Skip to main content
Erschienen in: Tribology Letters 1/2023

01.03.2023 | Research

Control of Nanoscale Ripple Formation on Ionic Crystals by Atomic Force Microscopy

verfasst von: Wen Wang, Dirk Dietzel, André Schirmeisen

Erschienen in: Tribology Letters | Ausgabe 1/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

On the most fundamental level, nanoscale wear can be considered as a process of atom-by-atom removal during mechanical contact between surfaces. But at the same time, nanoscale wear processes are often accompanied by the formation of quasi-periodic surface structures, i.e., ripples, in a self-enhancing process driven by lateral force variations. Understanding and potentially controlling the complex mechanisms of ripple formation are interesting from a general tribological point of view, since our experiments bridge the gap between the early stages of atomic scale wear to the ensuing phenomena of abrasive wear on larger length scales. In this work, we have now analyzed this phenomenon by reciprocating single asperity scratching of an atomic force microscopy (AFM) tip across a flat surface of an ionic crystal under ultrahigh vacuum (UHV) conditions. In particular, the influence of dynamic scan parameters like sliding velocity \(v_{x}\) and the vertical adjustment velocity for topography changes \(v_{z}\) has been explored. Our experiments show that the sliding velocity \(v_{x}\) does not influence friction, wear, and the resulting surface structure, with the latter confirming numerical simulations for ripple formation. However, the vertical velocity \(v_{z}\) can be used as a direct control parameter for ripple formation, where low values of \(v_{z}\) seem to enhance the elastic instabilities that drive the surface patterning.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Jost, H.P.: Tribology—origin and future. Wear 136(1), 1–17 (1990)CrossRef Jost, H.P.: Tribology—origin and future. Wear 136(1), 1–17 (1990)CrossRef
2.
Zurück zum Zitat Archard, J.: Contact and rubbing of flat surfaces. J. Appl. Phys. 24(8), 981–988 (1953)CrossRef Archard, J.: Contact and rubbing of flat surfaces. J. Appl. Phys. 24(8), 981–988 (1953)CrossRef
3.
Zurück zum Zitat Zhao, K., Aghababaei, R.: Adhesive wear law at the single asperity level. J. Mech. Phys. Solids 143, 104069 (2020)CrossRef Zhao, K., Aghababaei, R.: Adhesive wear law at the single asperity level. J. Mech. Phys. Solids 143, 104069 (2020)CrossRef
5.
Zurück zum Zitat Gotsmann, B., Lantz, M.A.: Atomistic wear in a single asperity sliding contact. Phys. Rev. Lett. 101(12), 125501 (2008)CrossRef Gotsmann, B., Lantz, M.A.: Atomistic wear in a single asperity sliding contact. Phys. Rev. Lett. 101(12), 125501 (2008)CrossRef
7.
Zurück zum Zitat Wang, W., Dietzel, D., Schirmeisen, A.: Thermal activation of nanoscale wear. Phys. Rev. Lett. 126(19), 196101 (2021)CrossRef Wang, W., Dietzel, D., Schirmeisen, A.: Thermal activation of nanoscale wear. Phys. Rev. Lett. 126(19), 196101 (2021)CrossRef
8.
Zurück zum Zitat Wang, Y., et al.: Non-empirical law for nanoscale atom-by-atom wear. Adv. Sci. 8(2), 2002827 (2021)CrossRef Wang, Y., et al.: Non-empirical law for nanoscale atom-by-atom wear. Adv. Sci. 8(2), 2002827 (2021)CrossRef
9.
Zurück zum Zitat Gnecco, E., Meyer, E.: Fundamentals of Friction and Wear on the Nanoscale. Springer, Cham (2015)CrossRef Gnecco, E., Meyer, E.: Fundamentals of Friction and Wear on the Nanoscale. Springer, Cham (2015)CrossRef
10.
Zurück zum Zitat Tambe, N.S., Bhushan, B.: Friction model for the velocity dependence of nanoscale friction. Nanotechnology 16(10), 2309 (2005)CrossRef Tambe, N.S., Bhushan, B.: Friction model for the velocity dependence of nanoscale friction. Nanotechnology 16(10), 2309 (2005)CrossRef
11.
Zurück zum Zitat Carpick, R.W., Salmeron, M.: Scratching the surface: fundamental investigations of tribology with atomic force microscopy. Chem. Rev. 97(4), 1163–1194 (1997)CrossRef Carpick, R.W., Salmeron, M.: Scratching the surface: fundamental investigations of tribology with atomic force microscopy. Chem. Rev. 97(4), 1163–1194 (1997)CrossRef
13.
Zurück zum Zitat Maw, W., Stevens, F., Langford, S., Dickinson, J.: Single asperity tribochemical wear of silicon nitride studied by atomic force microscopy. J. Appl. Phys. 92(9), 5103–5109 (2002)CrossRef Maw, W., Stevens, F., Langford, S., Dickinson, J.: Single asperity tribochemical wear of silicon nitride studied by atomic force microscopy. J. Appl. Phys. 92(9), 5103–5109 (2002)CrossRef
14.
Zurück zum Zitat Bennewitz, R., Dickinson, J.: Fundamental studies of nanometer-scale wear mechanisms. MRS Bull. 33(12), 1174–1180 (2008)CrossRef Bennewitz, R., Dickinson, J.: Fundamental studies of nanometer-scale wear mechanisms. MRS Bull. 33(12), 1174–1180 (2008)CrossRef
18.
Zurück zum Zitat Socoliuc, A., Gnecco, E., Bennewitz, R., Meyer, E.: Ripple formation induced in localized abrasion. Phys. Rev. B 68(11), 115416 (2003)CrossRef Socoliuc, A., Gnecco, E., Bennewitz, R., Meyer, E.: Ripple formation induced in localized abrasion. Phys. Rev. B 68(11), 115416 (2003)CrossRef
19.
Zurück zum Zitat Leung, O.M., Goh, M.C.: Orientational ordering of polymers by atomic force microscope tip–surface interaction. Science 255(5040), 64–66 (1992)CrossRef Leung, O.M., Goh, M.C.: Orientational ordering of polymers by atomic force microscope tip–surface interaction. Science 255(5040), 64–66 (1992)CrossRef
20.
Zurück zum Zitat Bolle, M., Lazare, S.: Large scale excimer laser production of submicron periodic structures on polymer surfaces. Appl. Surf. Sci. 69(1–4), 31–37 (1993)CrossRef Bolle, M., Lazare, S.: Large scale excimer laser production of submicron periodic structures on polymer surfaces. Appl. Surf. Sci. 69(1–4), 31–37 (1993)CrossRef
21.
Zurück zum Zitat Hiraoka, H., Sendova, M.: Laser-induced sub-half-micrometer periodic structure on polymer surfaces. Appl. Phys. Lett. 64(5), 563–565 (1994)CrossRef Hiraoka, H., Sendova, M.: Laser-induced sub-half-micrometer periodic structure on polymer surfaces. Appl. Phys. Lett. 64(5), 563–565 (1994)CrossRef
22.
Zurück zum Zitat Moses, E., Kume, T., Hashimoto, T.: Shear microscopy of the “butterfly pattern’’ in polymer mixtures. Phys. Rev. Lett. 72(13), 2037 (1994)CrossRef Moses, E., Kume, T., Hashimoto, T.: Shear microscopy of the “butterfly pattern’’ in polymer mixtures. Phys. Rev. Lett. 72(13), 2037 (1994)CrossRef
23.
Zurück zum Zitat Ko, H., Park, H., Jiang, J., Caron, A.: Nanoscopic wear behavior of face centered cubic metals. Acta Mater. 147, 203–212 (2018)CrossRef Ko, H., Park, H., Jiang, J., Caron, A.: Nanoscopic wear behavior of face centered cubic metals. Acta Mater. 147, 203–212 (2018)CrossRef
24.
Zurück zum Zitat Rusponi, S., Boragno, C., Valbusa, U.: Ripple structure on Ag (110) surface induced by ion sputtering. Phys. Rev. Lett. 78(14), 2795 (1997)CrossRef Rusponi, S., Boragno, C., Valbusa, U.: Ripple structure on Ag (110) surface induced by ion sputtering. Phys. Rev. Lett. 78(14), 2795 (1997)CrossRef
25.
Zurück zum Zitat Rusponi, S., Costantini, G., Boragno, C., Valbusa, U.: Ripple wave vector rotation in anisotropic crystal sputtering. Phys. Rev. Lett. 81(13), 2735 (1998)CrossRef Rusponi, S., Costantini, G., Boragno, C., Valbusa, U.: Ripple wave vector rotation in anisotropic crystal sputtering. Phys. Rev. Lett. 81(13), 2735 (1998)CrossRef
26.
Zurück zum Zitat Such, B., Krok, F., Szymonski, M.: AFM tip-induced ripple pattern on AIII-BV semiconductor surfaces. Appl. Surf. Sci. 254(17), 5431–5434 (2008)CrossRef Such, B., Krok, F., Szymonski, M.: AFM tip-induced ripple pattern on AIII-BV semiconductor surfaces. Appl. Surf. Sci. 254(17), 5431–5434 (2008)CrossRef
27.
Zurück zum Zitat Chey, S.J., Van Nostrand, J.E., Cahill, D.G.: Surface morphology of Ge (001) during etching by low-energy ions. Phys. Rev. B 52(23), 16696 (1995)CrossRef Chey, S.J., Van Nostrand, J.E., Cahill, D.G.: Surface morphology of Ge (001) during etching by low-energy ions. Phys. Rev. B 52(23), 16696 (1995)CrossRef
28.
Zurück zum Zitat Borowiec, A., Haugen, H.: Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses. Appl. Phys. Lett. 82(25), 4462–4464 (2003)CrossRef Borowiec, A., Haugen, H.: Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses. Appl. Phys. Lett. 82(25), 4462–4464 (2003)CrossRef
29.
Zurück zum Zitat Teichert, C.: Self-organization of nanostructures in semiconductor heteroepitaxy. Phys. Rep. 365(5–6), 335–432 (2002)CrossRef Teichert, C.: Self-organization of nanostructures in semiconductor heteroepitaxy. Phys. Rep. 365(5–6), 335–432 (2002)CrossRef
30.
Zurück zum Zitat Chan, W.L., Chason, E.: Sputter ripples and radiation-enhanced surface kinetics on Cu (001). Phys. Rev. B 72(16), 165418 (2005)CrossRef Chan, W.L., Chason, E.: Sputter ripples and radiation-enhanced surface kinetics on Cu (001). Phys. Rev. B 72(16), 165418 (2005)CrossRef
31.
Zurück zum Zitat Krok, F., Saeed, S., Postawa, Z., Szymonski, M.: Ballistic versus electronic processes in ion-induced nanostructuring of ionic surfaces. Phys. Rev. B 79(23), 235432 (2009)CrossRef Krok, F., Saeed, S., Postawa, Z., Szymonski, M.: Ballistic versus electronic processes in ion-induced nanostructuring of ionic surfaces. Phys. Rev. B 79(23), 235432 (2009)CrossRef
32.
Zurück zum Zitat Huang, M., Zhao, F., Cheng, Y., Xu, N., Xu, Z.: Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser. ACS Nano 3(12), 4062–4070 (2009)CrossRef Huang, M., Zhao, F., Cheng, Y., Xu, N., Xu, Z.: Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser. ACS Nano 3(12), 4062–4070 (2009)CrossRef
33.
Zurück zum Zitat Pan, Y., et al.: Threshold dependence of deep-and near-subwavelength ripples formation on natural MoS\(_{2}\) induced by femtosecond laser. Sci. Rep. 6, 19571 (2016)CrossRef Pan, Y., et al.: Threshold dependence of deep-and near-subwavelength ripples formation on natural MoS\(_{2}\) induced by femtosecond laser. Sci. Rep. 6, 19571 (2016)CrossRef
34.
Zurück zum Zitat Martínez, P.J., Gnecco, E., Mazo, J.J.: Numerical study of pattern formation in compliant surfaces scraped by a rigid tip. Phys. Rev. E 103(2), 022802 (2021)CrossRef Martínez, P.J., Gnecco, E., Mazo, J.J.: Numerical study of pattern formation in compliant surfaces scraped by a rigid tip. Phys. Rev. E 103(2), 022802 (2021)CrossRef
35.
Zurück zum Zitat Bilas, P., Romana, L., Kraus, B., Bercion, Y., Mansot, J.: Quantitative characterization of friction coefficient using lateral force microscope in the wearless regime. Rev. Sci. Instrum. 75(2), 415–421 (2004)CrossRef Bilas, P., Romana, L., Kraus, B., Bercion, Y., Mansot, J.: Quantitative characterization of friction coefficient using lateral force microscope in the wearless regime. Rev. Sci. Instrum. 75(2), 415–421 (2004)CrossRef
36.
Zurück zum Zitat Schwarz, U., Köster, P., Wiesendanger, R.: Quantitative analysis of lateral force microscopy experiments. Rev. Sci. Instrum. 67(7), 2560–2567 (1996)CrossRef Schwarz, U., Köster, P., Wiesendanger, R.: Quantitative analysis of lateral force microscopy experiments. Rev. Sci. Instrum. 67(7), 2560–2567 (1996)CrossRef
37.
Zurück zum Zitat Gnecco, E., et al.: Surface rippling induced by periodic instabilities on a polymer surface. N. J. Phys. 17(3), 032001 (2015)CrossRef Gnecco, E., et al.: Surface rippling induced by periodic instabilities on a polymer surface. N. J. Phys. 17(3), 032001 (2015)CrossRef
38.
Zurück zum Zitat Bradley, R.M., Shipman, P.D.: Theory of the oscillatory instability of a rigid tip scraped over a polymer surface. Phys. Rev. E 106(5), 054803 (2022)CrossRef Bradley, R.M., Shipman, P.D.: Theory of the oscillatory instability of a rigid tip scraped over a polymer surface. Phys. Rev. E 106(5), 054803 (2022)CrossRef
39.
Zurück zum Zitat Mazo, J.J., Dietzel, D., Schirmeisen, A., Vilhena, J., Gnecco, E.: Time strengthening of crystal nanocontacts. Phys. Rev. Lett. 118(24), 246101 (2017)CrossRef Mazo, J.J., Dietzel, D., Schirmeisen, A., Vilhena, J., Gnecco, E.: Time strengthening of crystal nanocontacts. Phys. Rev. Lett. 118(24), 246101 (2017)CrossRef
40.
Zurück zum Zitat Gnecco, E., Bennewitz, R., Gyalog, T., Meyer, E.: Friction experiments on the nanometre scale. J. Phys. Condens. Matter 13(31), R619 (2001)CrossRef Gnecco, E., Bennewitz, R., Gyalog, T., Meyer, E.: Friction experiments on the nanometre scale. J. Phys. Condens. Matter 13(31), R619 (2001)CrossRef
41.
Zurück zum Zitat Sang, Y., Dubé, M., Grant, M.: Thermal effects on atomic friction. Phys. Rev. Lett. 87(17), 174301 (2001)CrossRef Sang, Y., Dubé, M., Grant, M.: Thermal effects on atomic friction. Phys. Rev. Lett. 87(17), 174301 (2001)CrossRef
42.
Zurück zum Zitat Gnecco, E., Riedo, E., King, W.P., Marder, S.R., Szoszkiewicz, R.: Linear ripples and traveling circular ripples produced on polymers by thermal AFM probes. Phys. Rev. B 79(23), 235421 (2009)CrossRef Gnecco, E., Riedo, E., King, W.P., Marder, S.R., Szoszkiewicz, R.: Linear ripples and traveling circular ripples produced on polymers by thermal AFM probes. Phys. Rev. B 79(23), 235421 (2009)CrossRef
Metadaten
Titel
Control of Nanoscale Ripple Formation on Ionic Crystals by Atomic Force Microscopy
verfasst von
Wen Wang
Dirk Dietzel
André Schirmeisen
Publikationsdatum
01.03.2023
Verlag
Springer US
Erschienen in
Tribology Letters / Ausgabe 1/2023
Print ISSN: 1023-8883
Elektronische ISSN: 1573-2711
DOI
https://doi.org/10.1007/s11249-023-01694-8

Weitere Artikel der Ausgabe 1/2023

Tribology Letters 1/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.