Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 11/2020

29-10-2020

Dynamic Recovery and Recrystallization Behaviors of C71500 Copper-Nickel Alloy Under Hot Deformation

Authors: Xin Gao, Hui-bin Wu, Ming Liu, Yuan-xiang Zhang, Xiang-dong Zhou

Published in: Journal of Materials Engineering and Performance | Issue 11/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The isothermal compression test was employed to study the influence of deformation temperature and strain rate on the hot deformation behavior of C71500 copper-nickel alloy. According to the characteristics of dynamic recovery (DRV) and dynamic recrystallization (DRX), the Zener–Hollomon parameter lnZ is used as an important parameter to measure the influence of temperature and strain rate on the hot deformation behavior. The critical deformation conditions of DRX are determined by its different values. By analyzing the critical change of work hardening rate, the relationship among critical stress, peak stress and saturation stress transition point is obtained, and the dynamic mathematical model of the whole deformation process is established, which can predict the volume fraction of DRV and DRX well. The DRX nucleation and growth mechanism of C71500 copper-nickel alloy was determined by metallographic analysis. In the current work, the thermodynamic parameters are introduced to determine the critical conditions of the transformation of the deformation state, the transformation process of the hot deformation structure is predicted by the dynamic model, the nucleation and growth mechanism is analyzed, which could provide a complete set of important references for the DRV-based hot deformation alloy, and provide a theoretical basis for the control of the structure state after hot processing.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. Cincera and E. Bresciani, De-nickelification of 70/30 Cupronickel Tubing in a Cooling Heat Exchanger, J. Fail. Anal. Prev., 2012, 12(3), p 300–304CrossRef S. Cincera and E. Bresciani, De-nickelification of 70/30 Cupronickel Tubing in a Cooling Heat Exchanger, J. Fail. Anal. Prev., 2012, 12(3), p 300–304CrossRef
2.
go back to reference A.M. Beccaria and J. Crousier, Influence of Iron Addition on Corrosion Layer Built Up on 70Cu-30Ni Alloy in Sea Water, Br. Corros. J., 2013, 26(3), p 215–219CrossRef A.M. Beccaria and J. Crousier, Influence of Iron Addition on Corrosion Layer Built Up on 70Cu-30Ni Alloy in Sea Water, Br. Corros. J., 2013, 26(3), p 215–219CrossRef
3.
go back to reference X. Zhu and T. Lei, Characteristics and Formation of Corrosion Product Films of 70Cu-30Ni Alloy in Seawater, Corros. Sci., 2002, 44(1), p 67–79CrossRef X. Zhu and T. Lei, Characteristics and Formation of Corrosion Product Films of 70Cu-30Ni Alloy in Seawater, Corros. Sci., 2002, 44(1), p 67–79CrossRef
4.
go back to reference T.J. Glover, Copper-Nickel Alloy for the Construction of Ship and Boat Hulls, Br. Corros. J., 1982, 17(4), p 155–158CrossRef T.J. Glover, Copper-Nickel Alloy for the Construction of Ship and Boat Hulls, Br. Corros. J., 1982, 17(4), p 155–158CrossRef
5.
go back to reference E. Chassaing, K.V. Quang, and R. Wiart, Mechanism of copper-nickel alloy electrodeposition, J. Appl. Electrochem., 1987, 17(6), p 1267–1280CrossRef E. Chassaing, K.V. Quang, and R. Wiart, Mechanism of copper-nickel alloy electrodeposition, J. Appl. Electrochem., 1987, 17(6), p 1267–1280CrossRef
6.
go back to reference I. Alstrup, U.E. Petersen, and J.R. Rostrup-Nielsen, Propane Hydrogenolysis on Sulfur- and Copper-Modified Nickel Catalysts, J. Catal., 2000, 191(2), p 401–408CrossRef I. Alstrup, U.E. Petersen, and J.R. Rostrup-Nielsen, Propane Hydrogenolysis on Sulfur- and Copper-Modified Nickel Catalysts, J. Catal., 2000, 191(2), p 401–408CrossRef
7.
go back to reference A. Al-Hashem and J. Carew, The use of Electrochemical Impedance Spectroscopy to Study the Effect of Chlorine and Ammonia Residuals on the Corrosion of Copper-Based and Nickel-Based Alloys in Seawater, Desalination, 2002, 150(3), p 255–262CrossRef A. Al-Hashem and J. Carew, The use of Electrochemical Impedance Spectroscopy to Study the Effect of Chlorine and Ammonia Residuals on the Corrosion of Copper-Based and Nickel-Based Alloys in Seawater, Desalination, 2002, 150(3), p 255–262CrossRef
8.
go back to reference D. James, V.D. Huw, S. David, N. Lembit, and R.G. Compton, Cathodic Stripping Voltammetry of Nickel: Sonoelectrochemical Exploitation of the Ni(III)/Ni(II) Couple, Talanta, 2002, 57(6), p 1045–1051CrossRef D. James, V.D. Huw, S. David, N. Lembit, and R.G. Compton, Cathodic Stripping Voltammetry of Nickel: Sonoelectrochemical Exploitation of the Ni(III)/Ni(II) Couple, Talanta, 2002, 57(6), p 1045–1051CrossRef
9.
go back to reference R. Solmaz, A. Döner, and G. Kardaş, The Stability of Hydrogen Evolution Activity and Corrosion Behavior of NiCu Coatings With Long-Term Electrolysis in Alkaline Solution, Int. J. Hydrogen Energy, 2009, 34(5), p 2089–2094CrossRef R. Solmaz, A. Döner, and G. Kardaş, The Stability of Hydrogen Evolution Activity and Corrosion Behavior of NiCu Coatings With Long-Term Electrolysis in Alkaline Solution, Int. J. Hydrogen Energy, 2009, 34(5), p 2089–2094CrossRef
10.
go back to reference A. Sin, E. Kopnin, Y. Dubitsky, A. Zaopo, A.S. Aricò, D.L. Rosa, L.R. Gullo, and V. Antonucci, Performance and Life-Time Behaviour of NiCu-CGO Anodes for the Direct Electro-Oxidation of Methane in IT-SOFCs, J. Power Sources, 2007, 164(1), p 300–305CrossRef A. Sin, E. Kopnin, Y. Dubitsky, A. Zaopo, A.S. Aricò, D.L. Rosa, L.R. Gullo, and V. Antonucci, Performance and Life-Time Behaviour of NiCu-CGO Anodes for the Direct Electro-Oxidation of Methane in IT-SOFCs, J. Power Sources, 2007, 164(1), p 300–305CrossRef
11.
go back to reference L. Li, G. Wang, J. Liu, and Z.-Q. Yao, Flow Softening Behavior and Microstructure Evolution of Al-5Zn-2Mg Aluminum Alloy During Dynamic Recovery, Trans. Nonferrous Metal. Soc. China, 2014, 24, p 42–48CrossRef L. Li, G. Wang, J. Liu, and Z.-Q. Yao, Flow Softening Behavior and Microstructure Evolution of Al-5Zn-2Mg Aluminum Alloy During Dynamic Recovery, Trans. Nonferrous Metal. Soc. China, 2014, 24, p 42–48CrossRef
12.
go back to reference Z. Cai, F. Chen, F. Ma, and J. Guo, Dynamic Recrystallization Behavior and Hot Workability of AZ41M Magnesium Alloy During Hot Deformation, J. Alloy. Compd., 2016, 670(3), p 55–63 Z. Cai, F. Chen, F. Ma, and J. Guo, Dynamic Recrystallization Behavior and Hot Workability of AZ41M Magnesium Alloy During Hot Deformation, J. Alloy. Compd., 2016, 670(3), p 55–63
13.
go back to reference F. Cao, X. Fei, and G. Xue, Hot Tensile Deformation Behavior and Microstructural Evolution of a Mg-9.3Li-1.79Al–1.61Zn alloy, Mater. Des., 2016, 92, p 44–57CrossRef F. Cao, X. Fei, and G. Xue, Hot Tensile Deformation Behavior and Microstructural Evolution of a Mg-9.3Li-1.79Al–1.61Zn alloy, Mater. Des., 2016, 92, p 44–57CrossRef
14.
go back to reference Y.Q. Ning, X. Luo, H.Q. Liang, H.Z. Guo, J.L. Zhang, and K. Tan, Competition Between Dynamic Recovery and Recrystallization During Hot Deformation for TC18 Titanium Alloy, Mater. Sci. Eng., A, 2015, 635, p 77–85CrossRef Y.Q. Ning, X. Luo, H.Q. Liang, H.Z. Guo, J.L. Zhang, and K. Tan, Competition Between Dynamic Recovery and Recrystallization During Hot Deformation for TC18 Titanium Alloy, Mater. Sci. Eng., A, 2015, 635, p 77–85CrossRef
15.
go back to reference T. Wang, B. Li, Z. Wang, Y. Li, and Z. Nie, Influence Mechanism of The Initial Dislocation Boundary on the Adiabatic Shear Sensitivity of Commercial Pure Titanium, Mater. Sci. Eng., A, 2016, 676, p 1–9CrossRef T. Wang, B. Li, Z. Wang, Y. Li, and Z. Nie, Influence Mechanism of The Initial Dislocation Boundary on the Adiabatic Shear Sensitivity of Commercial Pure Titanium, Mater. Sci. Eng., A, 2016, 676, p 1–9CrossRef
16.
go back to reference G. Testa, N. Bonora, A. Ruggiero, G. Iannitti, I. Persechino, M. Hörnqvist, N. Mortazavi, Modelling and simulation of dynamic recrystallization (DRX) in OFHC copper at very high strain rates, Biennial Aps Conference on Shock Compression of Condensed Matter, 1793 (2015) G. Testa, N. Bonora, A. Ruggiero, G. Iannitti, I. Persechino, M. Hörnqvist, N. Mortazavi, Modelling and simulation of dynamic recrystallization (DRX) in OFHC copper at very high strain rates, Biennial Aps Conference on Shock Compression of Condensed Matter, 1793 (2015)
17.
go back to reference G. Gottstein, D. Zabardjadi, and H. Mecking, Dynamic Recrystallization in Tension-Deformed Copper Single Crystals, Metal Sci. J., 2013, 13(3–4), p 223–227 G. Gottstein, D. Zabardjadi, and H. Mecking, Dynamic Recrystallization in Tension-Deformed Copper Single Crystals, Metal Sci. J., 2013, 13(3–4), p 223–227
18.
go back to reference H.J. Mcqueen and S. Bergerson, Dynamic Recrystallization of Copper During Hot Torsion, Metal Sci. J., 2013, 6(1), p 25–29CrossRef H.J. Mcqueen and S. Bergerson, Dynamic Recrystallization of Copper During Hot Torsion, Metal Sci. J., 2013, 6(1), p 25–29CrossRef
19.
go back to reference S.H. Huang, D.Y. Shu, H.U. Chuan-Kai, and S.F. Zhu, Effect of Strain Rate and Deformation Temperature on Strain Hardening and Softening Behavior Of Pure Copper, Trans. Nonferrous Met. Soc. China, 2016, 26(4), p 1044–1054CrossRef S.H. Huang, D.Y. Shu, H.U. Chuan-Kai, and S.F. Zhu, Effect of Strain Rate and Deformation Temperature on Strain Hardening and Softening Behavior Of Pure Copper, Trans. Nonferrous Met. Soc. China, 2016, 26(4), p 1044–1054CrossRef
20.
go back to reference L. Ning, C. Zhibao, and L. Chen, Dynamic Recrystallization and Microstructure Evolution of BFe10-1-1 Copper Alloy, Hot Work. Technol., 2017, 46(04), p 72–74 L. Ning, C. Zhibao, and L. Chen, Dynamic Recrystallization and Microstructure Evolution of BFe10-1-1 Copper Alloy, Hot Work. Technol., 2017, 46(04), p 72–74
21.
go back to reference Y. Huang, M. Li, Z. Xiao, H. Liu, S. Wang, A Dynamic Recrystallization (DRX) Constitutive Model for Elevated Temperature Flow Behavior of Cu-0.5Cr-0.1Zr Alloy, Metallogr. Microstruct. Anal. pp 1-13 (2016) Y. Huang, M. Li, Z. Xiao, H. Liu, S. Wang, A Dynamic Recrystallization (DRX) Constitutive Model for Elevated Temperature Flow Behavior of Cu-0.5Cr-0.1Zr Alloy, Metallogr. Microstruct. Anal. pp 1-13 (2016)
22.
go back to reference Y.-K. Liu, H.-Y. Huang, and J.-X. Xie, Effect of Compression Direction on the Dynamic Recrystallization Behavior of Continuous Columnar-Grained CuNi10Fe1Mn Alloy, Int. J. Miner. Metallur. Mater., 2015, 22(8), p 851–859CrossRef Y.-K. Liu, H.-Y. Huang, and J.-X. Xie, Effect of Compression Direction on the Dynamic Recrystallization Behavior of Continuous Columnar-Grained CuNi10Fe1Mn Alloy, Int. J. Miner. Metallur. Mater., 2015, 22(8), p 851–859CrossRef
23.
go back to reference J. Cai, X. Zhang, K. Wang, and C. Miao, Physics-Based Constitutive Model to Predict Dynamic Recovery Behavior of BFe10-1-2 Cupronickel Alloy during Hot Working, High Temp. Mater. Processes (London), 2016, 35, p 1–9CrossRef J. Cai, X. Zhang, K. Wang, and C. Miao, Physics-Based Constitutive Model to Predict Dynamic Recovery Behavior of BFe10-1-2 Cupronickel Alloy during Hot Working, High Temp. Mater. Processes (London), 2016, 35, p 1–9CrossRef
24.
go back to reference M. Shaban, B. Eghbali, G. Reza Ebrahimi, Evaluation of the Kinetics of Dynamic Recovery in AISI 321 Austenitic Stainless Steel Using Hot Flow Curves, Trans. Indian Inst. Metal, pp 1-7 (2016) M. Shaban, B. Eghbali, G. Reza Ebrahimi, Evaluation of the Kinetics of Dynamic Recovery in AISI 321 Austenitic Stainless Steel Using Hot Flow Curves, Trans. Indian Inst. Metal, pp 1-7 (2016)
25.
go back to reference J.J. Jonas, C.M. Sellars, and W.J.M. Tegart, Strength and Structure Under Hot-Working Conditions, Metall Rev, 1969, 14(1), p 1–24CrossRef J.J. Jonas, C.M. Sellars, and W.J.M. Tegart, Strength and Structure Under Hot-Working Conditions, Metall Rev, 1969, 14(1), p 1–24CrossRef
26.
go back to reference G. Maizza, R. Pero, M. Richetta, and R. Montanari, Continuous Dynamic Recrystallization (CDRX) Model for Aluminum Alloys, J. Mater. Sci., 2018, 53(12), p 1–11 G. Maizza, R. Pero, M. Richetta, and R. Montanari, Continuous Dynamic Recrystallization (CDRX) Model for Aluminum Alloys, J. Mater. Sci., 2018, 53(12), p 1–11
27.
go back to reference X.H. Zhao, D.D. Liu, W.U. Xiang-Hong, G.R. Liu, and C. Liang, Flow Behavior and Constitutive Description of Cu-Zr-Ce Alloy at High Temperature, J. Central South Univ., 2018, 25(5), p 1013–1024CrossRef X.H. Zhao, D.D. Liu, W.U. Xiang-Hong, G.R. Liu, and C. Liang, Flow Behavior and Constitutive Description of Cu-Zr-Ce Alloy at High Temperature, J. Central South Univ., 2018, 25(5), p 1013–1024CrossRef
28.
go back to reference H. Yin, K. Kwak, D. Kishi, Y. Mine, R. Ding, P. Bowen, K. Takashima, Anisotropy of slip behaviour in single-colony lamellar structures of Ti-6Al-4V. Mater. Sci. Eng. A, 715, (2018) H. Yin, K. Kwak, D. Kishi, Y. Mine, R. Ding, P. Bowen, K. Takashima, Anisotropy of slip behaviour in single-colony lamellar structures of Ti-6Al-4V. Mater. Sci. Eng. A, 715, (2018)
29.
go back to reference H. Huang, X. Li, Z. Dong, W. Li, S. Huang, D. Meng, X. Lai, T. Liu, S. Zhu, and L. Vitos, Critical Stress for Twinning Nucleation in CrCoNi-Based Medium and High Entropy Alloys, Acta Mater., 2018, 149, p S1359645418301459CrossRef H. Huang, X. Li, Z. Dong, W. Li, S. Huang, D. Meng, X. Lai, T. Liu, S. Zhu, and L. Vitos, Critical Stress for Twinning Nucleation in CrCoNi-Based Medium and High Entropy Alloys, Acta Mater., 2018, 149, p S1359645418301459CrossRef
30.
go back to reference S.X. Zhu, Y. Liu, Y. Li, B.H. Tian, Y. Zhang, K.X. Song, S.X. Zhu, Y. Liu, Y. Li, and B.H. Tian, Critical Conditions of Dynamic Recrystallization of the Cu-0.4Zr-0.15Y Alloy, Trans. Mater. Heat Treatment, 2017, 38(5), p 172–178 S.X. Zhu, Y. Liu, Y. Li, B.H. Tian, Y. Zhang, K.X. Song, S.X. Zhu, Y. Liu, Y. Li, and B.H. Tian, Critical Conditions of Dynamic Recrystallization of the Cu-0.4Zr-0.15Y Alloy, Trans. Mater. Heat Treatment, 2017, 38(5), p 172–178
31.
go back to reference Y. Estrin and H. Mecking, A Unified Phenomenological Description of Work Hardening and Creep Based on One-Parameter Models, Acta Metall., 1984, 32(1), p 57–70CrossRef Y. Estrin and H. Mecking, A Unified Phenomenological Description of Work Hardening and Creep Based on One-Parameter Models, Acta Metall., 1984, 32(1), p 57–70CrossRef
32.
go back to reference Y. Bergström and H. Hallén, An Improved Dislocation Model for the Stress-Strain Behaviour of Polycrystalline α-Fe, Mater. Ence. Eng., 1982, 55(1), p 49–61 Y. Bergström and H. Hallén, An Improved Dislocation Model for the Stress-Strain Behaviour of Polycrystalline α-Fe, Mater. Ence. Eng., 1982, 55(1), p 49–61
33.
go back to reference S.S. Satheesh-Kumar, T. Raghu, P.P. Bhattacharjee, G. Appa-Rao, and U. Borah, Constitutive modeling for predicting peak stress characteristics during hot deformation of hot isostatically processed nickel-base superalloy, J. Mater. Sci., 2015, 50(19), p 6444–6456CrossRef S.S. Satheesh-Kumar, T. Raghu, P.P. Bhattacharjee, G. Appa-Rao, and U. Borah, Constitutive modeling for predicting peak stress characteristics during hot deformation of hot isostatically processed nickel-base superalloy, J. Mater. Sci., 2015, 50(19), p 6444–6456CrossRef
34.
go back to reference X. Gao, H.-b. Wu, M. Liu, Y.-x. Zhang, Effect of annealing time on grain boundary characteristics of C71500 cupronickel alloy tubes with different deformation, Mater. Character, 110603 (2020) X. Gao, H.-b. Wu, M. Liu, Y.-x. Zhang, Effect of annealing time on grain boundary characteristics of C71500 cupronickel alloy tubes with different deformation, Mater. Character, 110603 (2020)
35.
go back to reference J. McCarley and S. Tin, Utilization of hot deformation to trigger Strain Induced Boundary Migration (SIBM) in Ni-base Superalloys, Mater. Sci. Eng., A, 2018, 720, p S0921509318302703CrossRef J. McCarley and S. Tin, Utilization of hot deformation to trigger Strain Induced Boundary Migration (SIBM) in Ni-base Superalloys, Mater. Sci. Eng., A, 2018, 720, p S0921509318302703CrossRef
36.
go back to reference B.J. Lv, J. Peng, and Z. Chu, The Effect of Icosahedral Phase on Dynamic Recrystallization Evolution and Hot Workability of Mg-2.0Zn-0.3Zr-0.2Y Alloy, J. Mater. Eng. Perform., 2015, 24(9), p 3502–3512CrossRef B.J. Lv, J. Peng, and Z. Chu, The Effect of Icosahedral Phase on Dynamic Recrystallization Evolution and Hot Workability of Mg-2.0Zn-0.3Zr-0.2Y Alloy, J. Mater. Eng. Perform., 2015, 24(9), p 3502–3512CrossRef
37.
go back to reference H.N. Qi, Z.M. Zhang, J.M. Yu, X.Y. Yin, and Z.Y. Du, Dynamic Recrystallization of Mg-8Gd-3Y-1Nd-0.5Zr Alloy During Hot Deformation, Mater. Sci. Forum, 2017, 898, p 311–322CrossRef H.N. Qi, Z.M. Zhang, J.M. Yu, X.Y. Yin, and Z.Y. Du, Dynamic Recrystallization of Mg-8Gd-3Y-1Nd-0.5Zr Alloy During Hot Deformation, Mater. Sci. Forum, 2017, 898, p 311–322CrossRef
Metadata
Title
Dynamic Recovery and Recrystallization Behaviors of C71500 Copper-Nickel Alloy Under Hot Deformation
Authors
Xin Gao
Hui-bin Wu
Ming Liu
Yuan-xiang Zhang
Xiang-dong Zhou
Publication date
29-10-2020
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 11/2020
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-05221-x

Other articles of this Issue 11/2020

Journal of Materials Engineering and Performance 11/2020 Go to the issue

Premium Partners