Skip to main content
Top
Published in: Tribology Letters 1/2023

01-03-2023 | Research

Control of Nanoscale Ripple Formation on Ionic Crystals by Atomic Force Microscopy

Authors: Wen Wang, Dirk Dietzel, André Schirmeisen

Published in: Tribology Letters | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

On the most fundamental level, nanoscale wear can be considered as a process of atom-by-atom removal during mechanical contact between surfaces. But at the same time, nanoscale wear processes are often accompanied by the formation of quasi-periodic surface structures, i.e., ripples, in a self-enhancing process driven by lateral force variations. Understanding and potentially controlling the complex mechanisms of ripple formation are interesting from a general tribological point of view, since our experiments bridge the gap between the early stages of atomic scale wear to the ensuing phenomena of abrasive wear on larger length scales. In this work, we have now analyzed this phenomenon by reciprocating single asperity scratching of an atomic force microscopy (AFM) tip across a flat surface of an ionic crystal under ultrahigh vacuum (UHV) conditions. In particular, the influence of dynamic scan parameters like sliding velocity \(v_{x}\) and the vertical adjustment velocity for topography changes \(v_{z}\) has been explored. Our experiments show that the sliding velocity \(v_{x}\) does not influence friction, wear, and the resulting surface structure, with the latter confirming numerical simulations for ripple formation. However, the vertical velocity \(v_{z}\) can be used as a direct control parameter for ripple formation, where low values of \(v_{z}\) seem to enhance the elastic instabilities that drive the surface patterning.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Archard, J.: Contact and rubbing of flat surfaces. J. Appl. Phys. 24(8), 981–988 (1953)CrossRef Archard, J.: Contact and rubbing of flat surfaces. J. Appl. Phys. 24(8), 981–988 (1953)CrossRef
3.
go back to reference Zhao, K., Aghababaei, R.: Adhesive wear law at the single asperity level. J. Mech. Phys. Solids 143, 104069 (2020)CrossRef Zhao, K., Aghababaei, R.: Adhesive wear law at the single asperity level. J. Mech. Phys. Solids 143, 104069 (2020)CrossRef
5.
go back to reference Gotsmann, B., Lantz, M.A.: Atomistic wear in a single asperity sliding contact. Phys. Rev. Lett. 101(12), 125501 (2008)CrossRef Gotsmann, B., Lantz, M.A.: Atomistic wear in a single asperity sliding contact. Phys. Rev. Lett. 101(12), 125501 (2008)CrossRef
7.
go back to reference Wang, W., Dietzel, D., Schirmeisen, A.: Thermal activation of nanoscale wear. Phys. Rev. Lett. 126(19), 196101 (2021)CrossRef Wang, W., Dietzel, D., Schirmeisen, A.: Thermal activation of nanoscale wear. Phys. Rev. Lett. 126(19), 196101 (2021)CrossRef
8.
go back to reference Wang, Y., et al.: Non-empirical law for nanoscale atom-by-atom wear. Adv. Sci. 8(2), 2002827 (2021)CrossRef Wang, Y., et al.: Non-empirical law for nanoscale atom-by-atom wear. Adv. Sci. 8(2), 2002827 (2021)CrossRef
9.
go back to reference Gnecco, E., Meyer, E.: Fundamentals of Friction and Wear on the Nanoscale. Springer, Cham (2015)CrossRef Gnecco, E., Meyer, E.: Fundamentals of Friction and Wear on the Nanoscale. Springer, Cham (2015)CrossRef
10.
go back to reference Tambe, N.S., Bhushan, B.: Friction model for the velocity dependence of nanoscale friction. Nanotechnology 16(10), 2309 (2005)CrossRef Tambe, N.S., Bhushan, B.: Friction model for the velocity dependence of nanoscale friction. Nanotechnology 16(10), 2309 (2005)CrossRef
11.
go back to reference Carpick, R.W., Salmeron, M.: Scratching the surface: fundamental investigations of tribology with atomic force microscopy. Chem. Rev. 97(4), 1163–1194 (1997)CrossRef Carpick, R.W., Salmeron, M.: Scratching the surface: fundamental investigations of tribology with atomic force microscopy. Chem. Rev. 97(4), 1163–1194 (1997)CrossRef
13.
go back to reference Maw, W., Stevens, F., Langford, S., Dickinson, J.: Single asperity tribochemical wear of silicon nitride studied by atomic force microscopy. J. Appl. Phys. 92(9), 5103–5109 (2002)CrossRef Maw, W., Stevens, F., Langford, S., Dickinson, J.: Single asperity tribochemical wear of silicon nitride studied by atomic force microscopy. J. Appl. Phys. 92(9), 5103–5109 (2002)CrossRef
14.
go back to reference Bennewitz, R., Dickinson, J.: Fundamental studies of nanometer-scale wear mechanisms. MRS Bull. 33(12), 1174–1180 (2008)CrossRef Bennewitz, R., Dickinson, J.: Fundamental studies of nanometer-scale wear mechanisms. MRS Bull. 33(12), 1174–1180 (2008)CrossRef
18.
go back to reference Socoliuc, A., Gnecco, E., Bennewitz, R., Meyer, E.: Ripple formation induced in localized abrasion. Phys. Rev. B 68(11), 115416 (2003)CrossRef Socoliuc, A., Gnecco, E., Bennewitz, R., Meyer, E.: Ripple formation induced in localized abrasion. Phys. Rev. B 68(11), 115416 (2003)CrossRef
19.
go back to reference Leung, O.M., Goh, M.C.: Orientational ordering of polymers by atomic force microscope tip–surface interaction. Science 255(5040), 64–66 (1992)CrossRef Leung, O.M., Goh, M.C.: Orientational ordering of polymers by atomic force microscope tip–surface interaction. Science 255(5040), 64–66 (1992)CrossRef
20.
go back to reference Bolle, M., Lazare, S.: Large scale excimer laser production of submicron periodic structures on polymer surfaces. Appl. Surf. Sci. 69(1–4), 31–37 (1993)CrossRef Bolle, M., Lazare, S.: Large scale excimer laser production of submicron periodic structures on polymer surfaces. Appl. Surf. Sci. 69(1–4), 31–37 (1993)CrossRef
21.
go back to reference Hiraoka, H., Sendova, M.: Laser-induced sub-half-micrometer periodic structure on polymer surfaces. Appl. Phys. Lett. 64(5), 563–565 (1994)CrossRef Hiraoka, H., Sendova, M.: Laser-induced sub-half-micrometer periodic structure on polymer surfaces. Appl. Phys. Lett. 64(5), 563–565 (1994)CrossRef
22.
go back to reference Moses, E., Kume, T., Hashimoto, T.: Shear microscopy of the “butterfly pattern’’ in polymer mixtures. Phys. Rev. Lett. 72(13), 2037 (1994)CrossRef Moses, E., Kume, T., Hashimoto, T.: Shear microscopy of the “butterfly pattern’’ in polymer mixtures. Phys. Rev. Lett. 72(13), 2037 (1994)CrossRef
23.
go back to reference Ko, H., Park, H., Jiang, J., Caron, A.: Nanoscopic wear behavior of face centered cubic metals. Acta Mater. 147, 203–212 (2018)CrossRef Ko, H., Park, H., Jiang, J., Caron, A.: Nanoscopic wear behavior of face centered cubic metals. Acta Mater. 147, 203–212 (2018)CrossRef
24.
go back to reference Rusponi, S., Boragno, C., Valbusa, U.: Ripple structure on Ag (110) surface induced by ion sputtering. Phys. Rev. Lett. 78(14), 2795 (1997)CrossRef Rusponi, S., Boragno, C., Valbusa, U.: Ripple structure on Ag (110) surface induced by ion sputtering. Phys. Rev. Lett. 78(14), 2795 (1997)CrossRef
25.
go back to reference Rusponi, S., Costantini, G., Boragno, C., Valbusa, U.: Ripple wave vector rotation in anisotropic crystal sputtering. Phys. Rev. Lett. 81(13), 2735 (1998)CrossRef Rusponi, S., Costantini, G., Boragno, C., Valbusa, U.: Ripple wave vector rotation in anisotropic crystal sputtering. Phys. Rev. Lett. 81(13), 2735 (1998)CrossRef
26.
go back to reference Such, B., Krok, F., Szymonski, M.: AFM tip-induced ripple pattern on AIII-BV semiconductor surfaces. Appl. Surf. Sci. 254(17), 5431–5434 (2008)CrossRef Such, B., Krok, F., Szymonski, M.: AFM tip-induced ripple pattern on AIII-BV semiconductor surfaces. Appl. Surf. Sci. 254(17), 5431–5434 (2008)CrossRef
27.
go back to reference Chey, S.J., Van Nostrand, J.E., Cahill, D.G.: Surface morphology of Ge (001) during etching by low-energy ions. Phys. Rev. B 52(23), 16696 (1995)CrossRef Chey, S.J., Van Nostrand, J.E., Cahill, D.G.: Surface morphology of Ge (001) during etching by low-energy ions. Phys. Rev. B 52(23), 16696 (1995)CrossRef
28.
go back to reference Borowiec, A., Haugen, H.: Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses. Appl. Phys. Lett. 82(25), 4462–4464 (2003)CrossRef Borowiec, A., Haugen, H.: Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses. Appl. Phys. Lett. 82(25), 4462–4464 (2003)CrossRef
29.
go back to reference Teichert, C.: Self-organization of nanostructures in semiconductor heteroepitaxy. Phys. Rep. 365(5–6), 335–432 (2002)CrossRef Teichert, C.: Self-organization of nanostructures in semiconductor heteroepitaxy. Phys. Rep. 365(5–6), 335–432 (2002)CrossRef
30.
go back to reference Chan, W.L., Chason, E.: Sputter ripples and radiation-enhanced surface kinetics on Cu (001). Phys. Rev. B 72(16), 165418 (2005)CrossRef Chan, W.L., Chason, E.: Sputter ripples and radiation-enhanced surface kinetics on Cu (001). Phys. Rev. B 72(16), 165418 (2005)CrossRef
31.
go back to reference Krok, F., Saeed, S., Postawa, Z., Szymonski, M.: Ballistic versus electronic processes in ion-induced nanostructuring of ionic surfaces. Phys. Rev. B 79(23), 235432 (2009)CrossRef Krok, F., Saeed, S., Postawa, Z., Szymonski, M.: Ballistic versus electronic processes in ion-induced nanostructuring of ionic surfaces. Phys. Rev. B 79(23), 235432 (2009)CrossRef
32.
go back to reference Huang, M., Zhao, F., Cheng, Y., Xu, N., Xu, Z.: Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser. ACS Nano 3(12), 4062–4070 (2009)CrossRef Huang, M., Zhao, F., Cheng, Y., Xu, N., Xu, Z.: Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser. ACS Nano 3(12), 4062–4070 (2009)CrossRef
33.
go back to reference Pan, Y., et al.: Threshold dependence of deep-and near-subwavelength ripples formation on natural MoS\(_{2}\) induced by femtosecond laser. Sci. Rep. 6, 19571 (2016)CrossRef Pan, Y., et al.: Threshold dependence of deep-and near-subwavelength ripples formation on natural MoS\(_{2}\) induced by femtosecond laser. Sci. Rep. 6, 19571 (2016)CrossRef
34.
go back to reference Martínez, P.J., Gnecco, E., Mazo, J.J.: Numerical study of pattern formation in compliant surfaces scraped by a rigid tip. Phys. Rev. E 103(2), 022802 (2021)CrossRef Martínez, P.J., Gnecco, E., Mazo, J.J.: Numerical study of pattern formation in compliant surfaces scraped by a rigid tip. Phys. Rev. E 103(2), 022802 (2021)CrossRef
35.
go back to reference Bilas, P., Romana, L., Kraus, B., Bercion, Y., Mansot, J.: Quantitative characterization of friction coefficient using lateral force microscope in the wearless regime. Rev. Sci. Instrum. 75(2), 415–421 (2004)CrossRef Bilas, P., Romana, L., Kraus, B., Bercion, Y., Mansot, J.: Quantitative characterization of friction coefficient using lateral force microscope in the wearless regime. Rev. Sci. Instrum. 75(2), 415–421 (2004)CrossRef
36.
go back to reference Schwarz, U., Köster, P., Wiesendanger, R.: Quantitative analysis of lateral force microscopy experiments. Rev. Sci. Instrum. 67(7), 2560–2567 (1996)CrossRef Schwarz, U., Köster, P., Wiesendanger, R.: Quantitative analysis of lateral force microscopy experiments. Rev. Sci. Instrum. 67(7), 2560–2567 (1996)CrossRef
37.
go back to reference Gnecco, E., et al.: Surface rippling induced by periodic instabilities on a polymer surface. N. J. Phys. 17(3), 032001 (2015)CrossRef Gnecco, E., et al.: Surface rippling induced by periodic instabilities on a polymer surface. N. J. Phys. 17(3), 032001 (2015)CrossRef
38.
go back to reference Bradley, R.M., Shipman, P.D.: Theory of the oscillatory instability of a rigid tip scraped over a polymer surface. Phys. Rev. E 106(5), 054803 (2022)CrossRef Bradley, R.M., Shipman, P.D.: Theory of the oscillatory instability of a rigid tip scraped over a polymer surface. Phys. Rev. E 106(5), 054803 (2022)CrossRef
39.
go back to reference Mazo, J.J., Dietzel, D., Schirmeisen, A., Vilhena, J., Gnecco, E.: Time strengthening of crystal nanocontacts. Phys. Rev. Lett. 118(24), 246101 (2017)CrossRef Mazo, J.J., Dietzel, D., Schirmeisen, A., Vilhena, J., Gnecco, E.: Time strengthening of crystal nanocontacts. Phys. Rev. Lett. 118(24), 246101 (2017)CrossRef
40.
go back to reference Gnecco, E., Bennewitz, R., Gyalog, T., Meyer, E.: Friction experiments on the nanometre scale. J. Phys. Condens. Matter 13(31), R619 (2001)CrossRef Gnecco, E., Bennewitz, R., Gyalog, T., Meyer, E.: Friction experiments on the nanometre scale. J. Phys. Condens. Matter 13(31), R619 (2001)CrossRef
41.
go back to reference Sang, Y., Dubé, M., Grant, M.: Thermal effects on atomic friction. Phys. Rev. Lett. 87(17), 174301 (2001)CrossRef Sang, Y., Dubé, M., Grant, M.: Thermal effects on atomic friction. Phys. Rev. Lett. 87(17), 174301 (2001)CrossRef
42.
go back to reference Gnecco, E., Riedo, E., King, W.P., Marder, S.R., Szoszkiewicz, R.: Linear ripples and traveling circular ripples produced on polymers by thermal AFM probes. Phys. Rev. B 79(23), 235421 (2009)CrossRef Gnecco, E., Riedo, E., King, W.P., Marder, S.R., Szoszkiewicz, R.: Linear ripples and traveling circular ripples produced on polymers by thermal AFM probes. Phys. Rev. B 79(23), 235421 (2009)CrossRef
Metadata
Title
Control of Nanoscale Ripple Formation on Ionic Crystals by Atomic Force Microscopy
Authors
Wen Wang
Dirk Dietzel
André Schirmeisen
Publication date
01-03-2023
Publisher
Springer US
Published in
Tribology Letters / Issue 1/2023
Print ISSN: 1023-8883
Electronic ISSN: 1573-2711
DOI
https://doi.org/10.1007/s11249-023-01694-8

Other articles of this Issue 1/2023

Tribology Letters 1/2023 Go to the issue

Premium Partners