Chazeau L, Cavaille JY (1999) A small-angle scattering study of cellulose whiskers in aqueous suspensions. Macromolecules 32:1872–1875CrossRef
25.
go back to reference Grishkewich N, Mohammed N, Tang J, Tam KC (2017) Recent advances in the application of cellulose nanocrystals. Curr Opin Colloid Interface Sci 29:32–45CrossRef Grishkewich N, Mohammed N, Tang J, Tam KC (2017) Recent advances in the application of cellulose nanocrystals. Curr Opin Colloid Interface Sci 29:32–45CrossRef
26.
go back to reference Mujtaba M, Salaberria AM, Andres MA, Kayaa M, Gunyakti A, Labidi J (2017) Utilization of flax (Linum usitatissimum) cellulose nanocrystals as reinforcing material for chitosan films. Int J Biol Macromol 104:944–952CrossRef Mujtaba M, Salaberria AM, Andres MA, Kayaa M, Gunyakti A, Labidi J (2017) Utilization of flax (Linum usitatissimum) cellulose nanocrystals as reinforcing material for chitosan films. Int J Biol Macromol 104:944–952CrossRef
27.
go back to reference Achaby ME, Kassab Z, Aboulkas A, Gaillard C, Barakat A (2018) Reuse of red algae waste for the production of cellulose nanocrystals and its application in polymer nanocomposites. Int J Biol Macromol 106:681–691CrossRef Achaby ME, Kassab Z, Aboulkas A, Gaillard C, Barakat A (2018) Reuse of red algae waste for the production of cellulose nanocrystals and its application in polymer nanocomposites. Int J Biol Macromol 106:681–691CrossRef
28.
go back to reference Dufresne A (2012) Nanocellulose: from nature to high performance tailored materials. Walter de Gruyter Dufresne A (2012) Nanocellulose: from nature to high performance tailored materials. Walter de Gruyter
29.
go back to reference Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature based materials. Angew Chem Int Ed 50(24):5438–5466CrossRef Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature based materials. Angew Chem Int Ed 50(24):5438–5466CrossRef
30.
go back to reference Chandra CSJ, George N, Narayanankutty SK (2016) Isolation and characterization of cellulose nanofibrils from arecanut husk fibre. Carbohydr Polym 142:158–166CrossRef Chandra CSJ, George N, Narayanankutty SK (2016) Isolation and characterization of cellulose nanofibrils from arecanut husk fibre. Carbohydr Polym 142:158–166CrossRef
31.
go back to reference Jorfi M, Amiralian N, Biyani MV, Annamalai PK (2013) In: Thakur VK, Singha AS (eds) Biomass-based biocomposites, vol 14. Smithers Rapra Technology, pp 277–304 Jorfi M, Amiralian N, Biyani MV, Annamalai PK (2013) In: Thakur VK, Singha AS (eds) Biomass-based biocomposites, vol 14. Smithers Rapra Technology, pp 277–304
33.
go back to reference Wang HD, Jessop PG, Bouchard J, Champagne P, Cunningham MF (2015) Cellulose nanocrystals with CO2-switchable aggregation and redispersion properties. Cellulose 22:3105–3116CrossRef Wang HD, Jessop PG, Bouchard J, Champagne P, Cunningham MF (2015) Cellulose nanocrystals with CO2-switchable aggregation and redispersion properties. Cellulose 22:3105–3116CrossRef
34.
go back to reference Bagheriasl D, Carreau PJ, Riedl B, Dubois C, Hamad WY (2016) Shear rheology of polylactide (PLA)-cellulose nanocrystal (CNC) nanocomposites. Cellulose 23:1885–1897CrossRef Bagheriasl D, Carreau PJ, Riedl B, Dubois C, Hamad WY (2016) Shear rheology of polylactide (PLA)-cellulose nanocrystal (CNC) nanocomposites. Cellulose 23:1885–1897CrossRef
35.
go back to reference Song T, Tanpichai S, Oksman K (2016) Cross-linked polyvinyl alcohol (PVA) foams reinforced with cellulose nanocrystals (CNCs). Cellulose 23:1925–1938CrossRef Song T, Tanpichai S, Oksman K (2016) Cross-linked polyvinyl alcohol (PVA) foams reinforced with cellulose nanocrystals (CNCs). Cellulose 23:1925–1938CrossRef
36.
go back to reference Feng X, Meng XH, Zhao JP, Miao M, Shi LY, Zhang SP, Fang JH (2015) Extraction and preparation of cellulose nanocrystals from dealginate kelp residue: structures and morphological characterization. Cellulose 22:1763–1772CrossRef Feng X, Meng XH, Zhao JP, Miao M, Shi LY, Zhang SP, Fang JH (2015) Extraction and preparation of cellulose nanocrystals from dealginate kelp residue: structures and morphological characterization. Cellulose 22:1763–1772CrossRef
37.
go back to reference Lu QL, Lin WY, Tang LR, Wang SQ, Chen XR, Huang B (2015) A mechanochemical approach to manufacturing bamboo cellulose nanocrystals. J Mater Sci 50:611–619CrossRef Lu QL, Lin WY, Tang LR, Wang SQ, Chen XR, Huang B (2015) A mechanochemical approach to manufacturing bamboo cellulose nanocrystals. J Mater Sci 50:611–619CrossRef
38.
go back to reference Eichhorn SJ, Baillie CA, Zafeiropoulos N, Mwaikambo LY, Ansell MP, Dufresne A, Entwistle KM, Herrera-Franco PJ, Escamilla GC, Groom L, Hughes M, Hill C, Rials TG, Wild PM (2001) Review: current international research into cellulosic fibres and composites. J Mater Sci 36:2107–2131CrossRef Eichhorn SJ, Baillie CA, Zafeiropoulos N, Mwaikambo LY, Ansell MP, Dufresne A, Entwistle KM, Herrera-Franco PJ, Escamilla GC, Groom L, Hughes M, Hill C, Rials TG, Wild PM (2001) Review: current international research into cellulosic fibres and composites. J Mater Sci 36:2107–2131CrossRef
39.
go back to reference Khandelwal M, Windle AH, Hessler N (2016) In situ tunability of bacteria produced cellulose by additives in the culture media. J Mater Sci 51:4839–4844CrossRef Khandelwal M, Windle AH, Hessler N (2016) In situ tunability of bacteria produced cellulose by additives in the culture media. J Mater Sci 51:4839–4844CrossRef
40.
go back to reference Santos SM, Carbajo JM, Gomez N, Quintana E, Ladero M, Sanchez A, Chinga-Carrasco G, Villar JC (2016) Use of bacterial cellulose in degraded paper restoration. Part I: application on model papers. J Mater Sci 51:1541–1552CrossRef Santos SM, Carbajo JM, Gomez N, Quintana E, Ladero M, Sanchez A, Chinga-Carrasco G, Villar JC (2016) Use of bacterial cellulose in degraded paper restoration. Part I: application on model papers. J Mater Sci 51:1541–1552CrossRef
41.
go back to reference Santos SM, Carbajo JM, Gomez N, Quintana E, Ladero M, Sanchez A, Chinga-Carrasco G, Villar JC (2016) Use of bacterial cellulose in degraded paper restoration. Part II: application on real samples. J Mater Sci 51:1553–1561CrossRef Santos SM, Carbajo JM, Gomez N, Quintana E, Ladero M, Sanchez A, Chinga-Carrasco G, Villar JC (2016) Use of bacterial cellulose in degraded paper restoration. Part II: application on real samples. J Mater Sci 51:1553–1561CrossRef
42.
go back to reference Achaby M, Miri N, Aboulkas A, Zahouily M, Essaid B, Barakat A, Solhy A (2017) Processing and properties of eco-friendly bio-nanocomposite films filled with cellulose nanocrystals from sugarcane bagasse. Int J Biol Macromol 96:340–352CrossRef Achaby M, Miri N, Aboulkas A, Zahouily M, Essaid B, Barakat A, Solhy A (2017) Processing and properties of eco-friendly bio-nanocomposite films filled with cellulose nanocrystals from sugarcane bagasse. Int J Biol Macromol 96:340–352CrossRef
43.
go back to reference Johar N, Ahmad I, Dufresne A (2012) Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crops Prod 37:93–99CrossRef Johar N, Ahmad I, Dufresne A (2012) Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crops Prod 37:93–99CrossRef
44.
go back to reference Anand Babu P, Periyar Selvam S, Nambiar RB, Rotimi Sadiku E, Goitse P, Jayaramudu J (2018) Effects of multiscale rice straw (Oryza sativa) as reinforcing filler in montmorillonite-polyvinyl alcohol biocomposite packaging film for enhancing the storability of postharvest mango fruit (Mangifera indica L.). Appl Clay Sci 158:1–10CrossRef Anand Babu P, Periyar Selvam S, Nambiar RB, Rotimi Sadiku E, Goitse P, Jayaramudu J (2018) Effects of multiscale rice straw (Oryza sativa) as reinforcing filler in montmorillonite-polyvinyl alcohol biocomposite packaging film for enhancing the storability of postharvest mango fruit (Mangifera indica L.). Appl Clay Sci 158:1–10CrossRef
45.
go back to reference Danial WH, Majid ZA, Muhid MNM, Triwahyono S, Bakar MB, Ramli Z (2015) The reuse of wastepaper for the extraction of cellulose nanocrystals. Carbohydr Polym 118:165–169CrossRef Danial WH, Majid ZA, Muhid MNM, Triwahyono S, Bakar MB, Ramli Z (2015) The reuse of wastepaper for the extraction of cellulose nanocrystals. Carbohydr Polym 118:165–169CrossRef
46.
go back to reference Voon LK, Pang SC, Chin SF (2016) Regeneration of cello-oligomers via selective depolymerization of cellulose fibers derived from printed paper wastes. Carbohydr Polym 142:31–37CrossRef Voon LK, Pang SC, Chin SF (2016) Regeneration of cello-oligomers via selective depolymerization of cellulose fibers derived from printed paper wastes. Carbohydr Polym 142:31–37CrossRef
47.
go back to reference Khan A, Huq T, Khan RA, Riedl B, Lacroix M (2014) Nanocellulose-based composites and bioactive agents for food packaging. Crit Rev Food Sci Nutr 54:163–174CrossRef Khan A, Huq T, Khan RA, Riedl B, Lacroix M (2014) Nanocellulose-based composites and bioactive agents for food packaging. Crit Rev Food Sci Nutr 54:163–174CrossRef
48.
go back to reference Dufresne A (1997) Mechanical behavior of films prepared from sugar beet cellulose microfibrils. J Appl Polym Sci 64:1185–1194 Dufresne A (1997) Mechanical behavior of films prepared from sugar beet cellulose microfibrils. J Appl Polym Sci 64:1185–1194
49.
go back to reference Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054CrossRef Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054CrossRef
50.
go back to reference Azeredo HM, Mattoso LH, Avena-Bustillos RJA, Filho GC, Munford ML, Wood D, Mchugh TH (2010) Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content. J Food Sci 75:N1–N7CrossRef Azeredo HM, Mattoso LH, Avena-Bustillos RJA, Filho GC, Munford ML, Wood D, Mchugh TH (2010) Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content. J Food Sci 75:N1–N7CrossRef
51.
go back to reference Cao X, Chen Y, Chang PR, Muir AD, Falk G (2008) Starch based nanocomposites reinforced with flax cellulose nanocrystals. Polymer Lett 2:502–510CrossRef Cao X, Chen Y, Chang PR, Muir AD, Falk G (2008) Starch based nanocomposites reinforced with flax cellulose nanocrystals. Polymer Lett 2:502–510CrossRef
52.
go back to reference Dieter-Klemm D, Schumann D, Kramer F, Hessler N, Koth D, Sultanova B (2009) Nanocellulose materials: different cellulose, different functionality. Macromol Symp 280:60–71CrossRef Dieter-Klemm D, Schumann D, Kramer F, Hessler N, Koth D, Sultanova B (2009) Nanocellulose materials: different cellulose, different functionality. Macromol Symp 280:60–71CrossRef
53.
go back to reference Dieter-Klemm D, Schumann D, Kramer F, Hessler N, Hornung M, Schmauder HP, Marsch S (2006) Nanocelluloses as innovative polymers in research and application. Adv Polym Sci 205:49–96CrossRef Dieter-Klemm D, Schumann D, Kramer F, Hessler N, Hornung M, Schmauder HP, Marsch S (2006) Nanocelluloses as innovative polymers in research and application. Adv Polym Sci 205:49–96CrossRef
54.
go back to reference Pecoraro E, Manzani D, Messaddeq Y, Ribeiro SJL (2008) Bacterial cellulose from Gluconacetobacter xylinus: preparation, properties and applications. In: Belgacem MN, Gandini A (eds) Monomers, polymers and composites from renewable resources. Elsevier, Oxford, pp 369–383 Pecoraro E, Manzani D, Messaddeq Y, Ribeiro SJL (2008) Bacterial cellulose from Gluconacetobacter xylinus: preparation, properties and applications. In: Belgacem MN, Gandini A (eds) Monomers, polymers and composites from renewable resources. Elsevier, Oxford, pp 369–383
55.
go back to reference Chang S-T, Chen L-C, Lin S-B, Chen H-H (2012) Nano-biomaterials application: morphology and physical properties of bacterial cellulose/gelatin composites via crosslinking. Food Hydrocolloids 27:137–144CrossRef Chang S-T, Chen L-C, Lin S-B, Chen H-H (2012) Nano-biomaterials application: morphology and physical properties of bacterial cellulose/gelatin composites via crosslinking. Food Hydrocolloids 27:137–144CrossRef
56.
go back to reference Duarte EB, Chagas BS, Andrade FK, Santa Brígida AI, Borges MF, Muniz CR, Souza Filho MSM, Morais JPS, Feitosa JPA, Rosa MF (2015) Production of hydroxyapatite–bacterial cellulose nanocomposites from agroindustrial wastes. Cellulose 22:3177–3187CrossRef Duarte EB, Chagas BS, Andrade FK, Santa Brígida AI, Borges MF, Muniz CR, Souza Filho MSM, Morais JPS, Feitosa JPA, Rosa MF (2015) Production of hydroxyapatite–bacterial cellulose nanocomposites from agroindustrial wastes. Cellulose 22:3177–3187CrossRef
57.
go back to reference Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues—Wheat straw and soy hulls. Biores Technol 99:1664–1671CrossRef Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues—Wheat straw and soy hulls. Biores Technol 99:1664–1671CrossRef
58.
go back to reference Fahma F, Iwamoto S, Hori N, Iwata T, Takemura A (2010) Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch (OPEFB). Cellulose 17:977–985CrossRef Fahma F, Iwamoto S, Hori N, Iwata T, Takemura A (2010) Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch (OPEFB). Cellulose 17:977–985CrossRef
59.
go back to reference Fatah IYA, Khalil HPS, Hossain MS, Aziz AA, Davoudpour Y, Dungani R, Bhat A (2014) Exploration of a chemo-mechanical technique for the isolation of nanofibrillated cellulosic fiber from oil palm empty fruit bunch as a reinforcing agent in composites materials. Polymers 6:2611–2624CrossRef Fatah IYA, Khalil HPS, Hossain MS, Aziz AA, Davoudpour Y, Dungani R, Bhat A (2014) Exploration of a chemo-mechanical technique for the isolation of nanofibrillated cellulosic fiber from oil palm empty fruit bunch as a reinforcing agent in composites materials. Polymers 6:2611–2624CrossRef
60.
go back to reference Chen W, Yu H, Liu Y, Hai Y, Zhang M, Chen P (2011) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18:433–442CrossRef Chen W, Yu H, Liu Y, Hai Y, Zhang M, Chen P (2011) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18:433–442CrossRef
61.
go back to reference Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules 10:1992–1996CrossRef Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules 10:1992–1996CrossRef
62.
go back to reference Khalil HA, Davoudpour Y, Islam MN, Mustapha A, Sudesh K, Dungani R, Jawaid M (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665CrossRef Khalil HA, Davoudpour Y, Islam MN, Mustapha A, Sudesh K, Dungani R, Jawaid M (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665CrossRef
63.
go back to reference Camargo LA, Pereira SC, Correa AC, Farinas CS, Marconcini JM, Mattoso LHC (2016) Feasibility of manufacturing cellulose nanocrystals from the solid residues of second-generation ethanol production from sugarcane bagasse. Bioenergy Res 9:894–906CrossRef Camargo LA, Pereira SC, Correa AC, Farinas CS, Marconcini JM, Mattoso LHC (2016) Feasibility of manufacturing cellulose nanocrystals from the solid residues of second-generation ethanol production from sugarcane bagasse. Bioenergy Res 9:894–906CrossRef
64.
go back to reference Teixeira EM, Pasquini D, Curvelo AAS, Corradini E, Belgacem A, Dufresne A (2009) Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohydr Polym 78:422–431CrossRef Teixeira EM, Pasquini D, Curvelo AAS, Corradini E, Belgacem A, Dufresne A (2009) Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohydr Polym 78:422–431CrossRef
65.
go back to reference Oun AA, Rhim J-W (2016) Isolation of cellulose nanocrystals from grain straws and their use forthe preparation of carboxymethyl cellulose-based nanocomposite films. Carbohydr Polym 150:187–200CrossRef Oun AA, Rhim J-W (2016) Isolation of cellulose nanocrystals from grain straws and their use forthe preparation of carboxymethyl cellulose-based nanocomposite films. Carbohydr Polym 150:187–200CrossRef
66.
go back to reference Kargarzadeh H, Ahmad I, Abdullah I, Dufresne A, Zainudin SY, Sheltami RM (2012) Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19:855–866CrossRef Kargarzadeh H, Ahmad I, Abdullah I, Dufresne A, Zainudin SY, Sheltami RM (2012) Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19:855–866CrossRef
67.
go back to reference Zainuddin SYZ, Ahmad I, Kargarzadeh H, Abdullah I, Dufresne A (2013) Potential of using multiscale kenaf fibers as reinforcing filler in cassava starch-kenaf biocomposites. Carbohydr Polym 92:2299–2305CrossRef Zainuddin SYZ, Ahmad I, Kargarzadeh H, Abdullah I, Dufresne A (2013) Potential of using multiscale kenaf fibers as reinforcing filler in cassava starch-kenaf biocomposites. Carbohydr Polym 92:2299–2305CrossRef
68.
go back to reference Wang Z, Yao Z, Zhou J, Zhang Y (2017) Reuse of waste cotton cloth for the extraction of cellulose nanocrystals. Carbohydr Polym 157:945–952CrossRef Wang Z, Yao Z, Zhou J, Zhang Y (2017) Reuse of waste cotton cloth for the extraction of cellulose nanocrystals. Carbohydr Polym 157:945–952CrossRef
69.
go back to reference Thambiraj S, Ravi Shankaran D (2017) Preparation and physicochemical characterization of cellulose nanocrystals from industrial waste cotton. Appl Surf Sci 412:405–416CrossRef Thambiraj S, Ravi Shankaran D (2017) Preparation and physicochemical characterization of cellulose nanocrystals from industrial waste cotton. Appl Surf Sci 412:405–416CrossRef
70.
go back to reference Fortunati E, Benincasa P, Balestra GM, Luzi F, Mazzaglia A, Del Buono D, Puglia D, Torre L (2016) Revalorization of barley straw and husk as precursors for cellulose nanocrystals extraction and their effect on PVA_CH nanocomposites. Ind Crops Prod 92:201–217CrossRef Fortunati E, Benincasa P, Balestra GM, Luzi F, Mazzaglia A, Del Buono D, Puglia D, Torre L (2016) Revalorization of barley straw and husk as precursors for cellulose nanocrystals extraction and their effect on PVA_CH nanocomposites. Ind Crops Prod 92:201–217CrossRef
71.
go back to reference Fortunati E, Puglia D, Monti M, Santulli C, Maniruzzaman M, Kenny JM (2013) Cellulose nanocrystals extracted from okra fibers in PVA nanocomposites. J Appl Polym Sci 128:3220–3230CrossRef Fortunati E, Puglia D, Monti M, Santulli C, Maniruzzaman M, Kenny JM (2013) Cellulose nanocrystals extracted from okra fibers in PVA nanocomposites. J Appl Polym Sci 128:3220–3230CrossRef
72.
go back to reference Luzi F, Fortunati E, Giovanale G, Mazzaglia A, Torre L, Balestra GM (2017) Cellulose nanocrystals from Actinidia deliciosa pruning residues combined with carvacrol in PVA_CH films with antioxidant/antimicrobial properties for packaging applications. Int J Biol Macromol 104:43–55CrossRef Luzi F, Fortunati E, Giovanale G, Mazzaglia A, Torre L, Balestra GM (2017) Cellulose nanocrystals from Actinidia deliciosa pruning residues combined with carvacrol in PVA_CH films with antioxidant/antimicrobial properties for packaging applications. Int J Biol Macromol 104:43–55CrossRef
73.
go back to reference Shamskar KR, Heidari H, Rashidi A (2016) Preparation and evaluation of nanocrystalline cellulose aerogels from raw cotton and cotton stalk. Ind Crops Prod 93:203–211CrossRef Shamskar KR, Heidari H, Rashidi A (2016) Preparation and evaluation of nanocrystalline cellulose aerogels from raw cotton and cotton stalk. Ind Crops Prod 93:203–211CrossRef
74.
go back to reference Li Y, Liu Y, Chen W, Wang Q, Liu Y, Li J, Yu H (2016) Facile extraction of cellulose nanocrystals from wood using ethanol and peroxide solvothermal pretreatment followed by ultrasonic nanofibrillation. Green Chem 18:1010–1018CrossRef Li Y, Liu Y, Chen W, Wang Q, Liu Y, Li J, Yu H (2016) Facile extraction of cellulose nanocrystals from wood using ethanol and peroxide solvothermal pretreatment followed by ultrasonic nanofibrillation. Green Chem 18:1010–1018CrossRef
75.
go back to reference Luzi F, Fortunati E, Jiménez A, Puglia D, Pezzolla D, Gigliotti G, Kenny JM, Chiralt A, Torre L (2016) Production and characterization of PLA_PBS biodegradable blends reinforced with cellulose nanocrystals extracted from hemp fibres. Ind Crops Prod 93:276–289CrossRef Luzi F, Fortunati E, Jiménez A, Puglia D, Pezzolla D, Gigliotti G, Kenny JM, Chiralt A, Torre L (2016) Production and characterization of PLA_PBS biodegradable blends reinforced with cellulose nanocrystals extracted from hemp fibres. Ind Crops Prod 93:276–289CrossRef
76.
go back to reference Cudjoe E, Hunsen M, Xue Z, Way AE, Barrios E, Olson RA, Hore MJA, Rowan SJ (2017) Miscanthus Giganteus: a commercially viable sustainable source of cellulose nanocrystals. Carbohydr Polym 155:230–241CrossRef Cudjoe E, Hunsen M, Xue Z, Way AE, Barrios E, Olson RA, Hore MJA, Rowan SJ (2017) Miscanthus Giganteus: a commercially viable sustainable source of cellulose nanocrystals. Carbohydr Polym 155:230–241CrossRef
77.
go back to reference Habibi Y, Goffin A-L, Schiltz N, Duquesne E, Dubois P, Dufresne A (2008) Bionanocomposites based on poly (3-caprolactone)-grafted cellulose nanocrystals by ringopening polymerization. J Mater Chem 18:5002–5010CrossRef Habibi Y, Goffin A-L, Schiltz N, Duquesne E, Dubois P, Dufresne A (2008) Bionanocomposites based on poly (3-caprolactone)-grafted cellulose nanocrystals by ringopening polymerization. J Mater Chem 18:5002–5010CrossRef
78.
go back to reference Kumar A, Negi YS, Choudhary V, Bhardwaj NK (2014) Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. J Mater Phys Chem 2:1–8 Kumar A, Negi YS, Choudhary V, Bhardwaj NK (2014) Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. J Mater Phys Chem 2:1–8
79.
go back to reference Kaushik A, Singh M, Verma G (2010) Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydr Polym 82:337–345CrossRef Kaushik A, Singh M, Verma G (2010) Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydr Polym 82:337–345CrossRef
80.
go back to reference Roman M, Gray DG (2005) Parabolic focal conics in self-assembled solid film of cellulose nanocrystals. Langmuir 21:5555–5561CrossRef Roman M, Gray DG (2005) Parabolic focal conics in self-assembled solid film of cellulose nanocrystals. Langmuir 21:5555–5561CrossRef
81.
go back to reference Zhao Y, Zhang Y, Lindström ME, Li J (2015) Tunicate cellulose nanocrystals: preparation, neat films andnanocomposite films with glucomannans. Carbohydr Polym 117:286–296CrossRef Zhao Y, Zhang Y, Lindström ME, Li J (2015) Tunicate cellulose nanocrystals: preparation, neat films andnanocomposite films with glucomannans. Carbohydr Polym 117:286–296CrossRef
82.
go back to reference Neto WPF, Mariano M, da Silva ISV, Silvério HA, Putaux JL, Otaguro H, Pasquini H (2016) Mechanical properties of natural rubber nanocomposites reinforced with high aspect ratio cellulose nanocrystals isolated from soy hulls. Carbohydr Polym 153:143–152CrossRef Neto WPF, Mariano M, da Silva ISV, Silvério HA, Putaux JL, Otaguro H, Pasquini H (2016) Mechanical properties of natural rubber nanocomposites reinforced with high aspect ratio cellulose nanocrystals isolated from soy hulls. Carbohydr Polym 153:143–152CrossRef
83.
go back to reference Sheltami RM, Abdullah I, Ahmad I, Dufresne A, Kargarzadeh H (2012) Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydr Polym 88:772–779CrossRef Sheltami RM, Abdullah I, Ahmad I, Dufresne A, Kargarzadeh H (2012) Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydr Polym 88:772–779CrossRef
84.
go back to reference Silvério HA, Neto WPF, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind Crops Prod 44:427–436CrossRef Silvério HA, Neto WPF, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind Crops Prod 44:427–436CrossRef
85.
go back to reference Brito BSL, Pereira FV, Putaux J-L, Jean B (2012) Preparation, morphology and structure of cellulose nanocrystals from bamboo fibers. Cellulose 19:1527–1536CrossRef Brito BSL, Pereira FV, Putaux J-L, Jean B (2012) Preparation, morphology and structure of cellulose nanocrystals from bamboo fibers. Cellulose 19:1527–1536CrossRef
86.
go back to reference Pereira AL, do Nascimento DM, Souza Filho MDS, Morais JP, Vasconcelos NF, Feitosa JP, Brígidae AI, Rosac MF (2014) Improvement of polyvinyl alcohol properties by adding nanocrystalline cellulose isolated from banana pseudostems. Carbohydr Polym 112:165–172CrossRef Pereira AL, do Nascimento DM, Souza Filho MDS, Morais JP, Vasconcelos NF, Feitosa JP, Brígidae AI, Rosac MF (2014) Improvement of polyvinyl alcohol properties by adding nanocrystalline cellulose isolated from banana pseudostems. Carbohydr Polym 112:165–172CrossRef
87.
go back to reference Kanoth BP, Thomas T, Joseph JM, Kuthirummal N, Narayanankutty SK (2015) A cost-effective method to prepare cellulose nanofiber from coir. Adv Sci, Eng Med 7:492–497CrossRef Kanoth BP, Thomas T, Joseph JM, Kuthirummal N, Narayanankutty SK (2015) A cost-effective method to prepare cellulose nanofiber from coir. Adv Sci, Eng Med 7:492–497CrossRef
89.
go back to reference Popescu M-C (2017) Structure and sorption properties of CNC reinforced PVA films. Int J Biol Macromol 101:783–790CrossRef Popescu M-C (2017) Structure and sorption properties of CNC reinforced PVA films. Int J Biol Macromol 101:783–790CrossRef
90.
go back to reference Savadekar NR, Karande VS, Vigneshwaran N, Bharimalla AK, Mhaske ST (2012) Preparation of nano cellulose fibers and its application in kappa-carrageenan based film. Int J Biol Macromol 51:1008–1013CrossRef Savadekar NR, Karande VS, Vigneshwaran N, Bharimalla AK, Mhaske ST (2012) Preparation of nano cellulose fibers and its application in kappa-carrageenan based film. Int J Biol Macromol 51:1008–1013CrossRef
91.
go back to reference Jonoobi M, Harun J, Shakeri A, Misra M, Oksman K (2009) Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers. BioResources 4:626–639 Jonoobi M, Harun J, Shakeri A, Misra M, Oksman K (2009) Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers. BioResources 4:626–639
92.
go back to reference Jonoobi M, Khazaeian A, Tahir PM, Azry SS, Oksman K (2011) Characteristics of cellulose nanofibers isolated from rubber wood and empty fruit bunches of oil palm using chemo-mechanical process. Cellulose 18:1085–1095CrossRef Jonoobi M, Khazaeian A, Tahir PM, Azry SS, Oksman K (2011) Characteristics of cellulose nanofibers isolated from rubber wood and empty fruit bunches of oil palm using chemo-mechanical process. Cellulose 18:1085–1095CrossRef
93.
go back to reference Habibi Y, Vignon M (2008) Optimization of cellouronic acid synthesis by TEMPO-mediated oxidation of cellulose III from sugar beet pulp. Cellulose 15:177–185CrossRef Habibi Y, Vignon M (2008) Optimization of cellouronic acid synthesis by TEMPO-mediated oxidation of cellulose III from sugar beet pulp. Cellulose 15:177–185CrossRef
94.
go back to reference Janardhnan S, Sain M (2006) Isolation of cellulose microfibrils—an enzymatic approach. BioResources 1:176–188 Janardhnan S, Sain M (2006) Isolation of cellulose microfibrils—an enzymatic approach. BioResources 1:176–188
95.
go back to reference Bruce DM, Hobson RN, Farrent JW, Hepworth DG (2005) High-performance composites from low-cost plant primary cell walls. Compos A Appl Sci Manuf 36:1486–1493CrossRef Bruce DM, Hobson RN, Farrent JW, Hepworth DG (2005) High-performance composites from low-cost plant primary cell walls. Compos A Appl Sci Manuf 36:1486–1493CrossRef
96.
go back to reference Castro C, Zuluaga R, Álvarez C, Putaux JL, Caro G, Rojas OJ, Mondragon I, Gañán P (2012) Bacterial cellulose produced by a new acid-resistant strain of Gluconacetobacter genus. Carbohydr Polym 89:1033–1037CrossRef Castro C, Zuluaga R, Álvarez C, Putaux JL, Caro G, Rojas OJ, Mondragon I, Gañán P (2012) Bacterial cellulose produced by a new acid-resistant strain of Gluconacetobacter genus. Carbohydr Polym 89:1033–1037CrossRef
97.
go back to reference Grunert M, Winter WT (2002) Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J Polym Environ 10:27–30CrossRef Grunert M, Winter WT (2002) Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J Polym Environ 10:27–30CrossRef
98.
go back to reference George J, Bawa AS, Siddaramaiah (2010) Synthesis and characterization of bacterial cellulose nanocrystals and their PVA nanocomposites. Adv Mater Res 123–125:383–386CrossRef George J, Bawa AS, Siddaramaiah (2010) Synthesis and characterization of bacterial cellulose nanocrystals and their PVA nanocomposites. Adv Mater Res 123–125:383–386CrossRef
99.
go back to reference George J, Siddaramaiah (2012) High performance edible nanocomposite films containing bacterial celulose nanocrystals. Carbohydr Polym 87:2031–2037CrossRef George J, Siddaramaiah (2012) High performance edible nanocomposite films containing bacterial celulose nanocrystals. Carbohydr Polym 87:2031–2037CrossRef
100.
go back to reference Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol)grafting. Langmuir 17:21–27CrossRef Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol)grafting. Langmuir 17:21–27CrossRef
101.
go back to reference Fortunati E, Luzi F, Jiménez A, Gopakumar DA, Puglia D, Thomas S, Kenny JM, Chiralt A, Torre L (2016) Revalorization of sunflower stalks as novel sources of cellulose nanofibrils and nanocrystals and their effect on wheat gluten bionanocomposite properties. Carbohydr Polym 149:357–368CrossRef Fortunati E, Luzi F, Jiménez A, Gopakumar DA, Puglia D, Thomas S, Kenny JM, Chiralt A, Torre L (2016) Revalorization of sunflower stalks as novel sources of cellulose nanofibrils and nanocrystals and their effect on wheat gluten bionanocomposite properties. Carbohydr Polym 149:357–368CrossRef
102.
go back to reference Jonoobi M, Mathew AP, Oksman K (2012) Producing low-cost cellulose nanofiber from sludge as new source of raw materials. Ind Crops Prod 40:232–238CrossRef Jonoobi M, Mathew AP, Oksman K (2012) Producing low-cost cellulose nanofiber from sludge as new source of raw materials. Ind Crops Prod 40:232–238CrossRef
104.
go back to reference Martins DF, de Souza AB, Henrique MA, Silverio HA, Flauzino Neto WP, Pasquini D, Silvério HA, Flauzino Neto WP, Pasquini D (2015) The influence of the cellulose hydrolysis process on the structure of cellulose nanocrystals extracted from capim mombaça (Panicum maximum). Ind Crops Prod 65:496–505CrossRef Martins DF, de Souza AB, Henrique MA, Silverio HA, Flauzino Neto WP, Pasquini D, Silvério HA, Flauzino Neto WP, Pasquini D (2015) The influence of the cellulose hydrolysis process on the structure of cellulose nanocrystals extracted from capim mombaça (Panicum maximum). Ind Crops Prod 65:496–505CrossRef
105.
go back to reference Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: Influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromol 10:425–432CrossRef Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: Influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromol 10:425–432CrossRef
106.
go back to reference Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765CrossRef Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765CrossRef
107.
go back to reference De Souze Lima M, Borsali R (2004) Rod like cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25:771–787CrossRef De Souze Lima M, Borsali R (2004) Rod like cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25:771–787CrossRef
108.
go back to reference Oksman K, Etang J, Mathew AP, Jonoobi M (2011) Cellulose nanowhiskers separated from a bio-residue from wood bioethanol production. Biomass Bioenerg 35:146–152CrossRef Oksman K, Etang J, Mathew AP, Jonoobi M (2011) Cellulose nanowhiskers separated from a bio-residue from wood bioethanol production. Biomass Bioenerg 35:146–152CrossRef
109.
go back to reference Kalia S, Kaith BS, Kaur I (eds) (2011) Cellulose fibers: bio- and nano-polymer composites. Springer, Berlin, p 743 Kalia S, Kaith BS, Kaur I (eds) (2011) Cellulose fibers: bio- and nano-polymer composites. Springer, Berlin, p 743
110.
go back to reference Guo J, Guo XX, Wang SQ, Yin YF (2016) Effects of ultrasonic treatment during acid hydrolysis on the yield, particle size and structure of cellulose nanocrystals. Carbohydr Polym 135:248–255CrossRef Guo J, Guo XX, Wang SQ, Yin YF (2016) Effects of ultrasonic treatment during acid hydrolysis on the yield, particle size and structure of cellulose nanocrystals. Carbohydr Polym 135:248–255CrossRef
111.
go back to reference Jin Y, Hengl N, Baup S, Pignon F, Gondrexon N, Sztucki M, Romdhane A, Guillet A, Aurousseau M (2015) Ultrasonic assisted cross-flow ultrafiltration of starch and cellulose nanocrystals suspensions: characterization at multi-scales. Carbohydr Polym 124:66–76CrossRef Jin Y, Hengl N, Baup S, Pignon F, Gondrexon N, Sztucki M, Romdhane A, Guillet A, Aurousseau M (2015) Ultrasonic assisted cross-flow ultrafiltration of starch and cellulose nanocrystals suspensions: characterization at multi-scales. Carbohydr Polym 124:66–76CrossRef
112.
go back to reference Cao X, Ding B, Yu J, Al-Deyab SS (2012) Cellulose nanowhiskers extracted from TEMPO oxidized jute fibers. Carbohydr Polym 90:1075–1080CrossRef Cao X, Ding B, Yu J, Al-Deyab SS (2012) Cellulose nanowhiskers extracted from TEMPO oxidized jute fibers. Carbohydr Polym 90:1075–1080CrossRef
113.
go back to reference Fukuzumi H, Saito T, Isogai A (2013) Influence of TEMPO-oxidized cellulose nanofibril length on film properties. Carbohydr Polym 93:172–177CrossRef Fukuzumi H, Saito T, Isogai A (2013) Influence of TEMPO-oxidized cellulose nanofibril length on film properties. Carbohydr Polym 93:172–177CrossRef
114.
go back to reference Iwamoto S, Kai W, Isogai T, Saito T, Isogai A, Iwata T (2010) Comparison study of TEMPO-analogous compounds on oxidation efficiency of wood cellulose for preparation of cellulose nanofibrils. Polym Degrad Stab 95:1394–1398CrossRef Iwamoto S, Kai W, Isogai T, Saito T, Isogai A, Iwata T (2010) Comparison study of TEMPO-analogous compounds on oxidation efficiency of wood cellulose for preparation of cellulose nanofibrils. Polym Degrad Stab 95:1394–1398CrossRef
115.
go back to reference Fukuzumi H, Saito T, Okita Y, Isogai A (2010) Thermal stabilization of TEMPO-oxidized cellulose. Polym Degrad Stab 95:1502–1508CrossRef Fukuzumi H, Saito T, Okita Y, Isogai A (2010) Thermal stabilization of TEMPO-oxidized cellulose. Polym Degrad Stab 95:1502–1508CrossRef
116.
go back to reference Herrera M, Mathew AP, Oksman K (2012) Comparison of cellulose nanowhiskers extracted from industrial bio-residue and commercial microcrystalline cellulose. Mater Lett 71:28–31CrossRef Herrera M, Mathew AP, Oksman K (2012) Comparison of cellulose nanowhiskers extracted from industrial bio-residue and commercial microcrystalline cellulose. Mater Lett 71:28–31CrossRef
117.
go back to reference Mtibe A, Linganiso LZ, Mathew AP, Oksman K, John MJ, Anandjiwala RD (2015) A comparative study on properties of micro and nanopapers produced from cellulose and cellulose nanofibres. Carbohydr Polym 118:1–8CrossRef Mtibe A, Linganiso LZ, Mathew AP, Oksman K, John MJ, Anandjiwala RD (2015) A comparative study on properties of micro and nanopapers produced from cellulose and cellulose nanofibres. Carbohydr Polym 118:1–8CrossRef
118.
go back to reference Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963–979CrossRef Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963–979CrossRef
119.
go back to reference Asefa T (2012) Chiral nematic mesoporous carbons from self-assembled nanocrystalline cellulose. Angew Chem Int Ed 51:2008–2010CrossRef Asefa T (2012) Chiral nematic mesoporous carbons from self-assembled nanocrystalline cellulose. Angew Chem Int Ed 51:2008–2010CrossRef
120.
go back to reference Cheung CCY, Giese M, Kelly JA, Hamad WY, McLachlan MJ (2013) Iridescent chiral nematic cellulose nanocrystal/polymer composites assembled in organic solvent. ACS Macro Lett 2:1016–1020CrossRef Cheung CCY, Giese M, Kelly JA, Hamad WY, McLachlan MJ (2013) Iridescent chiral nematic cellulose nanocrystal/polymer composites assembled in organic solvent. ACS Macro Lett 2:1016–1020CrossRef
121.
go back to reference Lagerwall JPF, Schutz C, Salajkova M, Noh JH, Park JH, Scalia G, Bergstrom L (2014) Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater 6:1–12CrossRef Lagerwall JPF, Schutz C, Salajkova M, Noh JH, Park JH, Scalia G, Bergstrom L (2014) Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater 6:1–12CrossRef
122.
go back to reference Robles E, Urruzola I, Labidi J, Serrano L (2015) Surface-modified nano-cellulose as reinforcement in poly(lactic acid) to conform new composites. Ind Crops Prod 71:44–53CrossRef Robles E, Urruzola I, Labidi J, Serrano L (2015) Surface-modified nano-cellulose as reinforcement in poly(lactic acid) to conform new composites. Ind Crops Prod 71:44–53CrossRef
123.
go back to reference Li Y, Pickering KL (2008) Hemp fibre reinforced composites using chelator and enzyme treatments. Compos Sci Technol 68:3293–3298CrossRef Li Y, Pickering KL (2008) Hemp fibre reinforced composites using chelator and enzyme treatments. Compos Sci Technol 68:3293–3298CrossRef
124.
go back to reference Van Sumere CF (1992) Retting of flax with special reference to enzyme retting. In: Sharma HSS, Van Sumere CF (eds) The biology and retting of flax, vol 157. Belfast, pp 153–193 Van Sumere CF (1992) Retting of flax with special reference to enzyme retting. In: Sharma HSS, Van Sumere CF (eds) The biology and retting of flax, vol 157. Belfast, pp 153–193
125.
go back to reference Nykter M, Kymäläinen H-R, Thomsen AB, Lilholt H, Koponen H, Sjöberg AM, Thygesen A (2008) Effects of thermal and enzymatic treatments and harvesting time on the microbial quality and chemical composition of fibre hemp (Cannabis sativa L.). Biomass Bioenergy 32:392–399CrossRef Nykter M, Kymäläinen H-R, Thomsen AB, Lilholt H, Koponen H, Sjöberg AM, Thygesen A (2008) Effects of thermal and enzymatic treatments and harvesting time on the microbial quality and chemical composition of fibre hemp (Cannabis sativa L.). Biomass Bioenergy 32:392–399CrossRef
126.
go back to reference Wang HM (2003) Removing pectin and lignin during chemical processing of hemp for textile applications. Text Res J 73:664–669CrossRef Wang HM (2003) Removing pectin and lignin during chemical processing of hemp for textile applications. Text Res J 73:664–669CrossRef
127.
go back to reference Zhang J, Henriksson G, Johansson G (2000) Polygalacturonase is the key component in enzymatic retting of flax. J Biotechnol 81:85–89CrossRef Zhang J, Henriksson G, Johansson G (2000) Polygalacturonase is the key component in enzymatic retting of flax. J Biotechnol 81:85–89CrossRef
128.
go back to reference Chen J, Wu D, Tam KC, Pan K, Zheng Z (2017) Effect of surface modification of cellulose nanocrystal on nonisothermal crystallization of poly(β-hydroxybutyrate) composites. Carbohydr Polym 157:1821–1829CrossRef Chen J, Wu D, Tam KC, Pan K, Zheng Z (2017) Effect of surface modification of cellulose nanocrystal on nonisothermal crystallization of poly(β-hydroxybutyrate) composites. Carbohydr Polym 157:1821–1829CrossRef
129.
go back to reference Morelli CL, Belgacem MN, Branciforti MC, Bretas RES, Crisci A, Bras J (2016) Supramolecular aromatic interactions to enhance biodegradable film properties through incorporation of functionalized cellulose nanocrystals. Compos A Appl Sci Manuf 83:80–88CrossRef Morelli CL, Belgacem MN, Branciforti MC, Bretas RES, Crisci A, Bras J (2016) Supramolecular aromatic interactions to enhance biodegradable film properties through incorporation of functionalized cellulose nanocrystals. Compos A Appl Sci Manuf 83:80–88CrossRef
130.
go back to reference Siqueira G, Fraschini C, Bras J, Dufresne A, Prud’homme R, Laborie MP (2011) Impact of the nature and shape of cellulosic nanoparticles on the isothermal crystallization kinetics of poly(ε caprolactone). Eur Polymer J 47:2216–2227CrossRef Siqueira G, Fraschini C, Bras J, Dufresne A, Prud’homme R, Laborie MP (2011) Impact of the nature and shape of cellulosic nanoparticles on the isothermal crystallization kinetics of poly(ε caprolactone). Eur Polymer J 47:2216–2227CrossRef
131.
go back to reference Fortunati E, Rinaldi S, Peltzer M, Bloise N, Visai L, Armentano I, Jiménez A, Latterini L, Kenny JM (2014) Nano-biocomposite films with modified cellulose nanocrystals and synthesized silver nanoparticles. Carbohydr Polym 101:1122–1133CrossRef Fortunati E, Rinaldi S, Peltzer M, Bloise N, Visai L, Armentano I, Jiménez A, Latterini L, Kenny JM (2014) Nano-biocomposite films with modified cellulose nanocrystals and synthesized silver nanoparticles. Carbohydr Polym 101:1122–1133CrossRef
132.
go back to reference Oksman K, Mathew AP, Bondeson D, Kvien I (2006) Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol 66:2776–2784CrossRef Oksman K, Mathew AP, Bondeson D, Kvien I (2006) Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol 66:2776–2784CrossRef
133.
go back to reference Petersson L, Kvien I, Oksman K (2007) Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Compos Sci Technol 67:2535–2544CrossRef Petersson L, Kvien I, Oksman K (2007) Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Compos Sci Technol 67:2535–2544CrossRef
134.
go back to reference Huq T, Salmieri S, Khan A, Khan RA, Tien CL, Riedl B, Fraschini C, Bouchard J, Uribe-Calderon J, Kamal MR, Lacroix M (2012) Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film. Carbohydr Polym 90:1757–1763CrossRef Huq T, Salmieri S, Khan A, Khan RA, Tien CL, Riedl B, Fraschini C, Bouchard J, Uribe-Calderon J, Kamal MR, Lacroix M (2012) Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film. Carbohydr Polym 90:1757–1763CrossRef
135.
go back to reference Mathew AP, Dufresne A (2002) Morphological investigation of nanocomposites from sorbitol plasticized starch and tunicin whiskers. Biomacromol 3:609–617CrossRef Mathew AP, Dufresne A (2002) Morphological investigation of nanocomposites from sorbitol plasticized starch and tunicin whiskers. Biomacromol 3:609–617CrossRef
136.
go back to reference Azeredo HMC, Miranda KWE, Rosa MF, Nascimento DM, De Moura MR (2012) Edible films from alginate-acerola puree reinforced with cellulose whiskers. LWT-Food Sci Technol 46:294–297CrossRef Azeredo HMC, Miranda KWE, Rosa MF, Nascimento DM, De Moura MR (2012) Edible films from alginate-acerola puree reinforced with cellulose whiskers. LWT-Food Sci Technol 46:294–297CrossRef
137.
go back to reference Azeredo HMC, Miranda KWE, Ribeiro HL, Rosa MF, Nascimento DM (2012) Nanoreinforced alginate–acerola puree coatings on acerola fruits. J Food Eng 113:505–510CrossRef Azeredo HMC, Miranda KWE, Ribeiro HL, Rosa MF, Nascimento DM (2012) Nanoreinforced alginate–acerola puree coatings on acerola fruits. J Food Eng 113:505–510CrossRef
138.
go back to reference Fortunati E, Luzi F, Puglia D, Dominici F, Santulli C, Kenny JM, Torre L (2014) Investigation of thermo-mechanical: chemical and degradative properties of PLA-limonene films reinforced with cellulose nanocrystals extracted from Phormium tenax leaves. Eur Polymer J 56:77–91CrossRef Fortunati E, Luzi F, Puglia D, Dominici F, Santulli C, Kenny JM, Torre L (2014) Investigation of thermo-mechanical: chemical and degradative properties of PLA-limonene films reinforced with cellulose nanocrystals extracted from Phormium tenax leaves. Eur Polymer J 56:77–91CrossRef
139.
go back to reference Fortunati E, Peltzer M, Armentano I, Torre L, Jiménez A, Kenny JM (2012) Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydr Polym 90:948–956CrossRef Fortunati E, Peltzer M, Armentano I, Torre L, Jiménez A, Kenny JM (2012) Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydr Polym 90:948–956CrossRef
140.
go back to reference Pereda M, Dufresne A, Aranguren MI, Marcovich NE (2014) Polyelectrolyte films based on chitosan/olive oil and reinforced with cellulose nanocrystals. Carbohydr Polym 101:1018–1026CrossRef Pereda M, Dufresne A, Aranguren MI, Marcovich NE (2014) Polyelectrolyte films based on chitosan/olive oil and reinforced with cellulose nanocrystals. Carbohydr Polym 101:1018–1026CrossRef
141.
go back to reference Fernandes SCM, Freire CSR, Silvestre AJD, Pascoal Neto C, Gandini A, Berglund LA, Salmen L (2010) Transparent chitosan films reinforced with a high content of nanofibrillated cellulose. Carbohydr Polym 81:394–401CrossRef Fernandes SCM, Freire CSR, Silvestre AJD, Pascoal Neto C, Gandini A, Berglund LA, Salmen L (2010) Transparent chitosan films reinforced with a high content of nanofibrillated cellulose. Carbohydr Polym 81:394–401CrossRef
142.
go back to reference Jipa IM, Stoica-Guzun A, Stroescu M (2012) Controlled release of sorbic acid from bacterial cellulose based mono and multilayer antimicrobial films. LWT-Food Sci Technol 47:400–406CrossRef Jipa IM, Stoica-Guzun A, Stroescu M (2012) Controlled release of sorbic acid from bacterial cellulose based mono and multilayer antimicrobial films. LWT-Food Sci Technol 47:400–406CrossRef
143.
go back to reference Iwatake A, Nogi M, Yano H (2008) Cellulose nanofiber-reinforced polylactic acid. Compos Sci Technol 68:2103–2106CrossRef Iwatake A, Nogi M, Yano H (2008) Cellulose nanofiber-reinforced polylactic acid. Compos Sci Technol 68:2103–2106CrossRef
144.
go back to reference Peng X-W, Ren J-L, Zhong L-X, Sun R-C (2011) Nanocomposite films based on xylan-rich hemicelluloses and cellulose nanofibers with enhanced mechanical properties. Biomacromol 12:3321–3329CrossRef Peng X-W, Ren J-L, Zhong L-X, Sun R-C (2011) Nanocomposite films based on xylan-rich hemicelluloses and cellulose nanofibers with enhanced mechanical properties. Biomacromol 12:3321–3329CrossRef
145.
go back to reference Bilbao-Sainz C, Bras J, Williams T, Sénechal T, Orts W (2011) HPMC reinforced with different cellulose nano-particles. Carbohydr Polym 86:1549–1557CrossRef Bilbao-Sainz C, Bras J, Williams T, Sénechal T, Orts W (2011) HPMC reinforced with different cellulose nano-particles. Carbohydr Polym 86:1549–1557CrossRef
146.
go back to reference George J, Ramana KV, Bawa AS, Siddaramaiah (2011) Bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites. Int J Biol Macromol 48:50–57CrossRef George J, Ramana KV, Bawa AS, Siddaramaiah (2011) Bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites. Int J Biol Macromol 48:50–57CrossRef
147.
go back to reference Soykeabkaew N, Laosat N, Ngaokla A, Yodsuwan N, Tunkasiri T (2012) Reinforcing potential of micro- and nano-sized fibers in the starch-based biocomposites. Compos Sci Technol 72:845–852CrossRef Soykeabkaew N, Laosat N, Ngaokla A, Yodsuwan N, Tunkasiri T (2012) Reinforcing potential of micro- and nano-sized fibers in the starch-based biocomposites. Compos Sci Technol 72:845–852CrossRef
148.
go back to reference Barud HS, Souza JL, Santos DB, Crespi MS, Ribeiro CA, Messaddeq Y, Ribeiro SJL (2011) Bacterial celulose/poly(3-hydroxybutyrate) composite membranes. Carbohydr Polym 83:1279–1284CrossRef Barud HS, Souza JL, Santos DB, Crespi MS, Ribeiro CA, Messaddeq Y, Ribeiro SJL (2011) Bacterial celulose/poly(3-hydroxybutyrate) composite membranes. Carbohydr Polym 83:1279–1284CrossRef
149.
go back to reference Lin W-C, Lien C-C, Yeh H-J, Yu C-M, Hsu S-H (2013) Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications. Carbohydr Polym 94:603–611CrossRef Lin W-C, Lien C-C, Yeh H-J, Yu C-M, Hsu S-H (2013) Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications. Carbohydr Polym 94:603–611CrossRef
150.
go back to reference Dufresne A (2017) Cellulose nanomaterial reinforced polymer nanocomposites. Curr Opin Colloid Interface Sci 29:1–8CrossRef Dufresne A (2017) Cellulose nanomaterial reinforced polymer nanocomposites. Curr Opin Colloid Interface Sci 29:1–8CrossRef
151.
go back to reference Mariano M, Chirat C, El Kissi N, Dufresne A (2014) Impact of cellulose nanocrystal aspect ratio on crystallization and reinforcement of poly(butylene adipate-co-terephthalate). J Polym Sci, Part B: Polym Phys 52:791CrossRef Mariano M, Chirat C, El Kissi N, Dufresne A (2014) Impact of cellulose nanocrystal aspect ratio on crystallization and reinforcement of poly(butylene adipate-co-terephthalate). J Polym Sci, Part B: Polym Phys 52:791CrossRef
152.
go back to reference Goffin A-L, Raquez J-M, Duquesne E, Siqueira G, Habibi Y, Dufresne A, Dubois P (2011) From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites. Biomacromol 12:2456–2465CrossRef Goffin A-L, Raquez J-M, Duquesne E, Siqueira G, Habibi Y, Dufresne A, Dubois P (2011) From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites. Biomacromol 12:2456–2465CrossRef
153.
go back to reference García MA, Pinotti A, Martino MN, Zaritzky NE (2004) Characterization of composite hydrocolloid films. Carbohydr Polym 56:339–345CrossRef García MA, Pinotti A, Martino MN, Zaritzky NE (2004) Characterization of composite hydrocolloid films. Carbohydr Polym 56:339–345CrossRef
154.
go back to reference Miri NE, Abdelouahdi K, Barakat A, Zahouily M, Fihri A, Solhy A, Achaby ME (2015) Bio-nanocomposite films reinforced with cellulose nanocrystals: rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films. Carbohydr Polym 129:156–167CrossRef Miri NE, Abdelouahdi K, Barakat A, Zahouily M, Fihri A, Solhy A, Achaby ME (2015) Bio-nanocomposite films reinforced with cellulose nanocrystals: rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films. Carbohydr Polym 129:156–167CrossRef
155.
go back to reference Wu T, Farnood R, O’Kelly K, Chen B (2014) Mechanical behavior of transparent nanofibrillar cellulose-chitosan nanocomposite films in dry and wet conditions. J Mech Behav Biomed Mater 32:279–286CrossRef Wu T, Farnood R, O’Kelly K, Chen B (2014) Mechanical behavior of transparent nanofibrillar cellulose-chitosan nanocomposite films in dry and wet conditions. J Mech Behav Biomed Mater 32:279–286CrossRef
156.
go back to reference Khan A, Khan RA, Salmieri S, Le Tien C, Riedl B, Bouchard J, Chauve G, Tan V, Kamal MR, Lacroix M (2012) Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydr Polym 90:1601–1608CrossRef Khan A, Khan RA, Salmieri S, Le Tien C, Riedl B, Bouchard J, Chauve G, Tan V, Kamal MR, Lacroix M (2012) Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydr Polym 90:1601–1608CrossRef
157.
go back to reference Li Q, Zhou J, Zhang L (2009) Structure and properties of the nanocomposite films of chitosan reinforced with cellulose whiskers. J Polym Sci, Part B: Polym Phys 47:1069–1077CrossRef Li Q, Zhou J, Zhang L (2009) Structure and properties of the nanocomposite films of chitosan reinforced with cellulose whiskers. J Polym Sci, Part B: Polym Phys 47:1069–1077CrossRef
158.
go back to reference Dehnad D, Emam-Djomeh Z, Mirzaei H, Jafari SM, Dadashi S (2014) Optimization of physical and mechanical properties for chitosan nanocellulose biocomposites. Carbohydr Polym 105:222–228CrossRef Dehnad D, Emam-Djomeh Z, Mirzaei H, Jafari SM, Dadashi S (2014) Optimization of physical and mechanical properties for chitosan nanocellulose biocomposites. Carbohydr Polym 105:222–228CrossRef
159.
go back to reference Pereda M, Amica G, Rácz I, Marcovich NE (2011) Structure and properties of nanocomposite films based on sodium caseinate and nanocellulose fibers. J Food Eng 103:76–83CrossRef Pereda M, Amica G, Rácz I, Marcovich NE (2011) Structure and properties of nanocomposite films based on sodium caseinate and nanocellulose fibers. J Food Eng 103:76–83CrossRef
160.
go back to reference Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70:1742–1747CrossRef Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70:1742–1747CrossRef
161.
go back to reference Khan RA, Salmieri S, Dussault D, Uribe-Calderon J, Kamal MR, Safrany A, Lacroix M (2010) Production and properties of nanocellulose-reinforced methylcellulose-based biodegradable films. J Agric Food Chem 58:7878–7885CrossRef Khan RA, Salmieri S, Dussault D, Uribe-Calderon J, Kamal MR, Safrany A, Lacroix M (2010) Production and properties of nanocellulose-reinforced methylcellulose-based biodegradable films. J Agric Food Chem 58:7878–7885CrossRef
162.
go back to reference Boumail A, Salmieri S, Klimas E, Tawema PO, Bouchard J, Lacroix M (2013) Characterization of trilayer antimicrobial diffusion films (ADFs) based on methylcellulose-polycaprolactone composites. J Agric Food Chem 61:811–821CrossRef Boumail A, Salmieri S, Klimas E, Tawema PO, Bouchard J, Lacroix M (2013) Characterization of trilayer antimicrobial diffusion films (ADFs) based on methylcellulose-polycaprolactone composites. J Agric Food Chem 61:811–821CrossRef
163.
go back to reference Abdollahi M, Alboofetileh M, Behrooz R, Rezaei M, Miraki R (2013) Reducing water sensitivity of alginate bio-nanocomposite film using cellulose nanoparticles. Int J Biol Macromol 54:166–173CrossRef Abdollahi M, Alboofetileh M, Behrooz R, Rezaei M, Miraki R (2013) Reducing water sensitivity of alginate bio-nanocomposite film using cellulose nanoparticles. Int J Biol Macromol 54:166–173CrossRef
164.
go back to reference Xu X, Liu F, Jiang L, Zhu JY, Haagenson D, Wiesenborn DP (2013) Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5:2999–3009CrossRef Xu X, Liu F, Jiang L, Zhu JY, Haagenson D, Wiesenborn DP (2013) Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5:2999–3009CrossRef
165.
go back to reference López-Rubio A, Lagaron JM, Ankerfors M, Lindström T, Nordqvist D, Mattozzi A, Hedenqvist MS (2007) Enhanced film forming and film properties of amylopectin using micro-fibrillated cellulose. Carbohydr Polym 68:718–727CrossRef López-Rubio A, Lagaron JM, Ankerfors M, Lindström T, Nordqvist D, Mattozzi A, Hedenqvist MS (2007) Enhanced film forming and film properties of amylopectin using micro-fibrillated cellulose. Carbohydr Polym 68:718–727CrossRef
166.
go back to reference George J, Kumar R, Sajeevkumar VA, Ramana KV, Rajamanickam R, Abhishek V, Nadanasabapathy S, Siddaramaiah (2014) Hybrid HPMC nanocomposites containing bacterial celulose nanocrystals and silver nanoparticles. Carbohydr Polym 105:285–292CrossRef George J, Kumar R, Sajeevkumar VA, Ramana KV, Rajamanickam R, Abhishek V, Nadanasabapathy S, Siddaramaiah (2014) Hybrid HPMC nanocomposites containing bacterial celulose nanocrystals and silver nanoparticles. Carbohydr Polym 105:285–292CrossRef
167.
go back to reference Paralikar SA, Simonsen J, Lombardi J (2008) Poly(vinyl alcohol)/cellulose nanocrystal barrier membranes. J Membr Sci 320:248–258CrossRef Paralikar SA, Simonsen J, Lombardi J (2008) Poly(vinyl alcohol)/cellulose nanocrystal barrier membranes. J Membr Sci 320:248–258CrossRef
168.
go back to reference Follain N, Belbekhouche S, Bras J, Siqueira G, Marais S, Dufresne A (2013) Water transport properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals. J Membr Sci 427:218–229CrossRef Follain N, Belbekhouche S, Bras J, Siqueira G, Marais S, Dufresne A (2013) Water transport properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals. J Membr Sci 427:218–229CrossRef
169.
go back to reference Dhar P, Bhardwaj U, Kumar A, Katiyar V (2015) Poly(3-hydroxybutyrate)/cellulose nanocrystal films for food packaging applications: barrier and migration studies. Polym Eng Sci 55:2388–2395CrossRef Dhar P, Bhardwaj U, Kumar A, Katiyar V (2015) Poly(3-hydroxybutyrate)/cellulose nanocrystal films for food packaging applications: barrier and migration studies. Polym Eng Sci 55:2388–2395CrossRef
170.
go back to reference Wang Y, Cao X, Zhang L (2006) Effects of cellulose whiskers on properties of soy protein thermoplastics. Macromol Biosci 6:524–531CrossRef Wang Y, Cao X, Zhang L (2006) Effects of cellulose whiskers on properties of soy protein thermoplastics. Macromol Biosci 6:524–531CrossRef
171.
go back to reference Chen Y, Liu C, Chang PR, Cao X, Anderson DP (2009) Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: effect of hydrolysis time. Carbohydr Polym 76:607–615CrossRef Chen Y, Liu C, Chang PR, Cao X, Anderson DP (2009) Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: effect of hydrolysis time. Carbohydr Polym 76:607–615CrossRef
172.
go back to reference Dufresne A, Dupeyre D, Vignon MR (2000) Cellulose microfibrils from potato tuber cells: processing and characterization of starch-cellulose microfibril composites. J Appl Polym Sci 76:2080–2092CrossRef Dufresne A, Dupeyre D, Vignon MR (2000) Cellulose microfibrils from potato tuber cells: processing and characterization of starch-cellulose microfibril composites. J Appl Polym Sci 76:2080–2092CrossRef
173.
go back to reference Mesquita JP, Donnici CL, Teixeira IF, Pereira FV (2012) Bio-based nanocomposites obtained through covalent linkage between chitosan and cellulose nanocrystals. Carbohydr Polym 90:210–217CrossRef Mesquita JP, Donnici CL, Teixeira IF, Pereira FV (2012) Bio-based nanocomposites obtained through covalent linkage between chitosan and cellulose nanocrystals. Carbohydr Polym 90:210–217CrossRef
174.
go back to reference Azeredo HMC, Mattoso LHC, Wood D, Williams TG, Avena-Bustillos RJ, McHugh TH (2009) Nanocomposite edible films from mango puree reinforced with cellulose nanofibers. J Food Sci 74:N31–N35CrossRef Azeredo HMC, Mattoso LHC, Wood D, Williams TG, Avena-Bustillos RJ, McHugh TH (2009) Nanocomposite edible films from mango puree reinforced with cellulose nanofibers. J Food Sci 74:N31–N35CrossRef
175.
go back to reference Bideau B, Bras J, Saini S, Daneault C, Loranger E (2016) Mechanical and antibacterial properties of a nanocellulose-polypyrrole multilayer composite. Mater Sci Eng: C 69:977–984CrossRef Bideau B, Bras J, Saini S, Daneault C, Loranger E (2016) Mechanical and antibacterial properties of a nanocellulose-polypyrrole multilayer composite. Mater Sci Eng: C 69:977–984CrossRef
177.
go back to reference Bharimalla AK, Deshmukh SP, Vigneshwaran N, Patil PG, Prasad V (2017) Nanocellulose based polymer composites for applications in food packaging: future prospects and challenges. Polym Plast Technol Eng 56:805–823 Bharimalla AK, Deshmukh SP, Vigneshwaran N, Patil PG, Prasad V (2017) Nanocellulose based polymer composites for applications in food packaging: future prospects and challenges. Polym Plast Technol Eng 56:805–823
178.
go back to reference Zhang X, Ma P, Zhang Y (2016) Structure and properties of surface-acetylated cellulose nanocrystal/poly(butylene adipate-co-terephtalate) composites. Polym Bull 73:2073–2085CrossRef Zhang X, Ma P, Zhang Y (2016) Structure and properties of surface-acetylated cellulose nanocrystal/poly(butylene adipate-co-terephtalate) composites. Polym Bull 73:2073–2085CrossRef
180.
go back to reference Habibi Y, Aouadi S, Raquez J-M, Dubois P (2013) Effects of interfacial stereocomplexation in cellulose nanocrystal-filled polylactide nanocomposites. Cellulose 20:2877–2885CrossRef Habibi Y, Aouadi S, Raquez J-M, Dubois P (2013) Effects of interfacial stereocomplexation in cellulose nanocrystal-filled polylactide nanocomposites. Cellulose 20:2877–2885CrossRef
181.
182.
go back to reference Menezes AJ, Siqueira G, Curvelo AAS, Dufresne A (2009) Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 50:4552–4563CrossRef Menezes AJ, Siqueira G, Curvelo AAS, Dufresne A (2009) Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 50:4552–4563CrossRef
183.
go back to reference Yousefian H, Rodrigue D (2015) Effect of nanocrystalline cellulose, chemical blowing agent and mold temperature on the morphological, physical and mechanical properties of polypropylene. J Appl Polym Sci 132:1–9CrossRef Yousefian H, Rodrigue D (2015) Effect of nanocrystalline cellulose, chemical blowing agent and mold temperature on the morphological, physical and mechanical properties of polypropylene. J Appl Polym Sci 132:1–9CrossRef
184.
go back to reference Alloin F, D’Aprea A, Dufresne A, El Kissi N, Bossard F (2011) Poly(oxyethylene) and ramie whiskers based nanocomposites: influence of processing: extrusion and casting/evaporation. Cellulose 18:957–973CrossRef Alloin F, D’Aprea A, Dufresne A, El Kissi N, Bossard F (2011) Poly(oxyethylene) and ramie whiskers based nanocomposites: influence of processing: extrusion and casting/evaporation. Cellulose 18:957–973CrossRef
185.
go back to reference Kiziltas A, Nazari B, Kiziltas EE, Gardner DJS, Han Y, Rushing TS (2016) Cellulose nanofiber-polyethylene nanocomposites modified by polyvinyl alcohol. J Appl Polym Sci 133:1–8CrossRef Kiziltas A, Nazari B, Kiziltas EE, Gardner DJS, Han Y, Rushing TS (2016) Cellulose nanofiber-polyethylene nanocomposites modified by polyvinyl alcohol. J Appl Polym Sci 133:1–8CrossRef
186.
go back to reference Sun X, Lu C, Liu Y, Zhang W, Zhang X (2014) Melt-processed poly(vinyl alcohol) composites filled with microcrystalline cellulose from waste cotton fabrics. Carbohydr Polym 101:642–649CrossRef Sun X, Lu C, Liu Y, Zhang W, Zhang X (2014) Melt-processed poly(vinyl alcohol) composites filled with microcrystalline cellulose from waste cotton fabrics. Carbohydr Polym 101:642–649CrossRef
187.
go back to reference Zammarano M, Maupin PH, Sung LP, Gilman JW, McCarthy ED, Kim YS, Fox DM (2011) Revealing the interface in polymer nanocomposites. ACS Nano 5:3391–3399CrossRef Zammarano M, Maupin PH, Sung LP, Gilman JW, McCarthy ED, Kim YS, Fox DM (2011) Revealing the interface in polymer nanocomposites. ACS Nano 5:3391–3399CrossRef
188.
go back to reference Kalia S, Dufresne A, Cherian BM, Kaith B, Avérous L, Njuguna J Nassiopoulos E (2011) Cellulose-based bio- and nanocomposites: a review. Int J Polym Sci Kalia S, Dufresne A, Cherian BM, Kaith B, Avérous L, Njuguna J Nassiopoulos E (2011) Cellulose-based bio- and nanocomposites: a review. Int J Polym Sci
189.
go back to reference Lekakou C, Hearn A, Murugesh A, Le Page B (2007) Liquid composite moulding of fibre nanocomposites. Mater Sci Technol 23:487–491CrossRef Lekakou C, Hearn A, Murugesh A, Le Page B (2007) Liquid composite moulding of fibre nanocomposites. Mater Sci Technol 23:487–491CrossRef
190.
191.
go back to reference Qamhia II, Sabo RC, Elhajjar RF (2013) Static and dynamic characterization of cellulose nanofibril scaffold-based composites. BioResources 9:381–392CrossRef Qamhia II, Sabo RC, Elhajjar RF (2013) Static and dynamic characterization of cellulose nanofibril scaffold-based composites. BioResources 9:381–392CrossRef
192.
go back to reference Barari B, Ellingham TK, Ghamhia II, Pillai KM, El-Hajjar R, Turng LS, Sabo R (2016) Mechanical characterization of scalable cellulose nano-fiber based composites made using liquid composite molding process. Compos B Eng 84:277–284CrossRef Barari B, Ellingham TK, Ghamhia II, Pillai KM, El-Hajjar R, Turng LS, Sabo R (2016) Mechanical characterization of scalable cellulose nano-fiber based composites made using liquid composite molding process. Compos B Eng 84:277–284CrossRef
193.
go back to reference Barari B, Omrani E, Moghadam AD, Menezes PL, Pillai KM, Rohatgi PK (2016) Mechanical, physical and tribological characterization of nano-cellulose fibers reinforced bio-epoxy composites: an attempt to fabricate and scale the ‘Green’ composite. Carbohydr Polym 147:282–293CrossRef Barari B, Omrani E, Moghadam AD, Menezes PL, Pillai KM, Rohatgi PK (2016) Mechanical, physical and tribological characterization of nano-cellulose fibers reinforced bio-epoxy composites: an attempt to fabricate and scale the ‘Green’ composite. Carbohydr Polym 147:282–293CrossRef
194.
go back to reference Rahimi SK, Otaigbe JU (2016) Polyamide 6 nanocomposites incorporating cellulose nanocrystals prepared by In situ ring opening polymerization: viscoelasticity, creep behavior, and melt rheological properties. Polym Eng Sci 56:1045–1060CrossRef Rahimi SK, Otaigbe JU (2016) Polyamide 6 nanocomposites incorporating cellulose nanocrystals prepared by In situ ring opening polymerization: viscoelasticity, creep behavior, and melt rheological properties. Polym Eng Sci 56:1045–1060CrossRef
195.
go back to reference Iyer KA, Torkelson JM (2015) Importance of superior dispersion versus filler surface modification in producing robust polymer nanocomposites: the example of polypropylene/nanosilica hybrids. Polymer 68:147–157CrossRef Iyer KA, Torkelson JM (2015) Importance of superior dispersion versus filler surface modification in producing robust polymer nanocomposites: the example of polypropylene/nanosilica hybrids. Polymer 68:147–157CrossRef
196.
go back to reference Auad ML, Richardson T, Orts WJ, Medeiros ES, Mattoso LHC, Mosiewicki MA, Marcoviche NE, Arangurene MI (2011) Polyaniline-. modified cellulose nanofibrils as reinforcement of a smart poly-. urethane. Polym Int 60:743–750CrossRef Auad ML, Richardson T, Orts WJ, Medeiros ES, Mattoso LHC, Mosiewicki MA, Marcoviche NE, Arangurene MI (2011) Polyaniline-. modified cellulose nanofibrils as reinforcement of a smart poly-. urethane. Polym Int 60:743–750CrossRef
197.
go back to reference Miao C, Hamad WY (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20:2221–2262CrossRef Miao C, Hamad WY (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20:2221–2262CrossRef
198.
go back to reference Rueda L, Saralegi A, Fernández-d’Arlas B, Zhou Q, Alonso-Varona A, Berglund LA, Mondragon I, Corcuera MA, Eceiza A (2013) In situ polymerization and characterization of elastomeric polyurethane-cellulose nanocrystal nanocomposites.Cell response evaluation. Cellulose 20:1819–1828CrossRef Rueda L, Saralegi A, Fernández-d’Arlas B, Zhou Q, Alonso-Varona A, Berglund LA, Mondragon I, Corcuera MA, Eceiza A (2013) In situ polymerization and characterization of elastomeric polyurethane-cellulose nanocrystal nanocomposites.Cell response evaluation. Cellulose 20:1819–1828CrossRef
199.
go back to reference Yu J, Wang C, Wang J, Chu F (2016) In situ development of self-reinforced cellulose nanocrystals based thermoplastic elastomers by atom transfer radical polymerization. Carbohydr Polym 141:143–150CrossRef Yu J, Wang C, Wang J, Chu F (2016) In situ development of self-reinforced cellulose nanocrystals based thermoplastic elastomers by atom transfer radical polymerization. Carbohydr Polym 141:143–150CrossRef
200.
go back to reference Müller D, Cercená R, Aguayo AJG, Porto LM, Rambo CR, Barra GMO (2016) Flexible PEDOT-nanocellulose composites produced by in situ oxidative polymerization for passive components in frequency filters. J Mater Sci: Mater Electron 27:8062–8067 Müller D, Cercená R, Aguayo AJG, Porto LM, Rambo CR, Barra GMO (2016) Flexible PEDOT-nanocellulose composites produced by in situ oxidative polymerization for passive components in frequency filters. J Mater Sci: Mater Electron 27:8062–8067
201.
go back to reference Kaboorani A, Auclair N, Riedl B, Landry V (2016) Physical and morphological properties of UV-cured cellulose nanocrystal (CNC) based nanocomposite coatings for wood furniture. Prog Org Coat 93:17–22CrossRef Kaboorani A, Auclair N, Riedl B, Landry V (2016) Physical and morphological properties of UV-cured cellulose nanocrystal (CNC) based nanocomposite coatings for wood furniture. Prog Org Coat 93:17–22CrossRef
202.
go back to reference Khelifa F, Habibi Y, Bonnaud L, Dubois P (2016) Epoxy monomers cured by high cellulosic nanocrystal loading. ACS Appl Mater Interfaces 8:10535–10544CrossRef Khelifa F, Habibi Y, Bonnaud L, Dubois P (2016) Epoxy monomers cured by high cellulosic nanocrystal loading. ACS Appl Mater Interfaces 8:10535–10544CrossRef
203.
go back to reference Herrera MA, Sirviö JA, Mathew AP, Oksman K (2016) Environmental friendly and sustainable gas barrier on porous materials: nanocellulose coatings prepared using spin-and dip-coating. Mater Des 93:19–25CrossRef Herrera MA, Sirviö JA, Mathew AP, Oksman K (2016) Environmental friendly and sustainable gas barrier on porous materials: nanocellulose coatings prepared using spin-and dip-coating. Mater Des 93:19–25CrossRef
204.
go back to reference Li Z, Renneckar S, Barone JR (2010) Nanocomposites prepared by in situ enzymatic polymerization of phenol with TEMPO-oxidized nanocellulose. Cellulose 17:57–68CrossRef Li Z, Renneckar S, Barone JR (2010) Nanocomposites prepared by in situ enzymatic polymerization of phenol with TEMPO-oxidized nanocellulose. Cellulose 17:57–68CrossRef
205.
go back to reference Mabrouk AB, Ferraria AM, do Rego AMB, Boufi S (2013) Highly transparent nancomposite films based on polybutylmethacrylate and functionalized cellulose nanocrystals. Cellulose 20:1711–1723CrossRef Mabrouk AB, Ferraria AM, do Rego AMB, Boufi S (2013) Highly transparent nancomposite films based on polybutylmethacrylate and functionalized cellulose nanocrystals. Cellulose 20:1711–1723CrossRef
206.
go back to reference Jiang F, Wang Z, Qiao Y, Wang Z, Tang C (2013) A novel architecture toward third-generation thermoplastic elastomers by a grafting strategy. Macromolecules 46:4772–4780CrossRef Jiang F, Wang Z, Qiao Y, Wang Z, Tang C (2013) A novel architecture toward third-generation thermoplastic elastomers by a grafting strategy. Macromolecules 46:4772–4780CrossRef
207.
go back to reference Zoppe JO, Habibi Y, Rojas OJ, Venditti RA, Johansson LS, Efimenko K, Osterberg M, Laine J (2010) Poly(N-isopropylacrylamide) brushes grafted from cellulose nanocrystals via surface-initiated single-electron transfer living radical polymerization. Biomacromol 11:2683–2691CrossRef Zoppe JO, Habibi Y, Rojas OJ, Venditti RA, Johansson LS, Efimenko K, Osterberg M, Laine J (2010) Poly(N-isopropylacrylamide) brushes grafted from cellulose nanocrystals via surface-initiated single-electron transfer living radical polymerization. Biomacromol 11:2683–2691CrossRef
208.
go back to reference Morelli CL, Belgacem MN, Branciforti MC, Salon MCB, Bras J, Bretas RES (2016) Nanocomposites of PBAT and cellulose nanocrystals modified by in situ polymerization and melt extrusion. Polym Eng Sci 56:1339–1348CrossRef Morelli CL, Belgacem MN, Branciforti MC, Salon MCB, Bras J, Bretas RES (2016) Nanocomposites of PBAT and cellulose nanocrystals modified by in situ polymerization and melt extrusion. Polym Eng Sci 56:1339–1348CrossRef
209.
go back to reference Muller D, Rambo CR, Porto LM, Schreiner WH, Barraa GMO (2013) Structure and properties of polypyrrole/bacterial cellulose nanocomposites. Carbohydr Polym 94:655–662CrossRef Muller D, Rambo CR, Porto LM, Schreiner WH, Barraa GMO (2013) Structure and properties of polypyrrole/bacterial cellulose nanocomposites. Carbohydr Polym 94:655–662CrossRef
210.
go back to reference Witt MA, Valenga F, Blell R, Dotto ME, Bechtold IH, Felix O, Pires ATN, Decher G (2012) Layer-by-layer assembled films composed of “charge matched” and “length matched” polysaccharides: self-patterning and unexpected effects of the degree of polymerization. Biointerphases 7:1–10CrossRef Witt MA, Valenga F, Blell R, Dotto ME, Bechtold IH, Felix O, Pires ATN, Decher G (2012) Layer-by-layer assembled films composed of “charge matched” and “length matched” polysaccharides: self-patterning and unexpected effects of the degree of polymerization. Biointerphases 7:1–10CrossRef
211.
go back to reference Cerclier C, Cousin F, Bizot H, Moreau C, Cathala B (2010) Elaboration of spin-coated cellulose-xyloglucan multilayered thin films. Langmuir 26:17248–17255CrossRef Cerclier C, Cousin F, Bizot H, Moreau C, Cathala B (2010) Elaboration of spin-coated cellulose-xyloglucan multilayered thin films. Langmuir 26:17248–17255CrossRef
212.
go back to reference Li F, Biagioni P, Finazzi M, Tavazzi S, Piergiovanni L (2013) Tunable green oxygen barrier through layerby-layer self-assembly of chitosan and cellulose nanocrystals. Carbohydr Polym 92:2128–2134CrossRef Li F, Biagioni P, Finazzi M, Tavazzi S, Piergiovanni L (2013) Tunable green oxygen barrier through layerby-layer self-assembly of chitosan and cellulose nanocrystals. Carbohydr Polym 92:2128–2134CrossRef
213.
go back to reference Strydom SJ, Otto DP, Liebenberg W, Lvov YM, de Villiers MM (2011) Preparation and characterization of directly compactible layer-by-layer nanocoated cellulose. Int J Pharm 404:57–65CrossRef Strydom SJ, Otto DP, Liebenberg W, Lvov YM, de Villiers MM (2011) Preparation and characterization of directly compactible layer-by-layer nanocoated cellulose. Int J Pharm 404:57–65CrossRef
214.
go back to reference Jean B, Dubreuil F, Heux L, Cousin F (2008) Structural details of cellulose nanocrystals/polyelectrolytes multilayers probed by neutron reflectivity and AFM. Langmuir 24:3452–3458CrossRef Jean B, Dubreuil F, Heux L, Cousin F (2008) Structural details of cellulose nanocrystals/polyelectrolytes multilayers probed by neutron reflectivity and AFM. Langmuir 24:3452–3458CrossRef
215.
go back to reference Cranston ED, Gray DG, Rutland MW (2010) Direct surface force measurements of polyelectrolyte multilayer films containing nanocrystalline cellulose. Langmuir 26:17190–17197CrossRef Cranston ED, Gray DG, Rutland MW (2010) Direct surface force measurements of polyelectrolyte multilayer films containing nanocrystalline cellulose. Langmuir 26:17190–17197CrossRef
216.
go back to reference Mesquita JP, Donnici CL, Pereira FV (2010) Biobased nanocomposites from layer-by-layer assembly of cellulose nanowhiskers with chitosan. Biomacromol 11:473–480CrossRef Mesquita JP, Donnici CL, Pereira FV (2010) Biobased nanocomposites from layer-by-layer assembly of cellulose nanowhiskers with chitosan. Biomacromol 11:473–480CrossRef
217.
go back to reference Mesquita JP, Patrício PS, Donnici CL, Petri DFS, de Oliveira LCA, Pereira FV (2011) Hybrid layer-by-layer assembly based on animal and vegetable structural materials: multilayered films of collagen and cellulose nanowhiskers. Soft Matter 7:4405–4413CrossRef Mesquita JP, Patrício PS, Donnici CL, Petri DFS, de Oliveira LCA, Pereira FV (2011) Hybrid layer-by-layer assembly based on animal and vegetable structural materials: multilayered films of collagen and cellulose nanowhiskers. Soft Matter 7:4405–4413CrossRef
218.
go back to reference Dubief D, Samain E, Dufresne A (1999) Polysaccharides microcrystals reinforced amorphous poly(b-hydroxyoctanoate) nanocomposite materials. Macromolecules 32:5765–5771CrossRef Dubief D, Samain E, Dufresne A (1999) Polysaccharides microcrystals reinforced amorphous poly(b-hydroxyoctanoate) nanocomposite materials. Macromolecules 32:5765–5771CrossRef
219.
go back to reference Dufresne A (2000) Dynamic mechanical analysis of the interphase in bacterial polyester/cellulose whiskers natural composites. Compos Interfaces 7:53–67CrossRef Dufresne A (2000) Dynamic mechanical analysis of the interphase in bacterial polyester/cellulose whiskers natural composites. Compos Interfaces 7:53–67CrossRef
220.
go back to reference Dufresne A, Cavaille JY, Helbert W (1997) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part 2: effect of processing and modeling. Polym Compos 18:198–210CrossRef Dufresne A, Cavaille JY, Helbert W (1997) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part 2: effect of processing and modeling. Polym Compos 18:198–210CrossRef
221.
go back to reference Bossard F, El Kissi N, D’Aprea A, Alloin F, Sanchez J-Y, Dufresne A (2010) Influence of dispersion procedure on rheological properties of aqueous solutions of high molecular weight PEO. Rheol Acta 49:529–540CrossRef Bossard F, El Kissi N, D’Aprea A, Alloin F, Sanchez J-Y, Dufresne A (2010) Influence of dispersion procedure on rheological properties of aqueous solutions of high molecular weight PEO. Rheol Acta 49:529–540CrossRef
222.
go back to reference Cheng D, Wen Y, An X, Zhu X, Ni Y (2016) TEMPO-oxidized cellulose nanofibers (TOCNs) as a green reinforcement for waterborne polyurethane coating (WPU) on wood. Carbohydr Polym 151:326–334CrossRef Cheng D, Wen Y, An X, Zhu X, Ni Y (2016) TEMPO-oxidized cellulose nanofibers (TOCNs) as a green reinforcement for waterborne polyurethane coating (WPU) on wood. Carbohydr Polym 151:326–334CrossRef
223.
go back to reference Poaty B, Vardanyan V, Wilczak L, Chauve G, Riedl B (2014) Modification of cellulose nanocrystals as reinforcement derivatives for wood coatings. Prog Org Coat 77:813–820CrossRef Poaty B, Vardanyan V, Wilczak L, Chauve G, Riedl B (2014) Modification of cellulose nanocrystals as reinforcement derivatives for wood coatings. Prog Org Coat 77:813–820CrossRef
224.
go back to reference Vardanyan V, Poaty B, Chauve G, Landry V, Galstian T, Riedl B (2014) Mechanical properties of UV-waterborne varnishes reinforced by cellulose nanocrystals. J Coat Technol Res 11:841–852CrossRef Vardanyan V, Poaty B, Chauve G, Landry V, Galstian T, Riedl B (2014) Mechanical properties of UV-waterborne varnishes reinforced by cellulose nanocrystals. J Coat Technol Res 11:841–852CrossRef
225.
go back to reference Gardebjer S, Bergstrand A, Idstrom A, Borstell C, Naana S, Nordstierna L, Larsson A (2015) Solid-state NMR to quantify surface coverage and chain length of lactic acid modified cellulose nanocrystals, used as fillers in biodegradable composites. Compos Sci Technol 107:1–9CrossRef Gardebjer S, Bergstrand A, Idstrom A, Borstell C, Naana S, Nordstierna L, Larsson A (2015) Solid-state NMR to quantify surface coverage and chain length of lactic acid modified cellulose nanocrystals, used as fillers in biodegradable composites. Compos Sci Technol 107:1–9CrossRef
226.
go back to reference Zhou C, Chu R, Wu R, Wu Q (2011) Electrospun polyethylene oxide/cellulose nanocrystal composite nanofibrous mats with homogeneous and heterogeneous microstructures. Biomacromol 12:2617–2625CrossRef Zhou C, Chu R, Wu R, Wu Q (2011) Electrospun polyethylene oxide/cellulose nanocrystal composite nanofibrous mats with homogeneous and heterogeneous microstructures. Biomacromol 12:2617–2625CrossRef
227.
go back to reference Peresin MS, Habibi Y, Vesterinen AH, Rojas OJ, Pawlak JJ, Seppälä JV (2010) Effect of moisture on electrospun nanofiber composites of poly(vinyl alcohol) and cellulose nanocrystals. Biomacromol 11:2471–2477CrossRef Peresin MS, Habibi Y, Vesterinen AH, Rojas OJ, Pawlak JJ, Seppälä JV (2010) Effect of moisture on electrospun nanofiber composites of poly(vinyl alcohol) and cellulose nanocrystals. Biomacromol 11:2471–2477CrossRef
228.
go back to reference Peresin MS, Habibi Y, Zoppe JO, Pawlak JJ, Rojas OJ (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromol 11:674–681CrossRef Peresin MS, Habibi Y, Zoppe JO, Pawlak JJ, Rojas OJ (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromol 11:674–681CrossRef
229.
go back to reference Uddin AJ, Araki J, Gotoh Y (2011) Toward “strong” green nanocomposites: polyvinyl alcohol reinforced with extremely oriented cellulose whiskers. Biomacromolecules 12:617–624CrossRef Uddin AJ, Araki J, Gotoh Y (2011) Toward “strong” green nanocomposites: polyvinyl alcohol reinforced with extremely oriented cellulose whiskers. Biomacromolecules 12:617–624CrossRef
230.
go back to reference Jo C, Lee JW, Lee KH, Byun MW (2001) Quality properties of pork sausage prepared with water-soluble chitosan oligomer. Meat Sci 59:369–375CrossRef Jo C, Lee JW, Lee KH, Byun MW (2001) Quality properties of pork sausage prepared with water-soluble chitosan oligomer. Meat Sci 59:369–375CrossRef
231.
go back to reference Aulin C, Salazar-Alvarez G, Lindstrom T (2012) High strength, flexible and transparent nanofibrillated cellulose–nanoclay biohybrid films with tunable oxygen and water vapor permeability. Nanoscale 4:6622–6628CrossRef Aulin C, Salazar-Alvarez G, Lindstrom T (2012) High strength, flexible and transparent nanofibrillated cellulose–nanoclay biohybrid films with tunable oxygen and water vapor permeability. Nanoscale 4:6622–6628CrossRef
232.
go back to reference Ghaderi M, Mousavi M, Yoursefi H, Labbafi M (2014) All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application. Carbohydr Polym 104:59–65CrossRef Ghaderi M, Mousavi M, Yoursefi H, Labbafi M (2014) All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application. Carbohydr Polym 104:59–65CrossRef
233.
go back to reference Piermaria JA, Pinotti A, Garcia MA, Abraham AG (2009) Films based on kefiran, an exopolysaccharide obtained from kefir grain: development and characterization. Food Hydrocolloids 2:684–690CrossRef Piermaria JA, Pinotti A, Garcia MA, Abraham AG (2009) Films based on kefiran, an exopolysaccharide obtained from kefir grain: development and characterization. Food Hydrocolloids 2:684–690CrossRef
234.
go back to reference Smith SA (1986) Polyethylene, low density. In: The Wiley encyclopedia of packaging technology. Wiley Smith SA (1986) Polyethylene, low density. In: The Wiley encyclopedia of packaging technology. Wiley
235.
go back to reference Salmieri S, Islam F, Khan RA, Hossain FM, Ibrahim HMM, Miao C, Hamad WY, Lacroix M (2014) Antimicrobial nanocomposite films made of poly(lactic acid)-cellulose nanocrystals (PLA-CNC) in food applications: part A—effect of nisin release on the inactivation of Listeria monocytogenes in ham. Cellulose 21:1837–1850CrossRef Salmieri S, Islam F, Khan RA, Hossain FM, Ibrahim HMM, Miao C, Hamad WY, Lacroix M (2014) Antimicrobial nanocomposite films made of poly(lactic acid)-cellulose nanocrystals (PLA-CNC) in food applications: part A—effect of nisin release on the inactivation of Listeria monocytogenes in ham. Cellulose 21:1837–1850CrossRef
236.
go back to reference Zhao Y, Simonsen J, Cavender G, Jung J, Fuchigami LH (2014) Nano-cellulose coatings to prevent damage in foodstuffs. US Patent 20140272013 A1 Zhao Y, Simonsen J, Cavender G, Jung J, Fuchigami LH (2014) Nano-cellulose coatings to prevent damage in foodstuffs. US Patent 20140272013 A1
237.
go back to reference Dong F, Li S, Liu Z, Zhu K, Wang X, Jin C (2015) Improvement of quality and shelf life of strawberry with nanocellulose/chitosan composite coatings. Bangladesh J Bot 44:709–717 Dong F, Li S, Liu Z, Zhu K, Wang X, Jin C (2015) Improvement of quality and shelf life of strawberry with nanocellulose/chitosan composite coatings. Bangladesh J Bot 44:709–717
Metadata
Title
Biocomposite Reinforced with Nanocellulose for Packaging Applications
Authors
Anand Babu Perumal
Periyar Selvam Sellamuthu
Reshma B. Nambiar
Emmanuel Rotimi Sadiku
O. A. Adeyeye
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-8063-1_4

Premium Partners