Skip to main content
Top
Published in: Telecommunication Systems 2/2021

10-09-2020

Energy balanced data gathering approaches, issues and research directions

Authors: Jagrati Kulshrestha, Manas Kumar Mishra

Published in: Telecommunication Systems | Issue 2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Wireless sensor networks (WSNs) and Internet of Things domain comprise of numerous small sized battery powered sensor nodes. Energy efficiency and energy balancing are very important aspects from the perspective of increasing the lifespan of WSN. Energy balancing is more important in case of multi-hop networks with many-to-one communication pattern as the nodes which are closer to the sink have more relay load than the other nodes. In this work, we present a detailed discussion on the different energy balancing approaches with a detailed analysis of each. The discussion is further accompanied by a detailed analytical comparison of the approaches. Further, this study presents a detailed analytical discussion and comparative study of the different energy balancing schemes based on mixed-hop transmission. Mixed transmissions, where each node selects between cheap hop-by-hop transmission and costly direct transmissions, is a reasonable approach to achieve balanced energy consumption. Besides, the paper also throws some light on the various issues and challenges present in the domain of mixed-hop energy balancing. It also mentions few research directions which can be focused upon to carry further research in this domain.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Adasme, P. (2019). Optimal sub-tree scheduling for wireless sensor networks with partial coverage. Computer Standards & Interfaces, 61, 20–35.CrossRef Adasme, P. (2019). Optimal sub-tree scheduling for wireless sensor networks with partial coverage. Computer Standards & Interfaces, 61, 20–35.CrossRef
2.
go back to reference Agrawal, D., & Pandey, S. (2018). FUCA: Fuzzy-based unequal clustering algorithm to prolong the lifetime of wireless sensor networks. International Journal of Communication Systems, 31(2), e3448.CrossRef Agrawal, D., & Pandey, S. (2018). FUCA: Fuzzy-based unequal clustering algorithm to prolong the lifetime of wireless sensor networks. International Journal of Communication Systems, 31(2), e3448.CrossRef
3.
go back to reference Aguilar-Gonzalez, R., Ramos, V., Prieto-Guerrero, A., Cardenas-Juarez, M., Rico, U. P., & Stevens-Navarro, E. (2018). A low-complexity antenna selection algorithm for cooperative sensor networks. In IEEE Canadian conference on electrical & computer engineering (CCECE) (pp. 1–4). IEEE Aguilar-Gonzalez, R., Ramos, V., Prieto-Guerrero, A., Cardenas-Juarez, M., Rico, U. P., & Stevens-Navarro, E. (2018). A low-complexity antenna selection algorithm for cooperative sensor networks. In IEEE Canadian conference on electrical & computer engineering (CCECE) (pp. 1–4). IEEE
4.
go back to reference Ahmed, Y. E., Adjallah, K. H., Stock, R., Kacem, I., & Babiker, S. F. (2018). NDSC based methods for maximizing the lifespan of randomly deployed wireless sensor networks for infrastructures monitoring. Computers & Industrial Engineering, 115, 17–25.CrossRef Ahmed, Y. E., Adjallah, K. H., Stock, R., Kacem, I., & Babiker, S. F. (2018). NDSC based methods for maximizing the lifespan of randomly deployed wireless sensor networks for infrastructures monitoring. Computers & Industrial Engineering, 115, 17–25.CrossRef
5.
go back to reference Akkaya, K., & Younis, M. (2005). A survey on routing protocols for wireless sensor networks. Ad Hoc Networks, 3(3), 325–349.CrossRef Akkaya, K., & Younis, M. (2005). A survey on routing protocols for wireless sensor networks. Ad Hoc Networks, 3(3), 325–349.CrossRef
6.
go back to reference Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422.CrossRef Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422.CrossRef
7.
go back to reference Althunibat, S., Abu-Al-Aish, A., Shehab, W. F. A., & Alsawalmeh, W. H. (2016). Auction-based data gathering scheme for wireless sensor networks. IEEE Communications Letters, 20(6), 1223–1226.CrossRef Althunibat, S., Abu-Al-Aish, A., Shehab, W. F. A., & Alsawalmeh, W. H. (2016). Auction-based data gathering scheme for wireless sensor networks. IEEE Communications Letters, 20(6), 1223–1226.CrossRef
8.
go back to reference Althunibat, S., & Mesleh, R. (2018). Index modulation for cluster-based wireless sensor networks. IEEE Transactions on Vehicular Technology, 67(8), 6943–6950.CrossRef Althunibat, S., & Mesleh, R. (2018). Index modulation for cluster-based wireless sensor networks. IEEE Transactions on Vehicular Technology, 67(8), 6943–6950.CrossRef
9.
go back to reference Anastasi, G., Conti, M., Di Francesco, M., & Passarella, A. (2009). Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks, 7(3), 537–568.CrossRef Anastasi, G., Conti, M., Di Francesco, M., & Passarella, A. (2009). Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks, 7(3), 537–568.CrossRef
10.
go back to reference Anwit, R., & Jana, P. K. (2020). An efficient clustering based data collection using mobile sink in wireless sensor networks. In Proceedings of the 21st international conference on distributed computing and networking (pp. 1–5). Anwit, R., & Jana, P. K. (2020). An efficient clustering based data collection using mobile sink in wireless sensor networks. In Proceedings of the 21st international conference on distributed computing and networking (pp. 1–5).
11.
go back to reference Bakkali, A., Pelegrí-Sebastiá, J., Sogorb, T., Llario, V., & Bou-Escriva, A. (2016). A dual-band antenna for RF energy harvesting systems in wireless sensor networks. Journal of Sensors, 2016, 1–8. Bakkali, A., Pelegrí-Sebastiá, J., Sogorb, T., Llario, V., & Bou-Escriva, A. (2016). A dual-band antenna for RF energy harvesting systems in wireless sensor networks. Journal of Sensors, 2016, 1–8.
12.
go back to reference Bhagyalakshmi, L., Suman, S. K., & Murugan, K. (2012). Corona based clustering with mixed routing and data aggregation to avoid energy hole problem in wireless sensor network. In Fourth international conference on advanced computing (ICoAC) (pp. 1–8). IEEE. Bhagyalakshmi, L., Suman, S. K., & Murugan, K. (2012). Corona based clustering with mixed routing and data aggregation to avoid energy hole problem in wireless sensor network. In Fourth international conference on advanced computing (ICoAC) (pp. 1–8). IEEE.
13.
go back to reference Bhattacharjee, S., & Agarwal, K. (2017). Energy efficient multiple sink placement in wireless sensor networks. In 4th International conference on networking, systems and security (NSysS) (pp. 1–7). IEEE. Bhattacharjee, S., & Agarwal, K. (2017). Energy efficient multiple sink placement in wireless sensor networks. In 4th International conference on networking, systems and security (NSysS) (pp. 1–7). IEEE.
14.
go back to reference Bidoki, N. H., Baghdadabad, M. B., Sukthankar, G., & Turgut, D. (2018). Joint value of information and energy aware sleep scheduling in wireless sensor networks: A linear programming approach. In IEEE international conference on communications (ICC) (pp. 1–6). IEEE. Bidoki, N. H., Baghdadabad, M. B., Sukthankar, G., & Turgut, D. (2018). Joint value of information and energy aware sleep scheduling in wireless sensor networks: A linear programming approach. In IEEE international conference on communications (ICC) (pp. 1–6). IEEE.
15.
go back to reference Boukerche, A., Efstathiou, D., Nikoletseas, S., & Raptopoulos, C. (2011). Close-to-optimal energy balanced data propagation via limited, local network density information. In 14th ACM international conference on modeling, analysis and simulation of wireless and mobile systems (pp. 85–92). Boukerche, A., Efstathiou, D., Nikoletseas, S., & Raptopoulos, C. (2011). Close-to-optimal energy balanced data propagation via limited, local network density information. In 14th ACM international conference on modeling, analysis and simulation of wireless and mobile systems (pp. 85–92).
16.
go back to reference Boukerche, A., Efstathiou, D., Nikoletseas, S., & Raptopoulos, C. (2012). Exploiting limited density information towards near-optimal energy balanced data propagation. Computer Communications, 35(18), 2187–2200.CrossRef Boukerche, A., Efstathiou, D., Nikoletseas, S., & Raptopoulos, C. (2012). Exploiting limited density information towards near-optimal energy balanced data propagation. Computer Communications, 35(18), 2187–2200.CrossRef
17.
go back to reference Ceriotti, M., Mottola, L., Picco, G. P., Murphy, A. L., Guna, S., Corra, M., et al. (2009). Monitoring heritage buildings with wireless sensor networks: The torre aquila deployment. In 8th International conference on information processing in sensor networks (IPSN) (pp. 277–288). Ceriotti, M., Mottola, L., Picco, G. P., Murphy, A. L., Guna, S., Corra, M., et al. (2009). Monitoring heritage buildings with wireless sensor networks: The torre aquila deployment. In 8th International conference on information processing in sensor networks (IPSN) (pp. 277–288).
18.
go back to reference Chang, C. Y., & Chang, H. R. (2008). Energy-aware node placement, topology control and MAC scheduling for wireless sensor networks. Computer Networks, 52(11), 2189–2204.CrossRef Chang, C. Y., & Chang, H. R. (2008). Energy-aware node placement, topology control and MAC scheduling for wireless sensor networks. Computer Networks, 52(11), 2189–2204.CrossRef
19.
go back to reference Chau, A. C. Y., Dawson, J. F., & Mitchell, P. D. (2019). Medium access and power control protocol for wireless sensor networks with directional antennas. In IEEE international conference on information and communication technology (ICTC), October 16–19, 2019. IEEE. Chau, A. C. Y., Dawson, J. F., & Mitchell, P. D. (2019). Medium access and power control protocol for wireless sensor networks with directional antennas. In IEEE international conference on information and communication technology (ICTC), October 16–19, 2019. IEEE.
20.
go back to reference Chawla, A., Patel, A., Jagannatham, A. K., & Varshney, P. K. (2019). Distributed detection in massive MIMO wireless sensor networks under perfect and imperfect CSI. IEEE Transactions on Signal Processing, 67(15), 4055–4068.CrossRef Chawla, A., Patel, A., Jagannatham, A. K., & Varshney, P. K. (2019). Distributed detection in massive MIMO wireless sensor networks under perfect and imperfect CSI. IEEE Transactions on Signal Processing, 67(15), 4055–4068.CrossRef
21.
go back to reference Chen, F., Guo, L., & Chen, C. (2012). A survey on energy management in the wireless sensor networks. IERI Procedia, 3, 60–66.CrossRef Chen, F., Guo, L., & Chen, C. (2012). A survey on energy management in the wireless sensor networks. IERI Procedia, 3, 60–66.CrossRef
22.
go back to reference Chen, T. S., Du, W. Q., & Chen, J. J. (2019). Energy-efficient data collection by mobile sink in wireless sensor networks. In IEEE wireless communications and networking conference (WCNC) (pp. 1–6). IEEE. Chen, T. S., Du, W. Q., & Chen, J. J. (2019). Energy-efficient data collection by mobile sink in wireless sensor networks. In IEEE wireless communications and networking conference (WCNC) (pp. 1–6). IEEE.
23.
go back to reference Chen, W. S., Cheng, C. M., Liao, B. Y., Chang, Y. L., & Wang, H. Y. (2018). Triple-band slot antenna array for energy harvesting for wireless sensor networks. Sensors and Materials, 30(3), 587–594.CrossRef Chen, W. S., Cheng, C. M., Liao, B. Y., Chang, Y. L., & Wang, H. Y. (2018). Triple-band slot antenna array for energy harvesting for wireless sensor networks. Sensors and Materials, 30(3), 587–594.CrossRef
24.
go back to reference Chugh, A., & Panda, S. (2018). Strengthening clustering through relay nodes in sensor networks. Procedia Computer Science, 132, 689–695.CrossRef Chugh, A., & Panda, S. (2018). Strengthening clustering through relay nodes in sensor networks. Procedia Computer Science, 132, 689–695.CrossRef
25.
go back to reference Ciccia, S., Giordanengo, G., & Vecchi, G. (2019). Energy efficiency in IoT networks: Integration of reconfigurable antennas in ultra low-power radio platforms based on system-on-chip. IEEE Internet of Things Journal, 6(4), 6800–6810.CrossRef Ciccia, S., Giordanengo, G., & Vecchi, G. (2019). Energy efficiency in IoT networks: Integration of reconfigurable antennas in ultra low-power radio platforms based on system-on-chip. IEEE Internet of Things Journal, 6(4), 6800–6810.CrossRef
26.
go back to reference Cui, Z., Cao, Y., Cai, X., Cai, J., & Chen, J. (2018). Optimal leach protocol with modified bat algorithm for big data sensing systems in internet of things. Journal of Parallel and Distributed Computing, 132, 217–229.CrossRef Cui, Z., Cao, Y., Cai, X., Cai, J., & Chen, J. (2018). Optimal leach protocol with modified bat algorithm for big data sensing systems in internet of things. Journal of Parallel and Distributed Computing, 132, 217–229.CrossRef
27.
go back to reference Deng, R., He, S., & Chen, J. (2018). An online algorithm for data collection by multiple sinks in wireless-sensor networks. IEEE Transactions on Control of Network Systems, 5(1), 93–104.CrossRef Deng, R., He, S., & Chen, J. (2018). An online algorithm for data collection by multiple sinks in wireless-sensor networks. IEEE Transactions on Control of Network Systems, 5(1), 93–104.CrossRef
28.
go back to reference Dihissou, A., Diallo, A., Le Thuc, P., & Staraj, R. (2018). Directive and reconfigurable loaded antenna array for wireless sensor networks. Progress in Electromagnetics Research, 84, 103–117.CrossRef Dihissou, A., Diallo, A., Le Thuc, P., & Staraj, R. (2018). Directive and reconfigurable loaded antenna array for wireless sensor networks. Progress in Electromagnetics Research, 84, 103–117.CrossRef
29.
go back to reference Din, S., Paul, A., Ahmad, A., & Kim, J. H. (2019). Energy efficient topology management scheme based on clustering technique for software defined wireless sensor network. Peer-to-Peer Networking and Applications, 12(2), 348–356.CrossRef Din, S., Paul, A., Ahmad, A., & Kim, J. H. (2019). Energy efficient topology management scheme based on clustering technique for software defined wireless sensor network. Peer-to-Peer Networking and Applications, 12(2), 348–356.CrossRef
30.
go back to reference Dohare, U., Lobiyal, D., & Kumar, S. (2014). Energy balanced model for lifetime maximization in randomly distributed wireless sensor networks. Wireless Personal Communications, 78(1), 407–428.CrossRef Dohare, U., Lobiyal, D., & Kumar, S. (2014). Energy balanced model for lifetime maximization in randomly distributed wireless sensor networks. Wireless Personal Communications, 78(1), 407–428.CrossRef
31.
go back to reference Dong, Q., Yu, L., Lu, H., Hong, Z., & Chen, Y. (2010). Design of building monitoring systems based on wireless sensor networks. Wireless Sensor Network, 2(9), 703–709.CrossRef Dong, Q., Yu, L., Lu, H., Hong, Z., & Chen, Y. (2010). Design of building monitoring systems based on wireless sensor networks. Wireless Sensor Network, 2(9), 703–709.CrossRef
32.
go back to reference Du, G., Niu, Y., & Zhao, J. (2017). A relay node deployment strategy for energy-balance using a group gaussian distribution. International Journal of Sensor Networks, 24(4), 222–229.CrossRef Du, G., Niu, Y., & Zhao, J. (2017). A relay node deployment strategy for energy-balance using a group gaussian distribution. International Journal of Sensor Networks, 24(4), 222–229.CrossRef
33.
go back to reference Du, Y., Wang, Z., Gong, J., Xu, N., & Hu, X. (2019). Cross-layer optimized energy-balanced topology control algorithm for WSNS. Journal of Sensors, 2019, 1–11. Du, Y., Wang, Z., Gong, J., Xu, N., & Hu, X. (2019). Cross-layer optimized energy-balanced topology control algorithm for WSNS. Journal of Sensors, 2019, 1–11.
34.
go back to reference Efthymiou, C., Nikoletseas, S., & Rolim, J. (2006). Energy balanced data propagation in wireless sensor networks. Wireless Networks, 12(6), 691–707.CrossRef Efthymiou, C., Nikoletseas, S., & Rolim, J. (2006). Energy balanced data propagation in wireless sensor networks. Wireless Networks, 12(6), 691–707.CrossRef
35.
go back to reference El Fissaoui, M., Beni-Hssane, A., & Saadi, M. (2019). Energy efficient and fault tolerant distributed algorithm for data aggregation in wireless sensor networks. Journal of Ambient Intelligence and Humanized Computing, 10(2), 569–578.CrossRef El Fissaoui, M., Beni-Hssane, A., & Saadi, M. (2019). Energy efficient and fault tolerant distributed algorithm for data aggregation in wireless sensor networks. Journal of Ambient Intelligence and Humanized Computing, 10(2), 569–578.CrossRef
36.
go back to reference Erdun, Z., Juan, Y., Peihe, T., & Hao, L. (2009). An energy-balanced data transmission scheme for clustered wireless sensor networks. In 5th International conference on wireless communications, networking and mobile computing (WiCom ’09) (Vol. 5, pp. 1–4). Erdun, Z., Juan, Y., Peihe, T., & Hao, L. (2009). An energy-balanced data transmission scheme for clustered wireless sensor networks. In 5th International conference on wireless communications, networking and mobile computing (WiCom ’09) (Vol. 5, pp. 1–4).
37.
go back to reference Faragardi, H. R., Vahabi, M., Fotouhi, H., Nolte, T., & Fahringer, T. (2018). An efficient placement of sinks and SDN controller nodes for optimizing the design cost of industrial IoT systems. Software: Practice and Experience, 48(10), 1893–1919. Faragardi, H. R., Vahabi, M., Fotouhi, H., Nolte, T., & Fahringer, T. (2018). An efficient placement of sinks and SDN controller nodes for optimizing the design cost of industrial IoT systems. Software: Practice and Experience, 48(10), 1893–1919.
38.
go back to reference Gammarano, N., Schandy, J., & Steinfeld, L. (2020). Reducing neighbor discovery time in sensor networks with directional antennas using dynamic contention resolution. In Design automation for embedded systems (pp. 1–25). Gammarano, N., Schandy, J., & Steinfeld, L. (2020). Reducing neighbor discovery time in sensor networks with directional antennas using dynamic contention resolution. In Design automation for embedded systems (pp. 1–25).
39.
go back to reference Gara, F., Saad, L. B., Ayed, R. B., & Tourancheau, B. (2019). A new scheme for RPL to handle mobility in wireless sensor networks. International Journal of Ad Hoc and Ubiquitous Computing, 30(3), 173–186.CrossRef Gara, F., Saad, L. B., Ayed, R. B., & Tourancheau, B. (2019). A new scheme for RPL to handle mobility in wireless sensor networks. International Journal of Ad Hoc and Ubiquitous Computing, 30(3), 173–186.CrossRef
40.
go back to reference Gharaei, N., Al-Otaibi, Y. D., Butt, S. A., Sahar, G., & Rahim, S. (2019). Energy-efficient and coverage-guaranteed unequal-sized clustering for wireless sensor networks. IEEE Access, 7, 157883–157891.CrossRef Gharaei, N., Al-Otaibi, Y. D., Butt, S. A., Sahar, G., & Rahim, S. (2019). Energy-efficient and coverage-guaranteed unequal-sized clustering for wireless sensor networks. IEEE Access, 7, 157883–157891.CrossRef
41.
go back to reference Gope, P., Das, A. K., Kumar, N., & Cheng, Y. (2019). Lightweight and physically secure anonymous mutual authentication protocol for real-time data access in industrial wireless sensor networks. IEEE Transactions on Industrial Informatics, 15(9), 4957–4968.CrossRef Gope, P., Das, A. K., Kumar, N., & Cheng, Y. (2019). Lightweight and physically secure anonymous mutual authentication protocol for real-time data access in industrial wireless sensor networks. IEEE Transactions on Industrial Informatics, 15(9), 4957–4968.CrossRef
42.
go back to reference Guleria, K., & Verma, A. K. (2019). Meta-heuristic ant colony optimization based unequal clustering for wireless sensor network. Wireless Personal Communications, 105(3), 891–911.CrossRef Guleria, K., & Verma, A. K. (2019). Meta-heuristic ant colony optimization based unequal clustering for wireless sensor network. Wireless Personal Communications, 105(3), 891–911.CrossRef
43.
go back to reference Guo, W., Liu, Z., & Wu, G. (2003). An energy-balanced transmission scheme for sensor networks. In Proceedings of the 1st international conference on embedded networked sensor systems (pp. 300–301). ACM. Guo, W., Liu, Z., & Wu, G. (2003). An energy-balanced transmission scheme for sensor networks. In Proceedings of the 1st international conference on embedded networked sensor systems (pp. 300–301). ACM.
44.
go back to reference Guo, X., Leong, A. S., & Dey, S. (2017). Estimation in wireless sensor networks with security constraints. IEEE Transactions on Aerospace and Electronic Systems, 53(2), 544–561.CrossRef Guo, X., Leong, A. S., & Dey, S. (2017). Estimation in wireless sensor networks with security constraints. IEEE Transactions on Aerospace and Electronic Systems, 53(2), 544–561.CrossRef
45.
go back to reference Gupta, G. P., & Saha, B. (2020). Load balanced clustering scheme using hybrid metaheuristic technique for mobile sink based wireless sensor networks. Journal of Ambient Intelligence and Humanized Computing. Gupta, G. P., & Saha, B. (2020). Load balanced clustering scheme using hybrid metaheuristic technique for mobile sink based wireless sensor networks. Journal of Ambient Intelligence and Humanized Computing.
46.
go back to reference Gupta, V., & Doja, M. (2018). H-leach: Modified and efficient leach protocol for hybrid clustering scenario in wireless sensor networks. In Next-generation networks (pp. 399–408). Berlin: Springer. Gupta, V., & Doja, M. (2018). H-leach: Modified and efficient leach protocol for hybrid clustering scenario in wireless sensor networks. In Next-generation networks (pp. 399–408). Berlin: Springer.
47.
go back to reference Guruprakash, B., Balasubramanian, C., & Sukumar, R. (2020). An approach by adopting multi-objective clustering and data collection along with node sleep scheduling for energy efficient and delay aware WSN. Peer-to-Peer Networking and Applications, 13(1), 304–319.CrossRef Guruprakash, B., Balasubramanian, C., & Sukumar, R. (2020). An approach by adopting multi-objective clustering and data collection along with node sleep scheduling for energy efficient and delay aware WSN. Peer-to-Peer Networking and Applications, 13(1), 304–319.CrossRef
48.
go back to reference Halder, S., & Ghosal, A. (2017). Lifetime enhancement of wireless sensor networks by avoiding energy-holes with gaussian distribution. Telecommunication Systems, 64(1), 113–133.CrossRef Halder, S., & Ghosal, A. (2017). Lifetime enhancement of wireless sensor networks by avoiding energy-holes with gaussian distribution. Telecommunication Systems, 64(1), 113–133.CrossRef
49.
go back to reference Hanh, N. T., Binh, H. T. T., Hoai, N. X., & Palaniswami, M. S. (2019). An efficient genetic algorithm for maximizing area coverage in wireless sensor networks. Information Sciences, 488, 58–75.CrossRef Hanh, N. T., Binh, H. T. T., Hoai, N. X., & Palaniswami, M. S. (2019). An efficient genetic algorithm for maximizing area coverage in wireless sensor networks. Information Sciences, 488, 58–75.CrossRef
50.
go back to reference Hawbani, A., Wang, X., Al-Sharabi, Y. A., Ghannami, A., Kuhlani, H., & Karmoshi, S. (2018). Load-balanced opportunistic routing for asynchronous duty-cycled WSN. IEEE Transactions on Mobile Computing, 18(7), 1601–1615. Hawbani, A., Wang, X., Al-Sharabi, Y. A., Ghannami, A., Kuhlani, H., & Karmoshi, S. (2018). Load-balanced opportunistic routing for asynchronous duty-cycled WSN. IEEE Transactions on Mobile Computing, 18(7), 1601–1615.
51.
go back to reference He, X., Fu, X., & Yang, Y. (2019). Energy-efficient trajectory planning algorithm based on multi-objective PSO for the mobile sink in wireless sensor networks. IEEE Access, 7, 176204–176217.CrossRef He, X., Fu, X., & Yang, Y. (2019). Energy-efficient trajectory planning algorithm based on multi-objective PSO for the mobile sink in wireless sensor networks. IEEE Access, 7, 176204–176217.CrossRef
52.
go back to reference Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In 33rd Hawaii international conference on system sciences (HICSS ’00) (pp. 8020–8030). Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In 33rd Hawaii international conference on system sciences (HICSS ’00) (pp. 8020–8030).
53.
go back to reference Holisaz, H., & Ling, Y. (2017). Antenna systems for wireless sensor devices. US Patent App. 14/883,432. Holisaz, H., & Ling, Y. (2017). Antenna systems for wireless sensor devices. US Patent App. 14/883,432.
54.
go back to reference Hossain, A. (2017). Equal energy dissipation in wireless sensor network. AEU-International Journal of Electronics and Communications, 71, 192–196.CrossRef Hossain, A. (2017). Equal energy dissipation in wireless sensor network. AEU-International Journal of Electronics and Communications, 71, 192–196.CrossRef
55.
go back to reference Hung, T. C., Ngoc, D. T., The, P. T., Huynh, L. N., et al. (2019). A moving direction proposal to save energy consumption for mobile sink in wireless sensor network. In 21st International conference on advanced communication technology (ICACT) (pp. 107–110). IEEE. Hung, T. C., Ngoc, D. T., The, P. T., Huynh, L. N., et al. (2019). A moving direction proposal to save energy consumption for mobile sink in wireless sensor network. In 21st International conference on advanced communication technology (ICACT) (pp. 107–110). IEEE.
56.
go back to reference Ishmanov, F., Malik, A. S., & Kim, S. W. (2011). Energy consumption balancing (ECB) issues and mechanisms in wireless sensor networks (WSNS): A comprehensive overview. European Transactions on Telecommunications, 22, 151–167.CrossRef Ishmanov, F., Malik, A. S., & Kim, S. W. (2011). Energy consumption balancing (ECB) issues and mechanisms in wireless sensor networks (WSNS): A comprehensive overview. European Transactions on Telecommunications, 22, 151–167.CrossRef
57.
go back to reference Ishmanov, F., Malik, A. S., & Kim, S. W. (2011). Energy consumption balancing (ECB) issues and mechanisms in wireless sensor networks (WSNS): A comprehensive overview. European Transactions on Telecommunications, 22(4), 151–167.CrossRef Ishmanov, F., Malik, A. S., & Kim, S. W. (2011). Energy consumption balancing (ECB) issues and mechanisms in wireless sensor networks (WSNS): A comprehensive overview. European Transactions on Telecommunications, 22(4), 151–167.CrossRef
58.
go back to reference Jan, N., Javaid, N., Javaid, Q., Alrajeh, N., Alam, M., Khan, Z. A., et al. (2017). A balanced energy-consuming and hole-alleviating algorithm for wireless sensor networks. IEEE Access, 5, 6134–6150.CrossRef Jan, N., Javaid, N., Javaid, Q., Alrajeh, N., Alam, M., Khan, Z. A., et al. (2017). A balanced energy-consuming and hole-alleviating algorithm for wireless sensor networks. IEEE Access, 5, 6134–6150.CrossRef
59.
go back to reference Jarry, A., Leone, P., Nikoletseas, S., & Rolim, J. (2011). Optimal data gathering paths and energy-balance mechanisms in wireless networks. Ad Hoc Networks, 9(6), 1036–1048.CrossRef Jarry, A., Leone, P., Nikoletseas, S., & Rolim, J. (2011). Optimal data gathering paths and energy-balance mechanisms in wireless networks. Ad Hoc Networks, 9(6), 1036–1048.CrossRef
60.
go back to reference Jarry, A., Leone, P., Powell, O., & Rolim, J. (2006). An optimal data propagation algorithm for maximizing the lifespan of sensor networks. In Distributed computing in sensor systems (DCOSS) (pp. 405–421). Jarry, A., Leone, P., Powell, O., & Rolim, J. (2006). An optimal data propagation algorithm for maximizing the lifespan of sensor networks. In Distributed computing in sensor systems (DCOSS) (pp. 405–421).
61.
go back to reference Jha, V., Verma, S., Prakash, N., & Gupta, G. (2018). Corona based optimal node deployment distribution in wireless sensor networks. Wireless Personal Communications, 102(1), 325–354.CrossRef Jha, V., Verma, S., Prakash, N., & Gupta, G. (2018). Corona based optimal node deployment distribution in wireless sensor networks. Wireless Personal Communications, 102(1), 325–354.CrossRef
62.
go back to reference Jia, Y., Ji, K., & Liang, K. (2018). A unequal multiple hops clustering algorithm for wireless sensor networks. Procedia Computer Science, 131, 959–963.CrossRef Jia, Y., Ji, K., & Liang, K. (2018). A unequal multiple hops clustering algorithm for wireless sensor networks. Procedia Computer Science, 131, 959–963.CrossRef
63.
go back to reference Jin, N., Chen, K., & Gu, T. (2012). Energy balanced data collection in wireless sensor networks. In 20th IEEE international conference on network protocols (ICNP) (pp. 1–10). Jin, N., Chen, K., & Gu, T. (2012). Energy balanced data collection in wireless sensor networks. In 20th IEEE international conference on network protocols (ICNP) (pp. 1–10).
64.
go back to reference Kabakulak, B. (2019). Sensor and sink placement, scheduling and routing algorithms for connected coverage of wireless sensor networks. Ad Hoc Networks, 86, 83–102.CrossRef Kabakulak, B. (2019). Sensor and sink placement, scheduling and routing algorithms for connected coverage of wireless sensor networks. Ad Hoc Networks, 86, 83–102.CrossRef
65.
go back to reference Kafi, M. A., Challal, Y., Djenouri, D., Doudou, M., Bouabdallah, A., & Badache, N. (2013). A study of wireless sensor networks for urban traffic monitoring: Applications and architectures. Procedia Computer Science, 19, 617–626.CrossRef Kafi, M. A., Challal, Y., Djenouri, D., Doudou, M., Bouabdallah, A., & Badache, N. (2013). A study of wireless sensor networks for urban traffic monitoring: Applications and architectures. Procedia Computer Science, 19, 617–626.CrossRef
66.
go back to reference Karimi-Bidhendi, S., Guo, J., & Jafarkhani, H. (2019). Using quantization to deploy heterogeneous nodes in two-tier wireless sensor networks. In IEEE international symposium on information theory (ISIT) (pp. 1502–1506). IEEE. Karimi-Bidhendi, S., Guo, J., & Jafarkhani, H. (2019). Using quantization to deploy heterogeneous nodes in two-tier wireless sensor networks. In IEEE international symposium on information theory (ISIT) (pp. 1502–1506). IEEE.
67.
go back to reference Kaur, R., & Sharma, M. (2011). An approach to design habitat monitoring system using sensor networks. International Journal of Soft Computing and Engineering (IJSCE), 1, 5–8. Kaur, R., & Sharma, M. (2011). An approach to design habitat monitoring system using sensor networks. International Journal of Soft Computing and Engineering (IJSCE), 1, 5–8.
68.
go back to reference Kaur, S., & Mahajan, R. (2018). Hybrid meta-heuristic optimization based energy efficient protocol for wireless sensor networks. Egyptian Informatics Journal, 19, 145–150.CrossRef Kaur, S., & Mahajan, R. (2018). Hybrid meta-heuristic optimization based energy efficient protocol for wireless sensor networks. Egyptian Informatics Journal, 19, 145–150.CrossRef
69.
go back to reference Khalily-Dermany, M., Nadjafi-Arani, M., & Doostali, S. (2019). Combining topology control and network coding to optimize lifetime in wireless-sensor networks. Computer Networks, 162, 106859.CrossRef Khalily-Dermany, M., Nadjafi-Arani, M., & Doostali, S. (2019). Combining topology control and network coding to optimize lifetime in wireless-sensor networks. Computer Networks, 162, 106859.CrossRef
70.
go back to reference Khan, A., Javaid, N., Sher, A., Abbasi, R. A., Ahmad, Z., & Ahmed, W. (2018). Load balancing and collision avoidance using opportunistic routing in wireless sensor networks. In IEEE 32nd international conference on advanced information networking and applications (AINA) (pp. 236–243). IEEE. Khan, A., Javaid, N., Sher, A., Abbasi, R. A., Ahmad, Z., & Ahmed, W. (2018). Load balancing and collision avoidance using opportunistic routing in wireless sensor networks. In IEEE 32nd international conference on advanced information networking and applications (AINA) (pp. 236–243). IEEE.
71.
go back to reference Khan, M. A., Javaid, N., Wadud, Z., Gull, S., Imran, M., & Nasr, K. (2017). Towards energy balancing in heterogeneous wireless sensor networks. In 13th International conference on wireless communications and mobile computing (IWCMC) (pp. 786–791). IEEE. Khan, M. A., Javaid, N., Wadud, Z., Gull, S., Imran, M., & Nasr, K. (2017). Towards energy balancing in heterogeneous wireless sensor networks. In 13th International conference on wireless communications and mobile computing (IWCMC) (pp. 786–791). IEEE.
72.
go back to reference Khan, T., Singh, K., Abdel-Basset, M., Long, H. V., Singh, S. P., Manjul, M., et al. (2019). A novel and comprehensive trust estimation clustering based approach for large scale wireless sensor networks. IEEE Access, 7, 58221–58240.CrossRef Khan, T., Singh, K., Abdel-Basset, M., Long, H. V., Singh, S. P., Manjul, M., et al. (2019). A novel and comprehensive trust estimation clustering based approach for large scale wireless sensor networks. IEEE Access, 7, 58221–58240.CrossRef
73.
go back to reference Khanmirza, H. (2017). Mitigating energy hole problem with power control in heterogeneous sensor networks. In Iranian conference on electrical engineering (ICEE) (pp. 736–741). IEEE. Khanmirza, H. (2017). Mitigating energy hole problem with power control in heterogeneous sensor networks. In Iranian conference on electrical engineering (ICEE) (pp. 736–741). IEEE.
74.
go back to reference Kim, H. Y. (2016). An energy-efficient load balancing scheme to extend lifetime in wireless sensor networks. Cluster Computing, 19(1), 279–283.CrossRef Kim, H. Y. (2016). An energy-efficient load balancing scheme to extend lifetime in wireless sensor networks. Cluster Computing, 19(1), 279–283.CrossRef
75.
go back to reference Kim, H. Y., & Kim, J. (2017). An energy-efficient balancing scheme in wireless sensor networks. Wireless Personal Communications, 94(1), 17–29.CrossRef Kim, H. Y., & Kim, J. (2017). An energy-efficient balancing scheme in wireless sensor networks. Wireless Personal Communications, 94(1), 17–29.CrossRef
76.
go back to reference Ko, J., Lim, J. H., Chen, Y., Musvaloiu-E, R., Terzis, A., Masson, G. M., et al. (2010). MEDiSN: Medical emergency detection in sensor networks. ACM Transactions on Embedded Computing Systems (TECS), 10(1), 11.CrossRef Ko, J., Lim, J. H., Chen, Y., Musvaloiu-E, R., Terzis, A., Masson, G. M., et al. (2010). MEDiSN: Medical emergency detection in sensor networks. ACM Transactions on Embedded Computing Systems (TECS), 10(1), 11.CrossRef
77.
go back to reference Koley, I., & Samanta, T. (2018). Mobile sink based data collection for energy efficient coordination in wireless sensor network using cooperative game model. Telecommunication Systems, 71, 377–396.CrossRef Koley, I., & Samanta, T. (2018). Mobile sink based data collection for energy efficient coordination in wireless sensor network using cooperative game model. Telecommunication Systems, 71, 377–396.CrossRef
78.
go back to reference Kulshrestha, J., & Mishra, M. (2017). An adaptive energy balanced and energy efficient approach for data gathering in wireless sensor networks. Ad Hoc Networks, 54, 130–146.CrossRef Kulshrestha, J., & Mishra, M. (2017). An adaptive energy balanced and energy efficient approach for data gathering in wireless sensor networks. Ad Hoc Networks, 54, 130–146.CrossRef
79.
go back to reference Kulshrestha, J., & Mishra, M. K. (2018). Energy balanced data gathering approaches in wireless sensor networks using mixed-hop communication. Computing, 100, 1033–1058.CrossRef Kulshrestha, J., & Mishra, M. K. (2018). Energy balanced data gathering approaches in wireless sensor networks using mixed-hop communication. Computing, 100, 1033–1058.CrossRef
80.
go back to reference Kumar, S., & Kim, H. (2019). Energy efficient scheduling in wireless sensor networks for periodic data gathering. IEEE Access, 7, 11410–11426.CrossRef Kumar, S., & Kim, H. (2019). Energy efficient scheduling in wireless sensor networks for periodic data gathering. IEEE Access, 7, 11410–11426.CrossRef
81.
go back to reference Leone, P., Nikoletseas, S., & Rolim, J. (2010). Stochastic models and adaptive algorithms for energy balance in sensor networks. Theory of Computing Systems, 47(2), 433–453.CrossRef Leone, P., Nikoletseas, S., & Rolim, J. (2010). Stochastic models and adaptive algorithms for energy balance in sensor networks. Theory of Computing Systems, 47(2), 433–453.CrossRef
82.
go back to reference Leone, P., Nikoletseas, S., & Rolim, J. D. (2011). Energy-balanced data propagation in wireless sensor networks, chap. 16 (pp. 481–513). Berlin: Springer. Leone, P., Nikoletseas, S., & Rolim, J. D. (2011). Energy-balanced data propagation in wireless sensor networks, chap. 16 (pp. 481–513). Berlin: Springer.
83.
go back to reference Li, F., Yang, H., Zou, Y., Yu, D., & Yu, J. (2019). Joint optimization of routing and storage node deployment in heterogeneous wireless sensor networks towards reliable data storage. In International conference on wireless algorithms, systems, and applications (pp. 162–174). Berlin: Springer. Li, F., Yang, H., Zou, Y., Yu, D., & Yu, J. (2019). Joint optimization of routing and storage node deployment in heterogeneous wireless sensor networks towards reliable data storage. In International conference on wireless algorithms, systems, and applications (pp. 162–174). Berlin: Springer.
84.
go back to reference Li, X., Li, D., Wan, J., Vasilakos, A. V., Lai, C. F., & Wang, S. (2017). A review of industrial wireless networks in the context of industry 4.0. Wireless Networks, 23(1), 23–41.CrossRef Li, X., Li, D., Wan, J., Vasilakos, A. V., Lai, C. F., & Wang, S. (2017). A review of industrial wireless networks in the context of industry 4.0. Wireless Networks, 23(1), 23–41.CrossRef
85.
go back to reference Lindsey, S., & Raghavendra, C. S. (2002). PEGASIS: Power-efficient gathering in sensor information systems. Aerospace Conference Proceedings, 3, 1125–1130. Lindsey, S., & Raghavendra, C. S. (2002). PEGASIS: Power-efficient gathering in sensor information systems. Aerospace Conference Proceedings, 3, 1125–1130.
86.
go back to reference Liu, F., & Chang, Y. (2019). An energy aware adaptive kernel density estimation approach to unequal clustering in wireless sensor networks. IEEE Access, 7, 40569–40580.CrossRef Liu, F., & Chang, Y. (2019). An energy aware adaptive kernel density estimation approach to unequal clustering in wireless sensor networks. IEEE Access, 7, 40569–40580.CrossRef
87.
go back to reference Liu, T., Gu, T., Jin, N., & Zhu, Y. (2017). A mixed transmission strategy to achieve energy balancing in Wireless sensor networks. IEEE Transactions on Wireless Communications, 16(4), 2111–2122.CrossRef Liu, T., Gu, T., Jin, N., & Zhu, Y. (2017). A mixed transmission strategy to achieve energy balancing in Wireless sensor networks. IEEE Transactions on Wireless Communications, 16(4), 2111–2122.CrossRef
88.
go back to reference Liu, T., Peng, J., Yang, J., Chen, G., & Xu, W. (2017). Avoidance of energy hole problem based on feedback mechanism for Heterogeneous sensor networks. International Journal of Distributed Sensor Networks, 13(6), 1550147717713625. Liu, T., Peng, J., Yang, J., Chen, G., & Xu, W. (2017). Avoidance of energy hole problem based on feedback mechanism for Heterogeneous sensor networks. International Journal of Distributed Sensor Networks, 13(6), 1550147717713625.
89.
go back to reference Liu, X. (2016). A novel transmission range adjustment strategy for energy hole Avoiding in wireless sensor networks. Journal of Network and Computer Applications, 67, 43–52.CrossRef Liu, X. (2016). A novel transmission range adjustment strategy for energy hole Avoiding in wireless sensor networks. Journal of Network and Computer Applications, 67, 43–52.CrossRef
90.
go back to reference Liu, X., Zhu, R., Anjum, A., Wang, J., Zhang, H., & Ma, M. (2020). Intelligent data fusion algorithm based on hybrid delay-aware Adaptive clustering in wireless sensor networks. Future Generation Computer Systems, 104, 1–14.CrossRef Liu, X., Zhu, R., Anjum, A., Wang, J., Zhang, H., & Ma, M. (2020). Intelligent data fusion algorithm based on hybrid delay-aware Adaptive clustering in wireless sensor networks. Future Generation Computer Systems, 104, 1–14.CrossRef
91.
go back to reference Liu, Z., Xiu, D., & Guo, W. (2005). An energy-balanced model for data transmission in sensor networks. In 62nd IEEE vehicular technology conference (Vol. 4, pp. 2332–2336). Liu, Z., Xiu, D., & Guo, W. (2005). An energy-balanced model for data transmission in sensor networks. In 62nd IEEE vehicular technology conference (Vol. 4, pp. 2332–2336).
92.
go back to reference Mann, P. S., & Singh, S. (2019). Improved artificial bee colony metaheuristic for energy-efficient clustering in wireless sensor networks. Artificial Intelligence Review, 51(3), 329–354.CrossRef Mann, P. S., & Singh, S. (2019). Improved artificial bee colony metaheuristic for energy-efficient clustering in wireless sensor networks. Artificial Intelligence Review, 51(3), 329–354.CrossRef
93.
go back to reference Mehra, P. S., Doja, M., & Alam, B. (2019). Zonal based approach for clustering in heterogeneous WSN. International Journal of Information Technology, 11(3), 507–515.CrossRef Mehra, P. S., Doja, M., & Alam, B. (2019). Zonal based approach for clustering in heterogeneous WSN. International Journal of Information Technology, 11(3), 507–515.CrossRef
94.
go back to reference Mir, Z. H., & Ko, Y. B. (2020). Self-adaptive neighbor discovery in wireless sensor networks with sectored-antennas. Computer Standards & Interfaces, 70, 103427.CrossRef Mir, Z. H., & Ko, Y. B. (2020). Self-adaptive neighbor discovery in wireless sensor networks with sectored-antennas. Computer Standards & Interfaces, 70, 103427.CrossRef
95.
go back to reference Mishra, R., Jha, V., Tripathi, R. K., & Sharma, A. K. (2018). Corona based node distribution scheme targeting energy balancing in wireless sensor networks for the sensors having limited sensing range. Wireless Networks, 26, 879–896.CrossRef Mishra, R., Jha, V., Tripathi, R. K., & Sharma, A. K. (2018). Corona based node distribution scheme targeting energy balancing in wireless sensor networks for the sensors having limited sensing range. Wireless Networks, 26, 879–896.CrossRef
96.
go back to reference Mitra, R., & Sharma, S. (2018). Proactive data routing using controlled mobility of a mobile sink in wireless sensor networks. Computers & Electrical Engineering, 70, 21–36.CrossRef Mitra, R., & Sharma, S. (2018). Proactive data routing using controlled mobility of a mobile sink in wireless sensor networks. Computers & Electrical Engineering, 70, 21–36.CrossRef
97.
go back to reference Mosavvar, I., & Ghaffari, A. (2019). Data aggregation in wireless sensor networks using firefly algorithm. Wireless Personal Communications, 104(1), 307–324.CrossRef Mosavvar, I., & Ghaffari, A. (2019). Data aggregation in wireless sensor networks using firefly algorithm. Wireless Personal Communications, 104(1), 307–324.CrossRef
98.
go back to reference Moussa, N., Hamidi-Alaoui, Z., & El Alaoui, A. E. B. (2020). ECRP: An energy-aware cluster-based routing protocol for wireless sensor networks. Wireless Networks, 26, 2915–2928.CrossRef Moussa, N., Hamidi-Alaoui, Z., & El Alaoui, A. E. B. (2020). ECRP: An energy-aware cluster-based routing protocol for wireless sensor networks. Wireless Networks, 26, 2915–2928.CrossRef
99.
go back to reference Mukherjee, S., Amin, R., & Biswas, G. (2019). Design of routing protocol for multi-sink based wireless sensor networks. Wireless Networks, 25(7), 4331–4347.CrossRef Mukherjee, S., Amin, R., & Biswas, G. (2019). Design of routing protocol for multi-sink based wireless sensor networks. Wireless Networks, 25(7), 4331–4347.CrossRef
100.
go back to reference Natarajan, M., & Subramanian, S. (2019). A cross-layer design: Energy efficient multilevel dynamic feedback scheduling in wireless sensor networks using deadline aware active time quantum for environmental monitoring. International Journal of Electronics, 106(1), 87–108.CrossRef Natarajan, M., & Subramanian, S. (2019). A cross-layer design: Energy efficient multilevel dynamic feedback scheduling in wireless sensor networks using deadline aware active time quantum for environmental monitoring. International Journal of Electronics, 106(1), 87–108.CrossRef
101.
go back to reference Nguyen, K. V., Le Nguyen, P., Vu, Q. H., & Van Do, T. (2017). An energy efficient and load balanced distributed routing scheme for wireless sensor networks with holes. Journal of Systems and Software, 123, 92–105.CrossRef Nguyen, K. V., Le Nguyen, P., Vu, Q. H., & Van Do, T. (2017). An energy efficient and load balanced distributed routing scheme for wireless sensor networks with holes. Journal of Systems and Software, 123, 92–105.CrossRef
102.
go back to reference Nikoletseas, S. (2010). On the energy balance problem in distributed sensor networks. Computer Science Review, 4(2), 65–79.CrossRef Nikoletseas, S. (2010). On the energy balance problem in distributed sensor networks. Computer Science Review, 4(2), 65–79.CrossRef
103.
go back to reference Pan, J. S., Dao, T. K., et al. (2019). A compact bat algorithm for unequal clustering in wireless sensor networks. Applied Sciences, 9(10), 1973.CrossRef Pan, J. S., Dao, T. K., et al. (2019). A compact bat algorithm for unequal clustering in wireless sensor networks. Applied Sciences, 9(10), 1973.CrossRef
104.
go back to reference Papachary, B., Venkatanaga, A. M., & Kalpana, G. (2020). A TDMA based energy efficient unequal clustering protocol for wireless sensor network using PSO. In Recent trends and advances in artificial intelligence and internet of things (pp. 119–124). Berlin: Springer. Papachary, B., Venkatanaga, A. M., & Kalpana, G. (2020). A TDMA based energy efficient unequal clustering protocol for wireless sensor network using PSO. In Recent trends and advances in artificial intelligence and internet of things (pp. 119–124). Berlin: Springer.
105.
go back to reference Patil, M., & Sharma, C. (2018). Energy-efficient packet routing model for wireless sensor network. In Advances in electronics, communication and computing (pp. 341–350). Berlin: Springer. Patil, M., & Sharma, C. (2018). Energy-efficient packet routing model for wireless sensor network. In Advances in electronics, communication and computing (pp. 341–350). Berlin: Springer.
106.
go back to reference Peng, Y., Al-Hazemi, F., Boutaba, R., Tong, F., Hwang, I. S., & Youn, C. H. (2017). Enhancing energy efficiency via cooperative MIMO in wireless sensor networks: State of the art and future research directions. IEEE Communications Magazine, 55(11), 47–53.CrossRef Peng, Y., Al-Hazemi, F., Boutaba, R., Tong, F., Hwang, I. S., & Youn, C. H. (2017). Enhancing energy efficiency via cooperative MIMO in wireless sensor networks: State of the art and future research directions. IEEE Communications Magazine, 55(11), 47–53.CrossRef
107.
go back to reference Pottie, G. J., & Kaiser, W. J. (2000). Wireless integrated network sensors. Communications of the ACM, 43(5), 51–58.CrossRef Pottie, G. J., & Kaiser, W. J. (2000). Wireless integrated network sensors. Communications of the ACM, 43(5), 51–58.CrossRef
108.
go back to reference Poveda-García, M., Oliva-Sánchez, J., Sanchez-Iborra, R., Cañete-Rebenaque, D., & Gomez-Tornero, J. L. (2019). Dynamic wireless power transfer for cost-effective wireless sensor networks using frequency-scanned beaming. IEEE Access, 7, 8081–8094.CrossRef Poveda-García, M., Oliva-Sánchez, J., Sanchez-Iborra, R., Cañete-Rebenaque, D., & Gomez-Tornero, J. L. (2019). Dynamic wireless power transfer for cost-effective wireless sensor networks using frequency-scanned beaming. IEEE Access, 7, 8081–8094.CrossRef
109.
go back to reference Powell, O., Leone, P., & Rolim, J. (2007). Energy optimal data propagation in wireless sensor networks. Journal of Parallel and Distributed Computing, 67(3), 302–317.CrossRef Powell, O., Leone, P., & Rolim, J. (2007). Energy optimal data propagation in wireless sensor networks. Journal of Parallel and Distributed Computing, 67(3), 302–317.CrossRef
110.
go back to reference Qin, X., Zhang, B., & Li, C. (2019). Localized topology control and on-demand power-efficient routing for wireless ad hoc and sensor networks. Peer-to-Peer Networking and Applications, 12(1), 189–208.CrossRef Qin, X., Zhang, B., & Li, C. (2019). Localized topology control and on-demand power-efficient routing for wireless ad hoc and sensor networks. Peer-to-Peer Networking and Applications, 12(1), 189–208.CrossRef
111.
go back to reference Raghunathan, V., Schurgers, C., Park, S., & Srivastava, M. B. (2002). Energy-aware wireless microsensor networks. IEEE Signal Processing Magazine, 19(2), 40–50.CrossRef Raghunathan, V., Schurgers, C., Park, S., & Srivastava, M. B. (2002). Energy-aware wireless microsensor networks. IEEE Signal Processing Magazine, 19(2), 40–50.CrossRef
112.
go back to reference Rahman, A. A., Kahar, M. N. M., & Din, W. I. S. W. (2019). Distance based thresholds for 2-tier relay nodes selection in WSN. Computer Standards & Interfaces, 66, 103359.CrossRef Rahman, A. A., Kahar, M. N. M., & Din, W. I. S. W. (2019). Distance based thresholds for 2-tier relay nodes selection in WSN. Computer Standards & Interfaces, 66, 103359.CrossRef
113.
go back to reference Rajawat, A., & Singhal, P. (2019). Design and implementation of a dual-band rectifier antenna for efficient RF energy harvesting in wireless sensor networks. Journal of Circuits, Systems and Computers, 28(02), 1950034.CrossRef Rajawat, A., & Singhal, P. (2019). Design and implementation of a dual-band rectifier antenna for efficient RF energy harvesting in wireless sensor networks. Journal of Circuits, Systems and Computers, 28(02), 1950034.CrossRef
114.
go back to reference Rao, V., & Kar, S. (2019). Energy efficient routing in wireless sensor networks via circulating operator packets. Wireless Networks, 25(6), 3063–3080.CrossRef Rao, V., & Kar, S. (2019). Energy efficient routing in wireless sensor networks via circulating operator packets. Wireless Networks, 25(6), 3063–3080.CrossRef
115.
go back to reference Rashid, B., & Rehmani, M. H. (2016). Applications of wireless sensor networks for urban areas: A survey. Journal of Network and Computer Applications, 60, 192–219.CrossRef Rashid, B., & Rehmani, M. H. (2016). Applications of wireless sensor networks for urban areas: A survey. Journal of Network and Computer Applications, 60, 192–219.CrossRef
116.
go back to reference Ren, W., Hao, K., Li, C., Du, X., Liu, Y., & Wang, L. (2019). Fuzzy probabilistic topology control algorithm for underwater wireless sensor networks. In International conference on artificial intelligence for communications and networks (pp. 435–444). Berlin: Springer. Ren, W., Hao, K., Li, C., Du, X., Liu, Y., & Wang, L. (2019). Fuzzy probabilistic topology control algorithm for underwater wireless sensor networks. In International conference on artificial intelligence for communications and networks (pp. 435–444). Berlin: Springer.
117.
go back to reference Rost, P., & Fettweis, G. (2010) . On the transmission-computation-energy tradeoff in wireless and fixed networks. In: GLOBECOM Workshops (GC Wkshps), 2010 IEEE, pp. 1394–1399 Rost, P., & Fettweis, G. (2010) . On the transmission-computation-energy tradeoff in wireless and fixed networks. In: GLOBECOM Workshops (GC Wkshps), 2010 IEEE, pp. 1394–1399
118.
go back to reference Sabale, K., & Mini, S. (2019). Anchor node path planning for localization in wireless sensor networks. Wireless Networks, 25(1), 49–61.CrossRef Sabale, K., & Mini, S. (2019). Anchor node path planning for localization in wireless sensor networks. Wireless Networks, 25(1), 49–61.CrossRef
119.
go back to reference Sadeghi, F., & Avokh, A. (2020). Load-balanced data gathering in internet of things using an energy-aware cuckoo-search algorithm. International Journal of Communication Systems, 33(9), e4385.CrossRef Sadeghi, F., & Avokh, A. (2020). Load-balanced data gathering in internet of things using an energy-aware cuckoo-search algorithm. International Journal of Communication Systems, 33(9), e4385.CrossRef
120.
go back to reference Saginbekov, S., & Jhumka, A. (2017). Many-to-many data aggregation scheduling in wireless sensor networks with two sinks. Computer Networks, 123, 184–199.CrossRef Saginbekov, S., & Jhumka, A. (2017). Many-to-many data aggregation scheduling in wireless sensor networks with two sinks. Computer Networks, 123, 184–199.CrossRef
121.
go back to reference Samara, G., & Aljaidi, M. (2019). Efficient energy, cost reduction, and QoS based routing protocol for wireless sensor networks. arXiv preprint arXiv:1903.09636. Samara, G., & Aljaidi, M. (2019). Efficient energy, cost reduction, and QoS based routing protocol for wireless sensor networks. arXiv preprint arXiv:​1903.​09636.
122.
go back to reference Sarkar, A., & Murugan, T. S. (2019). Cluster head selection for energy efficient and delay-less routing in wireless sensor network. Wireless Networks, 25(1), 303–320.CrossRef Sarkar, A., & Murugan, T. S. (2019). Cluster head selection for energy efficient and delay-less routing in wireless sensor network. Wireless Networks, 25(1), 303–320.CrossRef
123.
go back to reference Selvi, M., Velvizhy, P., Ganapathy, S., Nehemiah, H. K., & Kannan, A. (2019). A rule based delay constrained energy efficient routing technique for wireless sensor networks. Cluster Computing, 22(5), 10839–10848.CrossRef Selvi, M., Velvizhy, P., Ganapathy, S., Nehemiah, H. K., & Kannan, A. (2019). A rule based delay constrained energy efficient routing technique for wireless sensor networks. Cluster Computing, 22(5), 10839–10848.CrossRef
124.
go back to reference Shallahuddin, A. A., Kadir, M. F. A., Mohamed, M. A., Abidin, A. F. A., Usop, N. S. M., Zakaria, Z. A., et al. (2020). An enhanced adaptive duty cycle scheme for optimum data transmission in wireless sensor network. In Information science and applications (pp. 33–40). Berlin: Springer. Shallahuddin, A. A., Kadir, M. F. A., Mohamed, M. A., Abidin, A. F. A., Usop, N. S. M., Zakaria, Z. A., et al. (2020). An enhanced adaptive duty cycle scheme for optimum data transmission in wireless sensor network. In Information science and applications (pp. 33–40). Berlin: Springer.
125.
go back to reference Shankar, T., Eappen, G., Sahani, S., Rajesh, A., & Mageshvaran, R. (2019). Integrated cuckoo and monkey search algorithm for energy efficient clustering in wireless sensor networks. In Innovations in power and advanced computing technologies (i-PACT) (Vol. 1, pp. 1–4). IEEE. Shankar, T., Eappen, G., Sahani, S., Rajesh, A., & Mageshvaran, R. (2019). Integrated cuckoo and monkey search algorithm for energy efficient clustering in wireless sensor networks. In Innovations in power and advanced computing technologies (i-PACT) (Vol. 1, pp. 1–4). IEEE.
126.
go back to reference Sharma, S., Bhatia, V., & Gupta, A. (2017). Noncoherent IR-UWB receiver using massive antenna arrays for wireless sensor networks. IEEE Sensors Letters, 2(1), 1–4.CrossRef Sharma, S., Bhatia, V., & Gupta, A. (2017). Noncoherent IR-UWB receiver using massive antenna arrays for wireless sensor networks. IEEE Sensors Letters, 2(1), 1–4.CrossRef
127.
go back to reference Sharma, S., Patel, A. K., Mitra, R., & Jauhari, R. (2018). Reinforcement based optimal routing algorithm for multiple sink based wireless sensor networks. In Progress in intelligent computing techniques: Theory, practice, and applications (pp. 481–490). Berlin: Springer. Sharma, S., Patel, A. K., Mitra, R., & Jauhari, R. (2018). Reinforcement based optimal routing algorithm for multiple sink based wireless sensor networks. In Progress in intelligent computing techniques: Theory, practice, and applications (pp. 481–490). Berlin: Springer.
128.
go back to reference Sharma, S., Puthal, D., Tazeen, S., Prasad, M., & Zomaya, A. Y. (2017). MSGR: A mode-switched grid-based sustainable routing protocol for wireless sensor networks. IEEE Access, 5, 19864–19875.CrossRef Sharma, S., Puthal, D., Tazeen, S., Prasad, M., & Zomaya, A. Y. (2017). MSGR: A mode-switched grid-based sustainable routing protocol for wireless sensor networks. IEEE Access, 5, 19864–19875.CrossRef
129.
go back to reference Singh, S. P., & Sharma, S. (2015). A survey on cluster based routing protocols in wireless sensor networks. Procedia Computer Science, 45, 687–695.CrossRef Singh, S. P., & Sharma, S. (2015). A survey on cluster based routing protocols in wireless sensor networks. Procedia Computer Science, 45, 687–695.CrossRef
130.
go back to reference So, J., & Byun, H. (2017). Load-balanced opportunistic routing for duty-cycled wireless sensor networks. IEEE Transactions on Mobile Computing, 16(7), 1940–1955.CrossRef So, J., & Byun, H. (2017). Load-balanced opportunistic routing for duty-cycled wireless sensor networks. IEEE Transactions on Mobile Computing, 16(7), 1940–1955.CrossRef
131.
go back to reference Soua, R., & Minet, P. (2011). A survey on energy efficient techniques in wireless sensor networks. In 4th Joint IFIP wireless and mobile networking conference (WMNC 2011) (pp. 1–9). Soua, R., & Minet, P. (2011). A survey on energy efficient techniques in wireless sensor networks. In 4th Joint IFIP wireless and mobile networking conference (WMNC 2011) (pp. 1–9).
132.
go back to reference Souai, S., Diallo, A., Ribero, J. M., & Aguili, T. (2020). Design of compact superdirective and reconfigurable array antenna associated with non-foster elements for IoT. In International workshop on antenna technology (iWAT) (pp. 1–4). IEEE. Souai, S., Diallo, A., Ribero, J. M., & Aguili, T. (2020). Design of compact superdirective and reconfigurable array antenna associated with non-foster elements for IoT. In International workshop on antenna technology (iWAT) (pp. 1–4). IEEE.
133.
go back to reference Stojkoska, B. L. R., & Trivodaliev, K. V. (2017). A review of internet of things for smart home: Challenges and solutions. Journal of Cleaner Production, 140, 1454–1464.CrossRef Stojkoska, B. L. R., & Trivodaliev, K. V. (2017). A review of internet of things for smart home: Challenges and solutions. Journal of Cleaner Production, 140, 1454–1464.CrossRef
134.
go back to reference Suryadevara, N. K. (2017). Wireless sensor sequence data model for smart home and IoT data analytics. In Proceedings of the first international conference on computational intelligence and informatics (pp. 441–447). Berlin: Springer. Suryadevara, N. K. (2017). Wireless sensor sequence data model for smart home and IoT data analytics. In Proceedings of the first international conference on computational intelligence and informatics (pp. 441–447). Berlin: Springer.
135.
go back to reference Suzuki, M., Saruwatari, S., Kurata, N., & Morikawa, H. (2007). A high-density earthquake monitoring system using wireless sensor networks. In 5th International conference on embedded networked sensor systems (pp. 373–374). Suzuki, M., Saruwatari, S., Kurata, N., & Morikawa, H. (2007). A high-density earthquake monitoring system using wireless sensor networks. In 5th International conference on embedded networked sensor systems (pp. 373–374).
136.
go back to reference Tabibi, S., & Ghaffari, A. (2019). Energy-efficient routing mechanism for mobile sink in wireless sensor networks using particle swarm optimization algorithm. Wireless Personal Communications, 104(1), 199–216.CrossRef Tabibi, S., & Ghaffari, A. (2019). Energy-efficient routing mechanism for mobile sink in wireless sensor networks using particle swarm optimization algorithm. Wireless Personal Communications, 104(1), 199–216.CrossRef
137.
go back to reference Tan, X., Zhao, H., Han, G., Zhang, W., & Zhu, T. (2019). QSDN-wise: A new QoS-based routing protocol for software-defined wireless sensor networks. IEEE Access, 7, 61070–61082.CrossRef Tan, X., Zhao, H., Han, G., Zhang, W., & Zhu, T. (2019). QSDN-wise: A new QoS-based routing protocol for software-defined wireless sensor networks. IEEE Access, 7, 61070–61082.CrossRef
138.
go back to reference Thirukrishna, J., Karthik, S., & Arunachalam, V. (2018). Revamp energy efficiency in homogeneous wireless sensor networks using optimized radio energy algorithm (OREA) and power-aware distance source routing protocol. Future Generation Computer Systems, 81, 331–339.CrossRef Thirukrishna, J., Karthik, S., & Arunachalam, V. (2018). Revamp energy efficiency in homogeneous wireless sensor networks using optimized radio energy algorithm (OREA) and power-aware distance source routing protocol. Future Generation Computer Systems, 81, 331–339.CrossRef
139.
go back to reference Tran, H., Åkerberg, J., Björkman, M., & Tran, H. V. (2019). RF energy harvesting: An analysis of wireless sensor networks for reliable communication. Wireless Networks, 25(1), 185–199.CrossRef Tran, H., Åkerberg, J., Björkman, M., & Tran, H. V. (2019). RF energy harvesting: An analysis of wireless sensor networks for reliable communication. Wireless Networks, 25(1), 185–199.CrossRef
140.
go back to reference Wang, J., Cao, J., Sherratt, R. S., & Park, J. H. (2017). An improved ant colony optimization-based approach with mobile sink for wireless sensor networks. The Journal of Supercomputing, 74, 6633–6645.CrossRef Wang, J., Cao, J., Sherratt, R. S., & Park, J. H. (2017). An improved ant colony optimization-based approach with mobile sink for wireless sensor networks. The Journal of Supercomputing, 74, 6633–6645.CrossRef
141.
go back to reference Wang, J., Niu, Y., Cho, J., & Lee, S. (2007). Analysis of energy consumption in direct transmission and multi-hop transmission for wireless sensor networks. In Third international IEEE conference on signal-image technologies and internet-based system (pp. 275–280). IEEE. Wang, J., Niu, Y., Cho, J., & Lee, S. (2007). Analysis of energy consumption in direct transmission and multi-hop transmission for wireless sensor networks. In Third international IEEE conference on signal-image technologies and internet-based system (pp. 275–280). IEEE.
142.
go back to reference Wang, X., Wu, X., & Zhang, X. (2017). Optimizing opportunistic routing in asynchronous wireless sensor networks. IEEE Communications Letters, 21(10), 2302–2305.CrossRef Wang, X., Wu, X., & Zhang, X. (2017). Optimizing opportunistic routing in asynchronous wireless sensor networks. IEEE Communications Letters, 21(10), 2302–2305.CrossRef
143.
go back to reference Wang, Y., & Tan, H. (2016). Distributed probabilistic routing for sensor network lifetime optimization. Wireless Networks, 22(3), 975–989.CrossRef Wang, Y., & Tan, H. (2016). Distributed probabilistic routing for sensor network lifetime optimization. Wireless Networks, 22(3), 975–989.CrossRef
144.
go back to reference Winkler, M., Street, M., Tuchs, K. D., & Wrona, K. (2012). Wireless sensor networks for military purposes. In Autonomous sensor networks (pp. 365–394). Berlin: Springer. Winkler, M., Street, M., Tuchs, K. D., & Wrona, K. (2012). Wireless sensor networks for military purposes. In Autonomous sensor networks (pp. 365–394). Berlin: Springer.
145.
go back to reference Winkler, M., Tuchs, K. D., Hughes, K., & Barclay, G. (2008). Theoretical and practical aspects of military wireless sensor networks. Journal of Telecommunications and Information Technology, 2, 37–45. Winkler, M., Tuchs, K. D., Hughes, K., & Barclay, G. (2008). Theoretical and practical aspects of military wireless sensor networks. Journal of Telecommunications and Information Technology, 2, 37–45.
146.
go back to reference Woznowski, P., Burrows, A., Diethe, T., Fafoutis, X., Hall, J., Hannuna, S., et al. (2017). Sphere: A sensor platform for healthcare in a residential environment. In Designing, developing, and facilitating smart cities (pp. 315–333). Berlin: Springer. Woznowski, P., Burrows, A., Diethe, T., Fafoutis, X., Hall, J., Hannuna, S., et al. (2017). Sphere: A sensor platform for healthcare in a residential environment. In Designing, developing, and facilitating smart cities (pp. 315–333). Berlin: Springer.
147.
go back to reference Xin, H., & Liu, X. (2017). Energy-balanced transmission with accurate distances for strip-based wireless sensor networks. IEEE Access, 5(99), 16193–16204.CrossRef Xin, H., & Liu, X. (2017). Energy-balanced transmission with accurate distances for strip-based wireless sensor networks. IEEE Access, 5(99), 16193–16204.CrossRef
148.
go back to reference Xiu-wu, Y., Hao, Y., Yong, L., & Ren-rong, X. (2020). A clustering routing algorithm based on wolf pack algorithm for heterogeneous wireless sensor networks. Computer Networks, 167, 106994.CrossRef Xiu-wu, Y., Hao, Y., Yong, L., & Ren-rong, X. (2020). A clustering routing algorithm based on wolf pack algorithm for heterogeneous wireless sensor networks. Computer Networks, 167, 106994.CrossRef
149.
go back to reference Xue, Y., & Li, B. (2001). A location-aided power-aware routing protocol in mobile ad hoc networks. In Global telecommunications conference (GLOBECOM’01) (Vol. 5, pp. 2837–2841). Xue, Y., & Li, B. (2001). A location-aided power-aware routing protocol in mobile ad hoc networks. In Global telecommunications conference (GLOBECOM’01) (Vol. 5, pp. 2837–2841).
150.
go back to reference Yahiaoui, S., Omar, M., Bouabdallah, A., Natalizio, E., & Challal, Y. (2018). An energy efficient and QoS aware routing protocol for wireless sensor and actuator networks. AEU-International Journal of Electronics and Communications, 83, 193–203.CrossRef Yahiaoui, S., Omar, M., Bouabdallah, A., Natalizio, E., & Challal, Y. (2018). An energy efficient and QoS aware routing protocol for wireless sensor and actuator networks. AEU-International Journal of Electronics and Communications, 83, 193–203.CrossRef
151.
go back to reference Yetgin, H., Cheung, K. T. K., El-Hajjar, M., & Hanzo, L. H. (2017). A survey of network lifetime maximization techniques in wireless sensor networks. IEEE Communications Surveys & Tutorials, 19(2), 828–854.CrossRef Yetgin, H., Cheung, K. T. K., El-Hajjar, M., & Hanzo, L. H. (2017). A survey of network lifetime maximization techniques in wireless sensor networks. IEEE Communications Surveys & Tutorials, 19(2), 828–854.CrossRef
152.
go back to reference Ying, X., Wang, R., Yu, M., Yu, R., Shi, W., & Wang, J. (2019). Nonuniform node distribution using adaptive poisson disk for wireless sensor networks. In IEEE wireless communications and networking conference (WCNC) (pp. 1–7). IEEE. Ying, X., Wang, R., Yu, M., Yu, R., Shi, W., & Wang, J. (2019). Nonuniform node distribution using adaptive poisson disk for wireless sensor networks. In IEEE wireless communications and networking conference (WCNC) (pp. 1–7). IEEE.
153.
go back to reference Yousefi, M. H. N., Kavian, Y. S., & Mahmoudi, A. (2019). RTMCH: real-time multichannel MAC for wireless video sensor networks. Multimedia Tools and Applications, 78(6), 7803–7818.CrossRef Yousefi, M. H. N., Kavian, Y. S., & Mahmoudi, A. (2019). RTMCH: real-time multichannel MAC for wireless video sensor networks. Multimedia Tools and Applications, 78(6), 7803–7818.CrossRef
154.
go back to reference Yu, C. M., & Ku, M. L. (2018). Joint hybrid transmission and adaptive routing for lifetime extension of WSNS. IEEE Access, 6, 21658–21667.CrossRef Yu, C. M., & Ku, M. L. (2018). Joint hybrid transmission and adaptive routing for lifetime extension of WSNS. IEEE Access, 6, 21658–21667.CrossRef
155.
go back to reference Yu, C. M., Ku, M. L., & Chang, C. W. (2017). Hybrid multi-hop/single-hop opportunistic transmission of WSNS. In IEEE international conference on consumer electronics-Taiwan (ICCE-TW) (pp. 111–112). IEEE. Yu, C. M., Ku, M. L., & Chang, C. W. (2017). Hybrid multi-hop/single-hop opportunistic transmission of WSNS. In IEEE international conference on consumer electronics-Taiwan (ICCE-TW) (pp. 111–112). IEEE.
156.
go back to reference Zafar, S., Bashir, A., & Chaudhry, S. A. (2019). Mobility-aware hierarchical clustering in mobile wireless sensor networks. IEEE Access, 7, 20394–20403.CrossRef Zafar, S., Bashir, A., & Chaudhry, S. A. (2019). Mobility-aware hierarchical clustering in mobile wireless sensor networks. IEEE Access, 7, 20394–20403.CrossRef
157.
go back to reference Zhang, D., Chen, Z., Zhou, H., Chen, L., & Shen, X. S. (2016). Energy-balanced cooperative transmission based on relay selection and power control in energy harvesting wireless sensor network. Computer Networks, 104, 189–197.CrossRef Zhang, D., Chen, Z., Zhou, H., Chen, L., & Shen, X. S. (2016). Energy-balanced cooperative transmission based on relay selection and power control in energy harvesting wireless sensor network. Computer Networks, 104, 189–197.CrossRef
158.
go back to reference Zhang, H., & Shen, H. (2009). Balancing energy consumption to maximize network lifetime in data-gathering sensor networks. IEEE Transactions on Parallel and Distributed Systems, 20(10), 1526–1539.CrossRef Zhang, H., & Shen, H. (2009). Balancing energy consumption to maximize network lifetime in data-gathering sensor networks. IEEE Transactions on Parallel and Distributed Systems, 20(10), 1526–1539.CrossRef
159.
go back to reference Zhang, H., Shen, H., & Tan, Y. (2007). Optimal energy balanced data gathering in wireless sensor networks. In IEEE international parallel and distributed processing symposium (IPDPS) (pp. 1–10). Zhang, H., Shen, H., & Tan, Y. (2007). Optimal energy balanced data gathering in wireless sensor networks. In IEEE international parallel and distributed processing symposium (IPDPS) (pp. 1–10).
160.
go back to reference Zhang, J., Zhao, E., Zhang, Q., & Liu, J. (2007). Energy-balanced solution for cluster-based wireless sensor networks with mixed communication modes. In International workshop on cross layer design (IWCLD’07) (pp. 29–32). Zhang, J., Zhao, E., Zhang, Q., & Liu, J. (2007). Energy-balanced solution for cluster-based wireless sensor networks with mixed communication modes. In International workshop on cross layer design (IWCLD’07) (pp. 29–32).
161.
go back to reference Zhang, X., Tao, L., Yan, F., & Sung, D. K. (2019). Shortest-latency opportunistic routing in asynchronous wireless sensor networks with independent duty-cycling. IEEE Transactions on Mobile Computing, 19, 711–723.CrossRef Zhang, X., Tao, L., Yan, F., & Sung, D. K. (2019). Shortest-latency opportunistic routing in asynchronous wireless sensor networks with independent duty-cycling. IEEE Transactions on Mobile Computing, 19, 711–723.CrossRef
162.
go back to reference Zhao, Y., Li, Z., Hao, B., & Shi, J. (2019). Sensor selection for TDOA-based localization in wireless sensor networks with non-line-of-sight condition. IEEE Transactions on Vehicular Technology, 68(10), 9935–9950.CrossRef Zhao, Y., Li, Z., Hao, B., & Shi, J. (2019). Sensor selection for TDOA-based localization in wireless sensor networks with non-line-of-sight condition. IEEE Transactions on Vehicular Technology, 68(10), 9935–9950.CrossRef
163.
go back to reference Zhixin, L., Xinping, G., & Cailian, C. (2008). Energy-efficient optimal scheme based on mixed routing in wireless sensor networks. In 27th Chinese control conference, CCC 2008 (pp. 311–315). IEEE. Zhixin, L., Xinping, G., & Cailian, C. (2008). Energy-efficient optimal scheme based on mixed routing in wireless sensor networks. In 27th Chinese control conference, CCC 2008 (pp. 311–315). IEEE.
164.
go back to reference Zhou, F., Trajcevski, G., Tamassia, R., Avci, B., Khokhar, A., & Scheuermann, P. (2017). Bypassing holes in sensor networks: Load-balance vs. latency. Ad Hoc Networks, 61, 16–32.CrossRef Zhou, F., Trajcevski, G., Tamassia, R., Avci, B., Khokhar, A., & Scheuermann, P. (2017). Bypassing holes in sensor networks: Load-balance vs. latency. Ad Hoc Networks, 61, 16–32.CrossRef
165.
go back to reference Zhu, J., Zou, Y., & Zheng, B. (2017). Physical-layer security and reliability challenges for industrial wireless sensor networks. IEEE Access, 5, 5313–5320. Zhu, J., Zou, Y., & Zheng, B. (2017). Physical-layer security and reliability challenges for industrial wireless sensor networks. IEEE Access, 5, 5313–5320.
166.
go back to reference Zuhairy, R. M., & Al Zamil, M. G. (2018). Energy-efficient load balancing in wireless sensor network: An application of multinomial regression analysis. International Journal of Distributed Sensor Networks, 14(3), 1550147718764641.CrossRef Zuhairy, R. M., & Al Zamil, M. G. (2018). Energy-efficient load balancing in wireless sensor network: An application of multinomial regression analysis. International Journal of Distributed Sensor Networks, 14(3), 1550147718764641.CrossRef
Metadata
Title
Energy balanced data gathering approaches, issues and research directions
Authors
Jagrati Kulshrestha
Manas Kumar Mishra
Publication date
10-09-2020
Publisher
Springer US
Published in
Telecommunication Systems / Issue 2/2021
Print ISSN: 1018-4864
Electronic ISSN: 1572-9451
DOI
https://doi.org/10.1007/s11235-020-00714-5

Other articles of this Issue 2/2021

Telecommunication Systems 2/2021 Go to the issue