Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

27-02-2018 | Original Paper | Issue 9/2018

Biodiversity and Conservation 9/2018

Boots on the ground: in defense of low-tech, inexpensive, and robust survey methods for Africa’s under-funded protected areas

Journal:
Biodiversity and Conservation > Issue 9/2018
Authors:
Paul Schuette, Ngawo Namukonde, Matthew S. Becker, Fred G.R. Watson, Scott Creel, Clive Chifunte, Wigganson Matandiko, Paul Millhouser, Elias Rosenblatt, Carolyn Sanguinetti
Important notes
Communicated by David Hawksworth.

Abstract

Protected area managers need reliable information to detect spatial and temporal trends of the species they intend to protect. This information is crucial for population monitoring, understanding ecological processes, and evaluating the effectiveness of management and conservation policies. In under-funded protected areas, managers often prioritize ungulates and carnivores for monitoring given their socio-economic value and sensitivity to human disturbance. Aircraft-based surveys are typically utilized for monitoring ungulates because they can cover large areas regardless of the terrain, but such work is expensive and subject to bias. Recently, unmanned aerial vehicles have shown great promise for ungulate monitoring, but these technologies are not yet widely available and are subject to many of the same analytical challenges associated with traditional aircraft-based surveys. Here, we explore use of inexpensive and robust distance sampling methods in Kafue National Park (KNP) (22,400 km2), carried out by government-employed game scouts. Ground-based surveys spanning 101, 5-km transects resulted in 369 ungulate group detections from 20 species. Using generalized linear models and distance sampling, we determined the environmental and anthropogenic variables influencing ungulate species richness, density, and distribution. Species richness was positively associated with permanent water and percent cover of closed woodland vegetation. Distance to permanent water had the strongest overall effect on ungulate densities, but the magnitude and direction of this effect varied by species. This ground-based approach provided a more cost-effective, unbiased, and repeatable method than aerial surveys in KNP, and could be widely implemented by local personnel across under-funded protected areas in Africa.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 9/2018

Biodiversity and Conservation 9/2018 Go to the issue