Skip to main content
Top
Published in: Mechanics of Composite Materials 1/2024

26-02-2024

Deflection Behaviour of Hybrid Composite Shell Panels Under Dynamic Loadings

Authors: S. Tiwari, C. K. Hirwani, A. G. Barman

Published in: Mechanics of Composite Materials | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Dynamic behavior of hybrid composite shallow shell panels was analyzed utilizing a high-order shear deformation theory (HOSDT) in conjunction with the finite-element method (FEM). To enhance the suitability of plant-fiber composites and to use them as substitutes for pure synthetic-fiber composites, the hybridization of banana-epoxy and glass-epoxy composites was performed, and different sets of hybrid composites were prepared by altering the layers of glass and banana fibers. The elastic constants of these composites were evaluated experimentally and utilized in the further numerical investigation. Simultaneously, a mathematical formulation was developed based on a HOSDT and the FEM. The governing equation of a transient analysis was derived using the Hamilton’s principle and Newmark’s direct integration scheme to get responses in the time domain. First, the consistency of the present model was checked via an element convergence test, and the accuracy of the model was established by comparing the transient responses obtained from the current model with those of published data. Afterwards, different parametric investigations were carried out to explore the influence of the curvature ratio, shell geometry, hybridization, end conditions, and loading rate on the time-dependent responses of the composites.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference C. K. Kundu and P. K. Sinha, “Nonlinear transient analysis of laminated composite shells,” J. Reinf. Plast. Compos., 25, No. 11, 1129-1147 (2006).ADSCrossRef C. K. Kundu and P. K. Sinha, “Nonlinear transient analysis of laminated composite shells,” J. Reinf. Plast. Compos., 25, No. 11, 1129-1147 (2006).ADSCrossRef
2.
go back to reference N. Nanda and J. N. Bandyopadhyay, “Nonlinear transient response of laminated composite shells,” J. Eng. Mech., 134, No. 11, 983-990 (2008).CrossRef N. Nanda and J. N. Bandyopadhyay, “Nonlinear transient response of laminated composite shells,” J. Eng. Mech., 134, No. 11, 983-990 (2008).CrossRef
3.
go back to reference S. Maleki, M. Tahani, and A. Andakhshideh, “Static and transient analysis of laminated cylindrical shell panels with various boundary conditions and general lay-ups,” ZAMM - J. Appl. Math. Mech. / Zeitschrift für Angew. Math. und Mech., 92, No. 2, 124-140 (2012). S. Maleki, M. Tahani, and A. Andakhshideh, “Static and transient analysis of laminated cylindrical shell panels with various boundary conditions and general lay-ups,” ZAMM - J. Appl. Math. Mech. / Zeitschrift für Angew. Math. und Mech., 92, No. 2, 124-140 (2012).
4.
go back to reference Y. Kiani, M. Shakeri, and M. R. Eslami, “Thermoelastic free vibration and dynamic behaviour of an FGM doubly curved panel via the analytical hybrid Laplace-Fourier transformation,” Acta Mech., 223, No. 6, 1199-1218 (2012).MathSciNetCrossRef Y. Kiani, M. Shakeri, and M. R. Eslami, “Thermoelastic free vibration and dynamic behaviour of an FGM doubly curved panel via the analytical hybrid Laplace-Fourier transformation,” Acta Mech., 223, No. 6, 1199-1218 (2012).MathSciNetCrossRef
5.
go back to reference A. Kumar, A. Chakrabarti, and P. Bhargava, “Accurate dynamic response of laminated composites and sandwich shells using higher order zigzag theory,” Thin-Walled Struct., 77, 174-186 (2014).CrossRef A. Kumar, A. Chakrabarti, and P. Bhargava, “Accurate dynamic response of laminated composites and sandwich shells using higher order zigzag theory,” Thin-Walled Struct., 77, 174-186 (2014).CrossRef
6.
go back to reference Ö. Civalek, “Geometrically nonlinear dynamic and static analysis of shallow spherical shell resting on two-parameters elastic foundations,” Int. J. Press. Vessel. Pip., 113, 1-9 (2014).CrossRef Ö. Civalek, “Geometrically nonlinear dynamic and static analysis of shallow spherical shell resting on two-parameters elastic foundations,” Int. J. Press. Vessel. Pip., 113, 1-9 (2014).CrossRef
7.
go back to reference S. S. Sahoo, S. K. Panda, and T. R. Mahapatra, “Static, free vibration and transient response of laminated composite curved shallow panel - An experimental approach,” Eur. J. Mech. - A/Solids, 59, 95-113 (2016).ADSMathSciNetCrossRef S. S. Sahoo, S. K. Panda, and T. R. Mahapatra, “Static, free vibration and transient response of laminated composite curved shallow panel - An experimental approach,” Eur. J. Mech. - A/Solids, 59, 95-113 (2016).ADSMathSciNetCrossRef
8.
go back to reference S. Pandey and S. Pradyumna, “Transient stress analysis of sandwich plate and shell panels with functionally graded material core under thermal shock,” J. Therm. Stress., 41, No. 5, 543-567 (2018).CrossRef S. Pandey and S. Pradyumna, “Transient stress analysis of sandwich plate and shell panels with functionally graded material core under thermal shock,” J. Therm. Stress., 41, No. 5, 543-567 (2018).CrossRef
9.
go back to reference G. Chen, P. Zhang, J. Liu, Y. Cheng, and H. Wang, “Experimental and numerical analyses on the dynamic response of aluminum foam core sandwich panels subjected to localized air blast loading,” Mar. Struct., 65, 343-361 (2019).CrossRef G. Chen, P. Zhang, J. Liu, Y. Cheng, and H. Wang, “Experimental and numerical analyses on the dynamic response of aluminum foam core sandwich panels subjected to localized air blast loading,” Mar. Struct., 65, 343-361 (2019).CrossRef
10.
go back to reference G. Sciascia, V. Oliveri, A. Milazzo, and P. M. Weaver, “Ritz solution for transient analysis of variable-stiffness shell structures,” AIAA J., 58, No. 4, 1796-1810 (2020).ADSCrossRef G. Sciascia, V. Oliveri, A. Milazzo, and P. M. Weaver, “Ritz solution for transient analysis of variable-stiffness shell structures,” AIAA J., 58, No. 4, 1796-1810 (2020).ADSCrossRef
11.
go back to reference A. Gupta and S. Pradyumna, “Geometrically nonlinear dynamic analysis of variable stiffness composite laminated and sandwich shell panels,” Thin-Walled Struct., 173, 109021 (2022).CrossRef A. Gupta and S. Pradyumna, “Geometrically nonlinear dynamic analysis of variable stiffness composite laminated and sandwich shell panels,” Thin-Walled Struct., 173, 109021 (2022).CrossRef
12.
go back to reference M. Ramezani, M. Rezaiee-Pajand, and F. Tornabene, “Nonlinear thermomechanical analysis of gplrc cylindrical shells using HSDT enriched by quasi-3D ANS cover functions,” Thin-Walled Struct., 179, 109582 (2022).CrossRef M. Ramezani, M. Rezaiee-Pajand, and F. Tornabene, “Nonlinear thermomechanical analysis of gplrc cylindrical shells using HSDT enriched by quasi-3D ANS cover functions,” Thin-Walled Struct., 179, 109582 (2022).CrossRef
13.
go back to reference M. Rezaiee-Pajand and M. Ramezani, “An evaluation of MITC and ANS elements in the nonlinear analysis of shell structures,” Mech. Adv. Mater. Struct., 29, No. 26, 4677-4697 (2021).CrossRef M. Rezaiee-Pajand and M. Ramezani, “An evaluation of MITC and ANS elements in the nonlinear analysis of shell structures,” Mech. Adv. Mater. Struct., 29, No. 26, 4677-4697 (2021).CrossRef
14.
go back to reference M. Ramezani, M. Rezaiee-Pajand, and F. Tornabene, “Linear and nonlinear mechanical responses of FG-GPLRC plates using a novel strain-based formulation of modified FSDT theory,” Int. J. Non Linear Mech., 140, 103923 (2022).ADSCrossRef M. Ramezani, M. Rezaiee-Pajand, and F. Tornabene, “Linear and nonlinear mechanical responses of FG-GPLRC plates using a novel strain-based formulation of modified FSDT theory,” Int. J. Non Linear Mech., 140, 103923 (2022).ADSCrossRef
15.
go back to reference M. Ramezani, M. Rezaiee-Pajand, and F. Tornabene, “Nonlinear thermomechanical analysis of CNTRC cylindrical shells using HSDT enriched by zig-zag and polyconvex strain cover functions,” Thin-Walled Struct., 172, 108918 (2022).CrossRef M. Ramezani, M. Rezaiee-Pajand, and F. Tornabene, “Nonlinear thermomechanical analysis of CNTRC cylindrical shells using HSDT enriched by zig-zag and polyconvex strain cover functions,” Thin-Walled Struct., 172, 108918 (2022).CrossRef
16.
go back to reference M. Rezaiee-Pajand and M. Ramezani, “Nonlinear deformation and numerical post-buckling analysis of plate structures using the assumed natural strain concept,” Int. J. Appl. Mech., 13, No. 10 (2021). M. Rezaiee-Pajand and M. Ramezani, “Nonlinear deformation and numerical post-buckling analysis of plate structures using the assumed natural strain concept,” Int. J. Appl. Mech., 13, No. 10 (2021).
17.
go back to reference M. Ramezani, M. Ghalehnovi, and M. Rezaiee Pajand, “A perforated high-order element for fracture mechanics problems using the hybrid strain method,” Int. J. Appl. Mech., 14 (2022). M. Ramezani, M. Ghalehnovi, and M. Rezaiee Pajand, “A perforated high-order element for fracture mechanics problems using the hybrid strain method,” Int. J. Appl. Mech., 14 (2022).
18.
go back to reference A. Szekrényes, “Higher-order semi-layerwise models for doubly curved delaminated composite shells,” Arch. Appl. Mech., 91, No. 1, 61-90 (2021).ADSCrossRef A. Szekrényes, “Higher-order semi-layerwise models for doubly curved delaminated composite shells,” Arch. Appl. Mech., 91, No. 1, 61-90 (2021).ADSCrossRef
19.
go back to reference A. Rachid, D. Ouinas, A. Lousdad, F. Z. Zaoui, B. Achour, H. Gasmi, T. A. Butt, and A. Tounsi, “Mechanical behavior and free vibration analysis of FG doubly curved shells on elastic foundation via a new modified displacements field model of 2D and quasi-3D HSDTs,” Thin-Walled Struct., 172, 108783 (2022).CrossRef A. Rachid, D. Ouinas, A. Lousdad, F. Z. Zaoui, B. Achour, H. Gasmi, T. A. Butt, and A. Tounsi, “Mechanical behavior and free vibration analysis of FG doubly curved shells on elastic foundation via a new modified displacements field model of 2D and quasi-3D HSDTs,” Thin-Walled Struct., 172, 108783 (2022).CrossRef
20.
go back to reference M. Ramezani, M. Rezaiee-Pajand, and F. Tornabene, “Nonlinear dynamic analysis of FG/SMA/FG sandwich cylindrical shells using HSDT and semi ANS functions,” Thin-Walled Struct., 171, 108702 (2022).CrossRef M. Ramezani, M. Rezaiee-Pajand, and F. Tornabene, “Nonlinear dynamic analysis of FG/SMA/FG sandwich cylindrical shells using HSDT and semi ANS functions,” Thin-Walled Struct., 171, 108702 (2022).CrossRef
21.
go back to reference M.H. Hajmohammad, R. Kolahchi, M.S. Zarei, and M. Maleki, “Earthquake induced dynamic deflection of submerged viscoelastic cylindrical shell reinforced by agglomerated CNTs considering thermal and moisture effects,” Compos. Struct., 187, 498-508 (2018).CrossRef M.H. Hajmohammad, R. Kolahchi, M.S. Zarei, and M. Maleki, “Earthquake induced dynamic deflection of submerged viscoelastic cylindrical shell reinforced by agglomerated CNTs considering thermal and moisture effects,” Compos. Struct., 187, 498-508 (2018).CrossRef
22.
go back to reference M. H. Ghayesh and H. Farokhi, “Nonlinear dynamics of doubly curved shallow microshells,” Nonlinear Dyn., 92, No. 3, 803-814 (2018).CrossRef M. H. Ghayesh and H. Farokhi, “Nonlinear dynamics of doubly curved shallow microshells,” Nonlinear Dyn., 92, No. 3, 803-814 (2018).CrossRef
23.
go back to reference N. Valizadeh, S. S. Ghorashi, H. Yousefi, T. Q. Bui, and T. Rabczuk, “Transient analysis of laminated composite plates using isogeometric analysis,” Civil-Comp Proceedings, 100 (2012). N. Valizadeh, S. S. Ghorashi, H. Yousefi, T. Q. Bui, and T. Rabczuk, “Transient analysis of laminated composite plates using isogeometric analysis,” Civil-Comp Proceedings, 100 (2012).
24.
go back to reference A. Daşdemir, “A Modal analysis of forced vibration of a piezoelectric plate with initial stress by the finite-element simulation,” Mech. Compos. Mater., 58, No. 1, 69-80 (2022).ADSMathSciNetCrossRef A. Daşdemir, “A Modal analysis of forced vibration of a piezoelectric plate with initial stress by the finite-element simulation,” Mech. Compos. Mater., 58, No. 1, 69-80 (2022).ADSMathSciNetCrossRef
25.
go back to reference F. Namvar, M. Jawaid, P. Md Tahir, R. Mohamad, S. Azizi, A. Khodavandi, H. S. Rahman, and M. D. Nayeri, “Potential use of plant fibers and their composites for biomedical applications,” BioRes., 9, No. 3, 5688-5706 (2016). F. Namvar, M. Jawaid, P. Md Tahir, R. Mohamad, S. Azizi, A. Khodavandi, H. S. Rahman, and M. D. Nayeri, “Potential use of plant fibers and their composites for biomedical applications,” BioRes., 9, No. 3, 5688-5706 (2016).
26.
go back to reference D. Chandramohan and K. Marimuthu, “Characterization of natural fibers and their application in bone grafting substitutes,” Acta Bioeng. Biomech., 13, No. 1, 77-84 (2011).PubMed D. Chandramohan and K. Marimuthu, “Characterization of natural fibers and their application in bone grafting substitutes,” Acta Bioeng. Biomech., 13, No. 1, 77-84 (2011).PubMed
27.
go back to reference A. M. Hashim, E. K. Tanner, and J. K. Oleiwi, “Biomechanics of natural fiber green composites as internal bone plate rafted,” MATEC Web of Conferences, 83, 09002 (2016).CrossRef A. M. Hashim, E. K. Tanner, and J. K. Oleiwi, “Biomechanics of natural fiber green composites as internal bone plate rafted,” MATEC Web of Conferences, 83, 09002 (2016).CrossRef
28.
go back to reference A. K. Rana, B. C. Mitra, and A. N. Banerjee, “Short jute fiber-reinforced polypropylene composites: dynamic mechanical study,” J. Appl. Polym. Sci., 71, No. 4, 531-539 (1999).CrossRef A. K. Rana, B. C. Mitra, and A. N. Banerjee, “Short jute fiber-reinforced polypropylene composites: dynamic mechanical study,” J. Appl. Polym. Sci., 71, No. 4, 531-539 (1999).CrossRef
29.
go back to reference M. Tajvidi, R. H. Falk, and J. C. Hermanson, “Effect of natural fibers on thermal and mechanical properties of natural fiber polypropylene composites studied by dynamic mechanical analysis,” J. Appl. Polym. Sci., 101, No. 6, 4341-4349 (2006).CrossRef M. Tajvidi, R. H. Falk, and J. C. Hermanson, “Effect of natural fibers on thermal and mechanical properties of natural fiber polypropylene composites studied by dynamic mechanical analysis,” J. Appl. Polym. Sci., 101, No. 6, 4341-4349 (2006).CrossRef
30.
go back to reference P. N. B. Reis, J. A. M. Ferreira, F. V. Antunes, and J. D. M. Costa, “Flexural behaviour of hybrid laminated composites,” Compos., Part A, 38, No. 6, 1612-1620 (2007).CrossRef P. N. B. Reis, J. A. M. Ferreira, F. V. Antunes, and J. D. M. Costa, “Flexural behaviour of hybrid laminated composites,” Compos., Part A, 38, No. 6, 1612-1620 (2007).CrossRef
31.
go back to reference J. A. M. Ferreira, C. Capela, and J. D. Costa, “A Study of the mechanical properties of natural fiber reinforced composites,” Fibers Polym., 11, No. 8, 1181-1186 (2010).CrossRef J. A. M. Ferreira, C. Capela, and J. D. Costa, “A Study of the mechanical properties of natural fiber reinforced composites,” Fibers Polym., 11, No. 8, 1181-1186 (2010).CrossRef
32.
go back to reference S. S. Chee, M. Jawaid, M. T. H. Sultan, O. Y. Alothman, and L. C. Abdullah, “Thermomechanical and dynamic mechanical properties of bamboo/woven kenaf mat reinforced epoxy hybrid composites,” Compos., Part B, 163, No. October 2018, 165-174 (2019). S. S. Chee, M. Jawaid, M. T. H. Sultan, O. Y. Alothman, and L. C. Abdullah, “Thermomechanical and dynamic mechanical properties of bamboo/woven kenaf mat reinforced epoxy hybrid composites,” Compos., Part B, 163, No. October 2018, 165-174 (2019).
33.
go back to reference B. Vijaya Ramnath, S. Junaid Kokan, R. Niranjan Raja, R. Sathyanarayanan, C. Elanchezhian, A. Rajendra Prasad, and V. M. Manickavasagam, “Evaluation of mechanical properties of abaca-jute-glass fiber reinforced epoxy composite,” Mater. Des., 51, 357-366 (2013). B. Vijaya Ramnath, S. Junaid Kokan, R. Niranjan Raja, R. Sathyanarayanan, C. Elanchezhian, A. Rajendra Prasad, and V. M. Manickavasagam, “Evaluation of mechanical properties of abaca-jute-glass fiber reinforced epoxy composite,” Mater. Des., 51, 357-366 (2013).
34.
go back to reference V. S. Srinivasan, S. Rajendra Boopathy, D. Sangeetha, and B. Vijaya Ramnath, “Evaluation of mechanical and thermal properties of banana-flax based natural fiber composite,” Mater. Des., 60, 620-627 (2014). V. S. Srinivasan, S. Rajendra Boopathy, D. Sangeetha, and B. Vijaya Ramnath, “Evaluation of mechanical and thermal properties of banana-flax based natural fiber composite,” Mater. Des., 60, 620-627 (2014).
35.
go back to reference R. Mishra, J. Wiener, J. Militky, M. Petru, B. Tomkova, and J. Novotna, “Bio-composites reinforced with natural fibers: comparative analysis of thermal, static and dynamic-mechanical properties,” Fibers and Polym., 21, No. 3, 619-627 (2020).CrossRef R. Mishra, J. Wiener, J. Militky, M. Petru, B. Tomkova, and J. Novotna, “Bio-composites reinforced with natural fibers: comparative analysis of thermal, static and dynamic-mechanical properties,” Fibers and Polym., 21, No. 3, 619-627 (2020).CrossRef
36.
go back to reference N. R. J. Hynes, R. Sankaranarayanan, J. S. Kumar, S. M. Rangappa, and S. Siengchin, “Mechanical behavior of synthetic/natural fibers in hybrid composites,” Hybrid Fiber Compos., 129-146 (2020). N. R. J. Hynes, R. Sankaranarayanan, J. S. Kumar, S. M. Rangappa, and S. Siengchin, “Mechanical behavior of synthetic/natural fibers in hybrid composites,” Hybrid Fiber Compos., 129-146 (2020).
37.
go back to reference K. Senthil Kumar, I. Siva, P. Jeyaraj, J. T. Winowlin Jappes, S. C. Amico, and N. Rajini, “Synergy of fiber length and content on free vibration and damping behavior of natural fiber reinforced polyester composite beams,” Mater. Des., 56, 379-386 (2014). K. Senthil Kumar, I. Siva, P. Jeyaraj, J. T. Winowlin Jappes, S. C. Amico, and N. Rajini, “Synergy of fiber length and content on free vibration and damping behavior of natural fiber reinforced polyester composite beams,” Mater. Des., 56, 379-386 (2014).
38.
go back to reference M. D. Prashanth and T. Basava, “Vibration analysis of natural hybrid composites by experimental approach,” IOP Conf. Ser. Mater. Sci. Eng., 376, No. 1 (2018). M. D. Prashanth and T. Basava, “Vibration analysis of natural hybrid composites by experimental approach,” IOP Conf. Ser. Mater. Sci. Eng., 376, No. 1 (2018).
39.
go back to reference K. F. Wang and B. L. Wang, “A Mechanical degradation model for bidirectional natural fiber reinforced composites under hydrothermal ageing and applying in buckling and vibration analysis,” Compos. Struct., 206, 594-600 (2018).CrossRef K. F. Wang and B. L. Wang, “A Mechanical degradation model for bidirectional natural fiber reinforced composites under hydrothermal ageing and applying in buckling and vibration analysis,” Compos. Struct., 206, 594-600 (2018).CrossRef
40.
go back to reference M. Sit and C. Ray, “Free vibration characteristics of glass and bamboo epoxy laminates under hygrothermal effect: A comparative approach,” Compos., Part B, 176, 107333 (2019). M. Sit and C. Ray, “Free vibration characteristics of glass and bamboo epoxy laminates under hygrothermal effect: A comparative approach,” Compos., Part B, 176, 107333 (2019).
41.
go back to reference S. Pradyumna and J. N. Bandyopadhyay, “Free vibration analysis of functionally graded curved panels using a higherorder finite element formulation,” J. Sound Vib., 318, No. 1-2, 176-192 (2008).ADSCrossRef S. Pradyumna and J. N. Bandyopadhyay, “Free vibration analysis of functionally graded curved panels using a higherorder finite element formulation,” J. Sound Vib., 318, No. 1-2, 176-192 (2008).ADSCrossRef
42.
go back to reference R. D. Cook, D. S. Malkus, M. E. Plesha, and R. J. W. Witt, Concept and Applications of Finite Element Analysis, John Wiley & Sons Inc, New York (2002). R. D. Cook, D. S. Malkus, M. E. Plesha, and R. J. W. Witt, Concept and Applications of Finite Element Analysis, John Wiley & Sons Inc, New York (2002).
43.
go back to reference J. N. Reddy, Mechanics of Laminated Composite Plates and Shells, CRC Press, Boca Raton, USA (2003).CrossRef J. N. Reddy, Mechanics of Laminated Composite Plates and Shells, CRC Press, Boca Raton, USA (2003).CrossRef
44.
go back to reference K.-J. Bathe, Finite Element Procedures in Engineering Analysis, John Wiley & Sons, Ltd, New York (1983). K.-J. Bathe, Finite Element Procedures in Engineering Analysis, John Wiley & Sons, Ltd, New York (1983).
45.
go back to reference J. N. Reddy and A. A. Khdeir, “Dynamic response of cross-ply laminated shallow shells according to a refined shear deformation theory,” J. Acoust. Soc. Am., 85, No. 6, 2423 (1998). J. N. Reddy and A. A. Khdeir, “Dynamic response of cross-ply laminated shallow shells according to a refined shear deformation theory,” J. Acoust. Soc. Am., 85, No. 6, 2423 (1998).
Metadata
Title
Deflection Behaviour of Hybrid Composite Shell Panels Under Dynamic Loadings
Authors
S. Tiwari
C. K. Hirwani
A. G. Barman
Publication date
26-02-2024
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 1/2024
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-024-10171-9

Other articles of this Issue 1/2024

Mechanics of Composite Materials 1/2024 Go to the issue

Premium Partners