Skip to main content
Top
Published in: Quantum Information Processing 5/2021

01-05-2021

Efficient quantum multi-hop communication based on Greenberger–Horne–Zeilinger states and Bell states

Authors: Yong-Li Yang, Yu-Guang Yang, Yi-Hua Zhou, Wei-Min Shi, Jian Li

Published in: Quantum Information Processing | Issue 5/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A novel quantum multi-hop communication scheme is proposed based on multi-qubit Greenberger–Horne–Zeilinger (GHZ) states and Bell states. We first propose a method where a GHZ state of arbitrary scale is generated efficiently by combining small-scale GHZ states via Bell-state measurements in a distributed manner. Based on this, we present an efficient and economical multi-hop quantum communication protocol. Finally, our scheme is compared with existing quantum multi-hop communication schemes in terms of communication efficiency.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Let. 70, 1895–1899 (1993)ADSMathSciNetCrossRef Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Let. 70, 1895–1899 (1993)ADSMathSciNetCrossRef
2.
3.
go back to reference Braunstein, S.L., Kimble, H.J.: Teleportation of continuous quantum variables. Phys. Rev. Lett. 80, 869 (1998)ADSCrossRef Braunstein, S.L., Kimble, H.J.: Teleportation of continuous quantum variables. Phys. Rev. Lett. 80, 869 (1998)ADSCrossRef
4.
5.
go back to reference Muralidharan, S., Panigrahi, P.K.: Perfect teleportation, quantum-state sharing and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77, 032321 (2008)ADSCrossRef Muralidharan, S., Panigrahi, P.K.: Perfect teleportation, quantum-state sharing and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77, 032321 (2008)ADSCrossRef
6.
go back to reference Muralidharan, S., Karumanchi, S., Jain, S., Srikanth, R., Panigrahi, P.K.: 2N qubit “mirror states” for optimal quantum communication. Eur. Phys. J. D 61, 757–763 (2011)ADSCrossRef Muralidharan, S., Karumanchi, S., Jain, S., Srikanth, R., Panigrahi, P.K.: 2N qubit “mirror states” for optimal quantum communication. Eur. Phys. J. D 61, 757–763 (2011)ADSCrossRef
7.
go back to reference Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)ADSCrossRef Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)ADSCrossRef
8.
go back to reference Olmschenk, S., Matsukevich, D.N., Maunz, P., Hayes, D., Duan, L.-M., Monroe, C.: Quantum teleportation between distant matter qubits. Science 323, 486–489 (2009)ADSCrossRef Olmschenk, S., Matsukevich, D.N., Maunz, P., Hayes, D., Duan, L.-M., Monroe, C.: Quantum teleportation between distant matter qubits. Science 323, 486–489 (2009)ADSCrossRef
9.
go back to reference Jin, X.-M., Ren, J.-G., Yang, B., Yi, Z.-H., Zhou, F., Xu, X.-F., Wang, S.-K., Yang, D., Hu, Y.-F., Jiang, S., Yang, T., Yin, H., Chen, K., Peng, C.-Z., Pan, J.-W.: Experimental free-space quantum teleportation. Nat. Photon. 4, 376–381 (2010)ADSCrossRef Jin, X.-M., Ren, J.-G., Yang, B., Yi, Z.-H., Zhou, F., Xu, X.-F., Wang, S.-K., Yang, D., Hu, Y.-F., Jiang, S., Yang, T., Yin, H., Chen, K., Peng, C.-Z., Pan, J.-W.: Experimental free-space quantum teleportation. Nat. Photon. 4, 376–381 (2010)ADSCrossRef
10.
go back to reference Yin, J., Ren, J.-G., Lu, H., Cao, Y., Yong, H.-L., Wu, Y.-P., Liu, C., Liao, S.-K., Zhou, F., Jiang, Y., Cai, X.-D., Xu, P., Pan, G.-S., Jia, J.-J., Huang, Y.-M., Yin, H., Wang, J.-Y., Chen, Y.-A., Peng, C.-Z., Pan, J.-W.: Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature 488, 185–188 (2012)ADSCrossRef Yin, J., Ren, J.-G., Lu, H., Cao, Y., Yong, H.-L., Wu, Y.-P., Liu, C., Liao, S.-K., Zhou, F., Jiang, Y., Cai, X.-D., Xu, P., Pan, G.-S., Jia, J.-J., Huang, Y.-M., Yin, H., Wang, J.-Y., Chen, Y.-A., Peng, C.-Z., Pan, J.-W.: Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature 488, 185–188 (2012)ADSCrossRef
11.
go back to reference Ma, X.-S., Herbst, T., Scheidl, T., Wang, D., Kropatschek, S., Naylor, W., Wittmann, B., Mech, A., Kofler, J., Anisimova, E., Makarov, V., Jennewein, T., Ursin, R., Zeilinger, A.: Quantum teleportation over 143 kilometres using active feed-forward. Nature 489, 269–273 (2012)ADSCrossRef Ma, X.-S., Herbst, T., Scheidl, T., Wang, D., Kropatschek, S., Naylor, W., Wittmann, B., Mech, A., Kofler, J., Anisimova, E., Makarov, V., Jennewein, T., Ursin, R., Zeilinger, A.: Quantum teleportation over 143 kilometres using active feed-forward. Nature 489, 269–273 (2012)ADSCrossRef
12.
go back to reference Ren, J.-G., Xu, P., Yong, H.-L., et al.: Ground-to-satellite quantum teleportation. Nature 549, 70–73 (2017)ADSCrossRef Ren, J.-G., Xu, P., Yong, H.-L., et al.: Ground-to-satellite quantum teleportation. Nature 549, 70–73 (2017)ADSCrossRef
13.
go back to reference Cheng, S.-T., Wang, C.-Y., Tao, M.-H.: Quantum communication for wireless wide-area networks. IEEE J. Sel. Area Commun. 23, 1424–1432 (2005)CrossRef Cheng, S.-T., Wang, C.-Y., Tao, M.-H.: Quantum communication for wireless wide-area networks. IEEE J. Sel. Area Commun. 23, 1424–1432 (2005)CrossRef
14.
go back to reference Yu, X.-T., Xu, J., Zhang, Z.-C.: Distributed wireless quantum communication networks. Chin. Phys. B 22(9), 090311 (2013)ADSCrossRef Yu, X.-T., Xu, J., Zhang, Z.-C.: Distributed wireless quantum communication networks. Chin. Phys. B 22(9), 090311 (2013)ADSCrossRef
15.
go back to reference Wang, K., Yu, X.-T., Lu, S.-L., Gong, X.-Y.: Quantum wireless multihop communication based on arbitrary Bell pairs and teleportation. Phys. Rev. A 89(2), 022329 (2014)ADSCrossRef Wang, K., Yu, X.-T., Lu, S.-L., Gong, X.-Y.: Quantum wireless multihop communication based on arbitrary Bell pairs and teleportation. Phys. Rev. A 89(2), 022329 (2014)ADSCrossRef
16.
go back to reference Wang, K., Gong, X.-Y., Yu, X.-T., Lu, S.-L.: Addendum to “Quantum wireless multihop communication based on arbitrary Bell pairs and teleportation.” Phys. Rev. A 90, 044302 (2014)ADSCrossRef Wang, K., Gong, X.-Y., Yu, X.-T., Lu, S.-L.: Addendum to “Quantum wireless multihop communication based on arbitrary Bell pairs and teleportation.” Phys. Rev. A 90, 044302 (2014)ADSCrossRef
17.
go back to reference Cai, X.-F., Yu, X.-T., Shi, L.-H., Zhang, Z.-C.: Partially entangled states bridge in quantum teleportation. Front. Phys. 9(5), 646–651 (2014)ADSCrossRef Cai, X.-F., Yu, X.-T., Shi, L.-H., Zhang, Z.-C.: Partially entangled states bridge in quantum teleportation. Front. Phys. 9(5), 646–651 (2014)ADSCrossRef
18.
go back to reference Shi, L.-H., Yu, X.-T., Cai, X.-F., Gong, X.-Y., Zhang, Z.-C.: Quantum information transmission in the quantum wireless multihop network based on Werner state. Chin. Phys. B 24(5), 050308 (2015)ADSCrossRef Shi, L.-H., Yu, X.-T., Cai, X.-F., Gong, X.-Y., Zhang, Z.-C.: Quantum information transmission in the quantum wireless multihop network based on Werner state. Chin. Phys. B 24(5), 050308 (2015)ADSCrossRef
19.
go back to reference Xiong, P.-Y., Yu, X.-T., Zhan, H.-T., Zhang, Z.-C.: Multiple teleportation via partially entangled GHZ state. Front. Phys. 11(4), 110303 (2016)ADSCrossRef Xiong, P.-Y., Yu, X.-T., Zhan, H.-T., Zhang, Z.-C.: Multiple teleportation via partially entangled GHZ state. Front. Phys. 11(4), 110303 (2016)ADSCrossRef
20.
go back to reference Zhan, H.-T., Yu, X.-T., Xiong, P.-Y., Zhang, Z.-C.: Multi-hop teleportation based on W state and EPR pairs. Chin. Phys. B 25(5), 050305 (2016)CrossRef Zhan, H.-T., Yu, X.-T., Xiong, P.-Y., Zhang, Z.-C.: Multi-hop teleportation based on W state and EPR pairs. Chin. Phys. B 25(5), 050305 (2016)CrossRef
21.
go back to reference Zou, Z.-Z., Yu, X.-T., Gong, Y.-X., Zhang, Z.-C.: Multihop teleportation of two-qubit state via the composite GHZ-Bell channel. Phys. Lett. A 381, 76–81 (2017)ADSCrossRef Zou, Z.-Z., Yu, X.-T., Gong, Y.-X., Zhang, Z.-C.: Multihop teleportation of two-qubit state via the composite GHZ-Bell channel. Phys. Lett. A 381, 76–81 (2017)ADSCrossRef
22.
go back to reference Zhang, Z.-H., Wang, J.-W., Sun, M.: Multihop teleportation via the composite of asymmetric W state and Bell state. Int. J. Theor. Phys. 57, 3605–3620 (2018)MathSciNetCrossRef Zhang, Z.-H., Wang, J.-W., Sun, M.: Multihop teleportation via the composite of asymmetric W state and Bell state. Int. J. Theor. Phys. 57, 3605–3620 (2018)MathSciNetCrossRef
23.
go back to reference Yang, Y.-G., Cao, S.-N., Zhou, Y.-H., Shi, W.-M.: Quantum wireless network communication based on cluster states. Mode. Phys. Lett A 35, 2050178 (2020)ADSMathSciNetCrossRef Yang, Y.-G., Cao, S.-N., Zhou, Y.-H., Shi, W.-M.: Quantum wireless network communication based on cluster states. Mode. Phys. Lett A 35, 2050178 (2020)ADSMathSciNetCrossRef
24.
go back to reference Gao, X.-Q., Zhang, Z.-C., Sheng, B.: Multi-hop teleportation in a quantum network based on mesh topology. Front. Phys. 13, 130314 (2018)CrossRef Gao, X.-Q., Zhang, Z.-C., Sheng, B.: Multi-hop teleportation in a quantum network based on mesh topology. Front. Phys. 13, 130314 (2018)CrossRef
25.
go back to reference Xiong, P.-Y., Yu, X.-T., Zhang, Z.-C., et al.: Routing protocol for wireless quantum multi-hop mesh backbone network based on partially entangled GHZ state. Front. Phys. 12, 120302 (2017)ADSCrossRef Xiong, P.-Y., Yu, X.-T., Zhang, Z.-C., et al.: Routing protocol for wireless quantum multi-hop mesh backbone network based on partially entangled GHZ state. Front. Phys. 12, 120302 (2017)ADSCrossRef
26.
go back to reference Wallnöfer, J., Zwerger, M., Muschik, C., Sangouard, N., Dür, W.: Two-dimensional quantum repeaters. Phys. Rev. A 94, 052307 (2016)ADSCrossRef Wallnöfer, J., Zwerger, M., Muschik, C., Sangouard, N., Dür, W.: Two-dimensional quantum repeaters. Phys. Rev. A 94, 052307 (2016)ADSCrossRef
27.
go back to reference Pemberton, P.J., Kay, A.: Perfect quantum routing in regular spin networks. Phys. Rev. Lett. 106, 020503 (2011)ADSCrossRef Pemberton, P.J., Kay, A.: Perfect quantum routing in regular spin networks. Phys. Rev. Lett. 106, 020503 (2011)ADSCrossRef
28.
go back to reference Fowler, A.G., Wang, D.S., Hill, C.D., Ladd, T.D., VanMeter, R., Hollenberg, L.C.L.: Surface code quantum communication. Phys. Rev. Lett. 104, 180503 (2010)ADSCrossRef Fowler, A.G., Wang, D.S., Hill, C.D., Ladd, T.D., VanMeter, R., Hollenberg, L.C.L.: Surface code quantum communication. Phys. Rev. Lett. 104, 180503 (2010)ADSCrossRef
29.
go back to reference Meter, R., Satoh, T., Ladd, T.D., Munro, W.J., Nemoto, K.: Path selection for quantum repeater networks. Netw. Sci. 3, 82–95 (2013)CrossRef Meter, R., Satoh, T., Ladd, T.D., Munro, W.J., Nemoto, K.: Path selection for quantum repeater networks. Netw. Sci. 3, 82–95 (2013)CrossRef
30.
go back to reference Jiang, D.H., Wang, J., Liang, X.Q., Xu, G.B., Qi, H.F.: Quantum voting scheme based on locally indistinguishable orthogonal product states. Int. J. Theor. Phys. 59(2), 436–444 (2020)MathSciNetCrossRef Jiang, D.H., Wang, J., Liang, X.Q., Xu, G.B., Qi, H.F.: Quantum voting scheme based on locally indistinguishable orthogonal product states. Int. J. Theor. Phys. 59(2), 436–444 (2020)MathSciNetCrossRef
31.
go back to reference Xu, G.B., Jiang, D.H.: Novel methods to construct nonlocal sets of orthogonal product states in an arbitrary bipartite high-dimensional system. Quantum Inf. process. 20, 128 (2021)ADSMathSciNetCrossRef Xu, G.B., Jiang, D.H.: Novel methods to construct nonlocal sets of orthogonal product states in an arbitrary bipartite high-dimensional system. Quantum Inf. process. 20, 128 (2021)ADSMathSciNetCrossRef
32.
go back to reference Du, G., Zhou, B.M., Ma, C.G., Zhang, S., Li, J.Y.: A secure quantum voting scheme based on orthogonal product states. Int. J. Theor. Phys. 60(4), 1374–1383 (2021)MathSciNetCrossRef Du, G., Zhou, B.M., Ma, C.G., Zhang, S., Li, J.Y.: A secure quantum voting scheme based on orthogonal product states. Int. J. Theor. Phys. 60(4), 1374–1383 (2021)MathSciNetCrossRef
33.
go back to reference Lin, M.M., Xue, D.W., Wang, Y., Zhang, K.J.: A new quantum payment protocol based on a set of local indistinguishable orthogonal product states. Int. J. Theor. Phys. 60(4), 1237–1245 (2021)MathSciNetCrossRef Lin, M.M., Xue, D.W., Wang, Y., Zhang, K.J.: A new quantum payment protocol based on a set of local indistinguishable orthogonal product states. Int. J. Theor. Phys. 60(4), 1237–1245 (2021)MathSciNetCrossRef
34.
go back to reference Jiang, D.H., Hu, Q.Z., Liang, X.Q., Xu, G.B.: A trusted third-party E-payment protocol based on locally indistinguishable orthogonal product states. Int. J. Theor. Phys. 59(5), 1442–1450 (2020)MathSciNetCrossRef Jiang, D.H., Hu, Q.Z., Liang, X.Q., Xu, G.B.: A trusted third-party E-payment protocol based on locally indistinguishable orthogonal product states. Int. J. Theor. Phys. 59(5), 1442–1450 (2020)MathSciNetCrossRef
35.
go back to reference Xu, Y.L., Xu, G.B., Jiang, D.H.: Novel quantum proxy signature scheme based on orthogonalquantum product states. Mod. Phys. Lett. B 34(16), 2050172 (2020)ADSCrossRef Xu, Y.L., Xu, G.B., Jiang, D.H.: Novel quantum proxy signature scheme based on orthogonalquantum product states. Mod. Phys. Lett. B 34(16), 2050172 (2020)ADSCrossRef
Metadata
Title
Efficient quantum multi-hop communication based on Greenberger–Horne–Zeilinger states and Bell states
Authors
Yong-Li Yang
Yu-Guang Yang
Yi-Hua Zhou
Wei-Min Shi
Jian Li
Publication date
01-05-2021
Publisher
Springer US
Published in
Quantum Information Processing / Issue 5/2021
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-021-03121-0

Other articles of this Issue 5/2021

Quantum Information Processing 5/2021 Go to the issue