Skip to main content
Erschienen in: Telecommunication Systems 2/2021

10.09.2020

Energy balanced data gathering approaches, issues and research directions

verfasst von: Jagrati Kulshrestha, Manas Kumar Mishra

Erschienen in: Telecommunication Systems | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wireless sensor networks (WSNs) and Internet of Things domain comprise of numerous small sized battery powered sensor nodes. Energy efficiency and energy balancing are very important aspects from the perspective of increasing the lifespan of WSN. Energy balancing is more important in case of multi-hop networks with many-to-one communication pattern as the nodes which are closer to the sink have more relay load than the other nodes. In this work, we present a detailed discussion on the different energy balancing approaches with a detailed analysis of each. The discussion is further accompanied by a detailed analytical comparison of the approaches. Further, this study presents a detailed analytical discussion and comparative study of the different energy balancing schemes based on mixed-hop transmission. Mixed transmissions, where each node selects between cheap hop-by-hop transmission and costly direct transmissions, is a reasonable approach to achieve balanced energy consumption. Besides, the paper also throws some light on the various issues and challenges present in the domain of mixed-hop energy balancing. It also mentions few research directions which can be focused upon to carry further research in this domain.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Adasme, P. (2019). Optimal sub-tree scheduling for wireless sensor networks with partial coverage. Computer Standards & Interfaces, 61, 20–35.CrossRef Adasme, P. (2019). Optimal sub-tree scheduling for wireless sensor networks with partial coverage. Computer Standards & Interfaces, 61, 20–35.CrossRef
2.
Zurück zum Zitat Agrawal, D., & Pandey, S. (2018). FUCA: Fuzzy-based unequal clustering algorithm to prolong the lifetime of wireless sensor networks. International Journal of Communication Systems, 31(2), e3448.CrossRef Agrawal, D., & Pandey, S. (2018). FUCA: Fuzzy-based unequal clustering algorithm to prolong the lifetime of wireless sensor networks. International Journal of Communication Systems, 31(2), e3448.CrossRef
3.
Zurück zum Zitat Aguilar-Gonzalez, R., Ramos, V., Prieto-Guerrero, A., Cardenas-Juarez, M., Rico, U. P., & Stevens-Navarro, E. (2018). A low-complexity antenna selection algorithm for cooperative sensor networks. In IEEE Canadian conference on electrical & computer engineering (CCECE) (pp. 1–4). IEEE Aguilar-Gonzalez, R., Ramos, V., Prieto-Guerrero, A., Cardenas-Juarez, M., Rico, U. P., & Stevens-Navarro, E. (2018). A low-complexity antenna selection algorithm for cooperative sensor networks. In IEEE Canadian conference on electrical & computer engineering (CCECE) (pp. 1–4). IEEE
4.
Zurück zum Zitat Ahmed, Y. E., Adjallah, K. H., Stock, R., Kacem, I., & Babiker, S. F. (2018). NDSC based methods for maximizing the lifespan of randomly deployed wireless sensor networks for infrastructures monitoring. Computers & Industrial Engineering, 115, 17–25.CrossRef Ahmed, Y. E., Adjallah, K. H., Stock, R., Kacem, I., & Babiker, S. F. (2018). NDSC based methods for maximizing the lifespan of randomly deployed wireless sensor networks for infrastructures monitoring. Computers & Industrial Engineering, 115, 17–25.CrossRef
5.
Zurück zum Zitat Akkaya, K., & Younis, M. (2005). A survey on routing protocols for wireless sensor networks. Ad Hoc Networks, 3(3), 325–349.CrossRef Akkaya, K., & Younis, M. (2005). A survey on routing protocols for wireless sensor networks. Ad Hoc Networks, 3(3), 325–349.CrossRef
6.
Zurück zum Zitat Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422.CrossRef Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422.CrossRef
7.
Zurück zum Zitat Althunibat, S., Abu-Al-Aish, A., Shehab, W. F. A., & Alsawalmeh, W. H. (2016). Auction-based data gathering scheme for wireless sensor networks. IEEE Communications Letters, 20(6), 1223–1226.CrossRef Althunibat, S., Abu-Al-Aish, A., Shehab, W. F. A., & Alsawalmeh, W. H. (2016). Auction-based data gathering scheme for wireless sensor networks. IEEE Communications Letters, 20(6), 1223–1226.CrossRef
8.
Zurück zum Zitat Althunibat, S., & Mesleh, R. (2018). Index modulation for cluster-based wireless sensor networks. IEEE Transactions on Vehicular Technology, 67(8), 6943–6950.CrossRef Althunibat, S., & Mesleh, R. (2018). Index modulation for cluster-based wireless sensor networks. IEEE Transactions on Vehicular Technology, 67(8), 6943–6950.CrossRef
9.
Zurück zum Zitat Anastasi, G., Conti, M., Di Francesco, M., & Passarella, A. (2009). Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks, 7(3), 537–568.CrossRef Anastasi, G., Conti, M., Di Francesco, M., & Passarella, A. (2009). Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks, 7(3), 537–568.CrossRef
10.
Zurück zum Zitat Anwit, R., & Jana, P. K. (2020). An efficient clustering based data collection using mobile sink in wireless sensor networks. In Proceedings of the 21st international conference on distributed computing and networking (pp. 1–5). Anwit, R., & Jana, P. K. (2020). An efficient clustering based data collection using mobile sink in wireless sensor networks. In Proceedings of the 21st international conference on distributed computing and networking (pp. 1–5).
11.
Zurück zum Zitat Bakkali, A., Pelegrí-Sebastiá, J., Sogorb, T., Llario, V., & Bou-Escriva, A. (2016). A dual-band antenna for RF energy harvesting systems in wireless sensor networks. Journal of Sensors, 2016, 1–8. Bakkali, A., Pelegrí-Sebastiá, J., Sogorb, T., Llario, V., & Bou-Escriva, A. (2016). A dual-band antenna for RF energy harvesting systems in wireless sensor networks. Journal of Sensors, 2016, 1–8.
12.
Zurück zum Zitat Bhagyalakshmi, L., Suman, S. K., & Murugan, K. (2012). Corona based clustering with mixed routing and data aggregation to avoid energy hole problem in wireless sensor network. In Fourth international conference on advanced computing (ICoAC) (pp. 1–8). IEEE. Bhagyalakshmi, L., Suman, S. K., & Murugan, K. (2012). Corona based clustering with mixed routing and data aggregation to avoid energy hole problem in wireless sensor network. In Fourth international conference on advanced computing (ICoAC) (pp. 1–8). IEEE.
13.
Zurück zum Zitat Bhattacharjee, S., & Agarwal, K. (2017). Energy efficient multiple sink placement in wireless sensor networks. In 4th International conference on networking, systems and security (NSysS) (pp. 1–7). IEEE. Bhattacharjee, S., & Agarwal, K. (2017). Energy efficient multiple sink placement in wireless sensor networks. In 4th International conference on networking, systems and security (NSysS) (pp. 1–7). IEEE.
14.
Zurück zum Zitat Bidoki, N. H., Baghdadabad, M. B., Sukthankar, G., & Turgut, D. (2018). Joint value of information and energy aware sleep scheduling in wireless sensor networks: A linear programming approach. In IEEE international conference on communications (ICC) (pp. 1–6). IEEE. Bidoki, N. H., Baghdadabad, M. B., Sukthankar, G., & Turgut, D. (2018). Joint value of information and energy aware sleep scheduling in wireless sensor networks: A linear programming approach. In IEEE international conference on communications (ICC) (pp. 1–6). IEEE.
15.
Zurück zum Zitat Boukerche, A., Efstathiou, D., Nikoletseas, S., & Raptopoulos, C. (2011). Close-to-optimal energy balanced data propagation via limited, local network density information. In 14th ACM international conference on modeling, analysis and simulation of wireless and mobile systems (pp. 85–92). Boukerche, A., Efstathiou, D., Nikoletseas, S., & Raptopoulos, C. (2011). Close-to-optimal energy balanced data propagation via limited, local network density information. In 14th ACM international conference on modeling, analysis and simulation of wireless and mobile systems (pp. 85–92).
16.
Zurück zum Zitat Boukerche, A., Efstathiou, D., Nikoletseas, S., & Raptopoulos, C. (2012). Exploiting limited density information towards near-optimal energy balanced data propagation. Computer Communications, 35(18), 2187–2200.CrossRef Boukerche, A., Efstathiou, D., Nikoletseas, S., & Raptopoulos, C. (2012). Exploiting limited density information towards near-optimal energy balanced data propagation. Computer Communications, 35(18), 2187–2200.CrossRef
17.
Zurück zum Zitat Ceriotti, M., Mottola, L., Picco, G. P., Murphy, A. L., Guna, S., Corra, M., et al. (2009). Monitoring heritage buildings with wireless sensor networks: The torre aquila deployment. In 8th International conference on information processing in sensor networks (IPSN) (pp. 277–288). Ceriotti, M., Mottola, L., Picco, G. P., Murphy, A. L., Guna, S., Corra, M., et al. (2009). Monitoring heritage buildings with wireless sensor networks: The torre aquila deployment. In 8th International conference on information processing in sensor networks (IPSN) (pp. 277–288).
18.
Zurück zum Zitat Chang, C. Y., & Chang, H. R. (2008). Energy-aware node placement, topology control and MAC scheduling for wireless sensor networks. Computer Networks, 52(11), 2189–2204.CrossRef Chang, C. Y., & Chang, H. R. (2008). Energy-aware node placement, topology control and MAC scheduling for wireless sensor networks. Computer Networks, 52(11), 2189–2204.CrossRef
19.
Zurück zum Zitat Chau, A. C. Y., Dawson, J. F., & Mitchell, P. D. (2019). Medium access and power control protocol for wireless sensor networks with directional antennas. In IEEE international conference on information and communication technology (ICTC), October 16–19, 2019. IEEE. Chau, A. C. Y., Dawson, J. F., & Mitchell, P. D. (2019). Medium access and power control protocol for wireless sensor networks with directional antennas. In IEEE international conference on information and communication technology (ICTC), October 16–19, 2019. IEEE.
20.
Zurück zum Zitat Chawla, A., Patel, A., Jagannatham, A. K., & Varshney, P. K. (2019). Distributed detection in massive MIMO wireless sensor networks under perfect and imperfect CSI. IEEE Transactions on Signal Processing, 67(15), 4055–4068.CrossRef Chawla, A., Patel, A., Jagannatham, A. K., & Varshney, P. K. (2019). Distributed detection in massive MIMO wireless sensor networks under perfect and imperfect CSI. IEEE Transactions on Signal Processing, 67(15), 4055–4068.CrossRef
21.
Zurück zum Zitat Chen, F., Guo, L., & Chen, C. (2012). A survey on energy management in the wireless sensor networks. IERI Procedia, 3, 60–66.CrossRef Chen, F., Guo, L., & Chen, C. (2012). A survey on energy management in the wireless sensor networks. IERI Procedia, 3, 60–66.CrossRef
22.
Zurück zum Zitat Chen, T. S., Du, W. Q., & Chen, J. J. (2019). Energy-efficient data collection by mobile sink in wireless sensor networks. In IEEE wireless communications and networking conference (WCNC) (pp. 1–6). IEEE. Chen, T. S., Du, W. Q., & Chen, J. J. (2019). Energy-efficient data collection by mobile sink in wireless sensor networks. In IEEE wireless communications and networking conference (WCNC) (pp. 1–6). IEEE.
23.
Zurück zum Zitat Chen, W. S., Cheng, C. M., Liao, B. Y., Chang, Y. L., & Wang, H. Y. (2018). Triple-band slot antenna array for energy harvesting for wireless sensor networks. Sensors and Materials, 30(3), 587–594.CrossRef Chen, W. S., Cheng, C. M., Liao, B. Y., Chang, Y. L., & Wang, H. Y. (2018). Triple-band slot antenna array for energy harvesting for wireless sensor networks. Sensors and Materials, 30(3), 587–594.CrossRef
24.
Zurück zum Zitat Chugh, A., & Panda, S. (2018). Strengthening clustering through relay nodes in sensor networks. Procedia Computer Science, 132, 689–695.CrossRef Chugh, A., & Panda, S. (2018). Strengthening clustering through relay nodes in sensor networks. Procedia Computer Science, 132, 689–695.CrossRef
25.
Zurück zum Zitat Ciccia, S., Giordanengo, G., & Vecchi, G. (2019). Energy efficiency in IoT networks: Integration of reconfigurable antennas in ultra low-power radio platforms based on system-on-chip. IEEE Internet of Things Journal, 6(4), 6800–6810.CrossRef Ciccia, S., Giordanengo, G., & Vecchi, G. (2019). Energy efficiency in IoT networks: Integration of reconfigurable antennas in ultra low-power radio platforms based on system-on-chip. IEEE Internet of Things Journal, 6(4), 6800–6810.CrossRef
26.
Zurück zum Zitat Cui, Z., Cao, Y., Cai, X., Cai, J., & Chen, J. (2018). Optimal leach protocol with modified bat algorithm for big data sensing systems in internet of things. Journal of Parallel and Distributed Computing, 132, 217–229.CrossRef Cui, Z., Cao, Y., Cai, X., Cai, J., & Chen, J. (2018). Optimal leach protocol with modified bat algorithm for big data sensing systems in internet of things. Journal of Parallel and Distributed Computing, 132, 217–229.CrossRef
27.
Zurück zum Zitat Deng, R., He, S., & Chen, J. (2018). An online algorithm for data collection by multiple sinks in wireless-sensor networks. IEEE Transactions on Control of Network Systems, 5(1), 93–104.CrossRef Deng, R., He, S., & Chen, J. (2018). An online algorithm for data collection by multiple sinks in wireless-sensor networks. IEEE Transactions on Control of Network Systems, 5(1), 93–104.CrossRef
28.
Zurück zum Zitat Dihissou, A., Diallo, A., Le Thuc, P., & Staraj, R. (2018). Directive and reconfigurable loaded antenna array for wireless sensor networks. Progress in Electromagnetics Research, 84, 103–117.CrossRef Dihissou, A., Diallo, A., Le Thuc, P., & Staraj, R. (2018). Directive and reconfigurable loaded antenna array for wireless sensor networks. Progress in Electromagnetics Research, 84, 103–117.CrossRef
29.
Zurück zum Zitat Din, S., Paul, A., Ahmad, A., & Kim, J. H. (2019). Energy efficient topology management scheme based on clustering technique for software defined wireless sensor network. Peer-to-Peer Networking and Applications, 12(2), 348–356.CrossRef Din, S., Paul, A., Ahmad, A., & Kim, J. H. (2019). Energy efficient topology management scheme based on clustering technique for software defined wireless sensor network. Peer-to-Peer Networking and Applications, 12(2), 348–356.CrossRef
30.
Zurück zum Zitat Dohare, U., Lobiyal, D., & Kumar, S. (2014). Energy balanced model for lifetime maximization in randomly distributed wireless sensor networks. Wireless Personal Communications, 78(1), 407–428.CrossRef Dohare, U., Lobiyal, D., & Kumar, S. (2014). Energy balanced model for lifetime maximization in randomly distributed wireless sensor networks. Wireless Personal Communications, 78(1), 407–428.CrossRef
31.
Zurück zum Zitat Dong, Q., Yu, L., Lu, H., Hong, Z., & Chen, Y. (2010). Design of building monitoring systems based on wireless sensor networks. Wireless Sensor Network, 2(9), 703–709.CrossRef Dong, Q., Yu, L., Lu, H., Hong, Z., & Chen, Y. (2010). Design of building monitoring systems based on wireless sensor networks. Wireless Sensor Network, 2(9), 703–709.CrossRef
32.
Zurück zum Zitat Du, G., Niu, Y., & Zhao, J. (2017). A relay node deployment strategy for energy-balance using a group gaussian distribution. International Journal of Sensor Networks, 24(4), 222–229.CrossRef Du, G., Niu, Y., & Zhao, J. (2017). A relay node deployment strategy for energy-balance using a group gaussian distribution. International Journal of Sensor Networks, 24(4), 222–229.CrossRef
33.
Zurück zum Zitat Du, Y., Wang, Z., Gong, J., Xu, N., & Hu, X. (2019). Cross-layer optimized energy-balanced topology control algorithm for WSNS. Journal of Sensors, 2019, 1–11. Du, Y., Wang, Z., Gong, J., Xu, N., & Hu, X. (2019). Cross-layer optimized energy-balanced topology control algorithm for WSNS. Journal of Sensors, 2019, 1–11.
34.
Zurück zum Zitat Efthymiou, C., Nikoletseas, S., & Rolim, J. (2006). Energy balanced data propagation in wireless sensor networks. Wireless Networks, 12(6), 691–707.CrossRef Efthymiou, C., Nikoletseas, S., & Rolim, J. (2006). Energy balanced data propagation in wireless sensor networks. Wireless Networks, 12(6), 691–707.CrossRef
35.
Zurück zum Zitat El Fissaoui, M., Beni-Hssane, A., & Saadi, M. (2019). Energy efficient and fault tolerant distributed algorithm for data aggregation in wireless sensor networks. Journal of Ambient Intelligence and Humanized Computing, 10(2), 569–578.CrossRef El Fissaoui, M., Beni-Hssane, A., & Saadi, M. (2019). Energy efficient and fault tolerant distributed algorithm for data aggregation in wireless sensor networks. Journal of Ambient Intelligence and Humanized Computing, 10(2), 569–578.CrossRef
36.
Zurück zum Zitat Erdun, Z., Juan, Y., Peihe, T., & Hao, L. (2009). An energy-balanced data transmission scheme for clustered wireless sensor networks. In 5th International conference on wireless communications, networking and mobile computing (WiCom ’09) (Vol. 5, pp. 1–4). Erdun, Z., Juan, Y., Peihe, T., & Hao, L. (2009). An energy-balanced data transmission scheme for clustered wireless sensor networks. In 5th International conference on wireless communications, networking and mobile computing (WiCom ’09) (Vol. 5, pp. 1–4).
37.
Zurück zum Zitat Faragardi, H. R., Vahabi, M., Fotouhi, H., Nolte, T., & Fahringer, T. (2018). An efficient placement of sinks and SDN controller nodes for optimizing the design cost of industrial IoT systems. Software: Practice and Experience, 48(10), 1893–1919. Faragardi, H. R., Vahabi, M., Fotouhi, H., Nolte, T., & Fahringer, T. (2018). An efficient placement of sinks and SDN controller nodes for optimizing the design cost of industrial IoT systems. Software: Practice and Experience, 48(10), 1893–1919.
38.
Zurück zum Zitat Gammarano, N., Schandy, J., & Steinfeld, L. (2020). Reducing neighbor discovery time in sensor networks with directional antennas using dynamic contention resolution. In Design automation for embedded systems (pp. 1–25). Gammarano, N., Schandy, J., & Steinfeld, L. (2020). Reducing neighbor discovery time in sensor networks with directional antennas using dynamic contention resolution. In Design automation for embedded systems (pp. 1–25).
39.
Zurück zum Zitat Gara, F., Saad, L. B., Ayed, R. B., & Tourancheau, B. (2019). A new scheme for RPL to handle mobility in wireless sensor networks. International Journal of Ad Hoc and Ubiquitous Computing, 30(3), 173–186.CrossRef Gara, F., Saad, L. B., Ayed, R. B., & Tourancheau, B. (2019). A new scheme for RPL to handle mobility in wireless sensor networks. International Journal of Ad Hoc and Ubiquitous Computing, 30(3), 173–186.CrossRef
40.
Zurück zum Zitat Gharaei, N., Al-Otaibi, Y. D., Butt, S. A., Sahar, G., & Rahim, S. (2019). Energy-efficient and coverage-guaranteed unequal-sized clustering for wireless sensor networks. IEEE Access, 7, 157883–157891.CrossRef Gharaei, N., Al-Otaibi, Y. D., Butt, S. A., Sahar, G., & Rahim, S. (2019). Energy-efficient and coverage-guaranteed unequal-sized clustering for wireless sensor networks. IEEE Access, 7, 157883–157891.CrossRef
41.
Zurück zum Zitat Gope, P., Das, A. K., Kumar, N., & Cheng, Y. (2019). Lightweight and physically secure anonymous mutual authentication protocol for real-time data access in industrial wireless sensor networks. IEEE Transactions on Industrial Informatics, 15(9), 4957–4968.CrossRef Gope, P., Das, A. K., Kumar, N., & Cheng, Y. (2019). Lightweight and physically secure anonymous mutual authentication protocol for real-time data access in industrial wireless sensor networks. IEEE Transactions on Industrial Informatics, 15(9), 4957–4968.CrossRef
42.
Zurück zum Zitat Guleria, K., & Verma, A. K. (2019). Meta-heuristic ant colony optimization based unequal clustering for wireless sensor network. Wireless Personal Communications, 105(3), 891–911.CrossRef Guleria, K., & Verma, A. K. (2019). Meta-heuristic ant colony optimization based unequal clustering for wireless sensor network. Wireless Personal Communications, 105(3), 891–911.CrossRef
43.
Zurück zum Zitat Guo, W., Liu, Z., & Wu, G. (2003). An energy-balanced transmission scheme for sensor networks. In Proceedings of the 1st international conference on embedded networked sensor systems (pp. 300–301). ACM. Guo, W., Liu, Z., & Wu, G. (2003). An energy-balanced transmission scheme for sensor networks. In Proceedings of the 1st international conference on embedded networked sensor systems (pp. 300–301). ACM.
44.
Zurück zum Zitat Guo, X., Leong, A. S., & Dey, S. (2017). Estimation in wireless sensor networks with security constraints. IEEE Transactions on Aerospace and Electronic Systems, 53(2), 544–561.CrossRef Guo, X., Leong, A. S., & Dey, S. (2017). Estimation in wireless sensor networks with security constraints. IEEE Transactions on Aerospace and Electronic Systems, 53(2), 544–561.CrossRef
45.
Zurück zum Zitat Gupta, G. P., & Saha, B. (2020). Load balanced clustering scheme using hybrid metaheuristic technique for mobile sink based wireless sensor networks. Journal of Ambient Intelligence and Humanized Computing. Gupta, G. P., & Saha, B. (2020). Load balanced clustering scheme using hybrid metaheuristic technique for mobile sink based wireless sensor networks. Journal of Ambient Intelligence and Humanized Computing.
46.
Zurück zum Zitat Gupta, V., & Doja, M. (2018). H-leach: Modified and efficient leach protocol for hybrid clustering scenario in wireless sensor networks. In Next-generation networks (pp. 399–408). Berlin: Springer. Gupta, V., & Doja, M. (2018). H-leach: Modified and efficient leach protocol for hybrid clustering scenario in wireless sensor networks. In Next-generation networks (pp. 399–408). Berlin: Springer.
47.
Zurück zum Zitat Guruprakash, B., Balasubramanian, C., & Sukumar, R. (2020). An approach by adopting multi-objective clustering and data collection along with node sleep scheduling for energy efficient and delay aware WSN. Peer-to-Peer Networking and Applications, 13(1), 304–319.CrossRef Guruprakash, B., Balasubramanian, C., & Sukumar, R. (2020). An approach by adopting multi-objective clustering and data collection along with node sleep scheduling for energy efficient and delay aware WSN. Peer-to-Peer Networking and Applications, 13(1), 304–319.CrossRef
48.
Zurück zum Zitat Halder, S., & Ghosal, A. (2017). Lifetime enhancement of wireless sensor networks by avoiding energy-holes with gaussian distribution. Telecommunication Systems, 64(1), 113–133.CrossRef Halder, S., & Ghosal, A. (2017). Lifetime enhancement of wireless sensor networks by avoiding energy-holes with gaussian distribution. Telecommunication Systems, 64(1), 113–133.CrossRef
49.
Zurück zum Zitat Hanh, N. T., Binh, H. T. T., Hoai, N. X., & Palaniswami, M. S. (2019). An efficient genetic algorithm for maximizing area coverage in wireless sensor networks. Information Sciences, 488, 58–75.CrossRef Hanh, N. T., Binh, H. T. T., Hoai, N. X., & Palaniswami, M. S. (2019). An efficient genetic algorithm for maximizing area coverage in wireless sensor networks. Information Sciences, 488, 58–75.CrossRef
50.
Zurück zum Zitat Hawbani, A., Wang, X., Al-Sharabi, Y. A., Ghannami, A., Kuhlani, H., & Karmoshi, S. (2018). Load-balanced opportunistic routing for asynchronous duty-cycled WSN. IEEE Transactions on Mobile Computing, 18(7), 1601–1615. Hawbani, A., Wang, X., Al-Sharabi, Y. A., Ghannami, A., Kuhlani, H., & Karmoshi, S. (2018). Load-balanced opportunistic routing for asynchronous duty-cycled WSN. IEEE Transactions on Mobile Computing, 18(7), 1601–1615.
51.
Zurück zum Zitat He, X., Fu, X., & Yang, Y. (2019). Energy-efficient trajectory planning algorithm based on multi-objective PSO for the mobile sink in wireless sensor networks. IEEE Access, 7, 176204–176217.CrossRef He, X., Fu, X., & Yang, Y. (2019). Energy-efficient trajectory planning algorithm based on multi-objective PSO for the mobile sink in wireless sensor networks. IEEE Access, 7, 176204–176217.CrossRef
52.
Zurück zum Zitat Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In 33rd Hawaii international conference on system sciences (HICSS ’00) (pp. 8020–8030). Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In 33rd Hawaii international conference on system sciences (HICSS ’00) (pp. 8020–8030).
53.
Zurück zum Zitat Holisaz, H., & Ling, Y. (2017). Antenna systems for wireless sensor devices. US Patent App. 14/883,432. Holisaz, H., & Ling, Y. (2017). Antenna systems for wireless sensor devices. US Patent App. 14/883,432.
54.
Zurück zum Zitat Hossain, A. (2017). Equal energy dissipation in wireless sensor network. AEU-International Journal of Electronics and Communications, 71, 192–196.CrossRef Hossain, A. (2017). Equal energy dissipation in wireless sensor network. AEU-International Journal of Electronics and Communications, 71, 192–196.CrossRef
55.
Zurück zum Zitat Hung, T. C., Ngoc, D. T., The, P. T., Huynh, L. N., et al. (2019). A moving direction proposal to save energy consumption for mobile sink in wireless sensor network. In 21st International conference on advanced communication technology (ICACT) (pp. 107–110). IEEE. Hung, T. C., Ngoc, D. T., The, P. T., Huynh, L. N., et al. (2019). A moving direction proposal to save energy consumption for mobile sink in wireless sensor network. In 21st International conference on advanced communication technology (ICACT) (pp. 107–110). IEEE.
56.
Zurück zum Zitat Ishmanov, F., Malik, A. S., & Kim, S. W. (2011). Energy consumption balancing (ECB) issues and mechanisms in wireless sensor networks (WSNS): A comprehensive overview. European Transactions on Telecommunications, 22, 151–167.CrossRef Ishmanov, F., Malik, A. S., & Kim, S. W. (2011). Energy consumption balancing (ECB) issues and mechanisms in wireless sensor networks (WSNS): A comprehensive overview. European Transactions on Telecommunications, 22, 151–167.CrossRef
57.
Zurück zum Zitat Ishmanov, F., Malik, A. S., & Kim, S. W. (2011). Energy consumption balancing (ECB) issues and mechanisms in wireless sensor networks (WSNS): A comprehensive overview. European Transactions on Telecommunications, 22(4), 151–167.CrossRef Ishmanov, F., Malik, A. S., & Kim, S. W. (2011). Energy consumption balancing (ECB) issues and mechanisms in wireless sensor networks (WSNS): A comprehensive overview. European Transactions on Telecommunications, 22(4), 151–167.CrossRef
58.
Zurück zum Zitat Jan, N., Javaid, N., Javaid, Q., Alrajeh, N., Alam, M., Khan, Z. A., et al. (2017). A balanced energy-consuming and hole-alleviating algorithm for wireless sensor networks. IEEE Access, 5, 6134–6150.CrossRef Jan, N., Javaid, N., Javaid, Q., Alrajeh, N., Alam, M., Khan, Z. A., et al. (2017). A balanced energy-consuming and hole-alleviating algorithm for wireless sensor networks. IEEE Access, 5, 6134–6150.CrossRef
59.
Zurück zum Zitat Jarry, A., Leone, P., Nikoletseas, S., & Rolim, J. (2011). Optimal data gathering paths and energy-balance mechanisms in wireless networks. Ad Hoc Networks, 9(6), 1036–1048.CrossRef Jarry, A., Leone, P., Nikoletseas, S., & Rolim, J. (2011). Optimal data gathering paths and energy-balance mechanisms in wireless networks. Ad Hoc Networks, 9(6), 1036–1048.CrossRef
60.
Zurück zum Zitat Jarry, A., Leone, P., Powell, O., & Rolim, J. (2006). An optimal data propagation algorithm for maximizing the lifespan of sensor networks. In Distributed computing in sensor systems (DCOSS) (pp. 405–421). Jarry, A., Leone, P., Powell, O., & Rolim, J. (2006). An optimal data propagation algorithm for maximizing the lifespan of sensor networks. In Distributed computing in sensor systems (DCOSS) (pp. 405–421).
61.
Zurück zum Zitat Jha, V., Verma, S., Prakash, N., & Gupta, G. (2018). Corona based optimal node deployment distribution in wireless sensor networks. Wireless Personal Communications, 102(1), 325–354.CrossRef Jha, V., Verma, S., Prakash, N., & Gupta, G. (2018). Corona based optimal node deployment distribution in wireless sensor networks. Wireless Personal Communications, 102(1), 325–354.CrossRef
62.
Zurück zum Zitat Jia, Y., Ji, K., & Liang, K. (2018). A unequal multiple hops clustering algorithm for wireless sensor networks. Procedia Computer Science, 131, 959–963.CrossRef Jia, Y., Ji, K., & Liang, K. (2018). A unequal multiple hops clustering algorithm for wireless sensor networks. Procedia Computer Science, 131, 959–963.CrossRef
63.
Zurück zum Zitat Jin, N., Chen, K., & Gu, T. (2012). Energy balanced data collection in wireless sensor networks. In 20th IEEE international conference on network protocols (ICNP) (pp. 1–10). Jin, N., Chen, K., & Gu, T. (2012). Energy balanced data collection in wireless sensor networks. In 20th IEEE international conference on network protocols (ICNP) (pp. 1–10).
64.
Zurück zum Zitat Kabakulak, B. (2019). Sensor and sink placement, scheduling and routing algorithms for connected coverage of wireless sensor networks. Ad Hoc Networks, 86, 83–102.CrossRef Kabakulak, B. (2019). Sensor and sink placement, scheduling and routing algorithms for connected coverage of wireless sensor networks. Ad Hoc Networks, 86, 83–102.CrossRef
65.
Zurück zum Zitat Kafi, M. A., Challal, Y., Djenouri, D., Doudou, M., Bouabdallah, A., & Badache, N. (2013). A study of wireless sensor networks for urban traffic monitoring: Applications and architectures. Procedia Computer Science, 19, 617–626.CrossRef Kafi, M. A., Challal, Y., Djenouri, D., Doudou, M., Bouabdallah, A., & Badache, N. (2013). A study of wireless sensor networks for urban traffic monitoring: Applications and architectures. Procedia Computer Science, 19, 617–626.CrossRef
66.
Zurück zum Zitat Karimi-Bidhendi, S., Guo, J., & Jafarkhani, H. (2019). Using quantization to deploy heterogeneous nodes in two-tier wireless sensor networks. In IEEE international symposium on information theory (ISIT) (pp. 1502–1506). IEEE. Karimi-Bidhendi, S., Guo, J., & Jafarkhani, H. (2019). Using quantization to deploy heterogeneous nodes in two-tier wireless sensor networks. In IEEE international symposium on information theory (ISIT) (pp. 1502–1506). IEEE.
67.
Zurück zum Zitat Kaur, R., & Sharma, M. (2011). An approach to design habitat monitoring system using sensor networks. International Journal of Soft Computing and Engineering (IJSCE), 1, 5–8. Kaur, R., & Sharma, M. (2011). An approach to design habitat monitoring system using sensor networks. International Journal of Soft Computing and Engineering (IJSCE), 1, 5–8.
68.
Zurück zum Zitat Kaur, S., & Mahajan, R. (2018). Hybrid meta-heuristic optimization based energy efficient protocol for wireless sensor networks. Egyptian Informatics Journal, 19, 145–150.CrossRef Kaur, S., & Mahajan, R. (2018). Hybrid meta-heuristic optimization based energy efficient protocol for wireless sensor networks. Egyptian Informatics Journal, 19, 145–150.CrossRef
69.
Zurück zum Zitat Khalily-Dermany, M., Nadjafi-Arani, M., & Doostali, S. (2019). Combining topology control and network coding to optimize lifetime in wireless-sensor networks. Computer Networks, 162, 106859.CrossRef Khalily-Dermany, M., Nadjafi-Arani, M., & Doostali, S. (2019). Combining topology control and network coding to optimize lifetime in wireless-sensor networks. Computer Networks, 162, 106859.CrossRef
70.
Zurück zum Zitat Khan, A., Javaid, N., Sher, A., Abbasi, R. A., Ahmad, Z., & Ahmed, W. (2018). Load balancing and collision avoidance using opportunistic routing in wireless sensor networks. In IEEE 32nd international conference on advanced information networking and applications (AINA) (pp. 236–243). IEEE. Khan, A., Javaid, N., Sher, A., Abbasi, R. A., Ahmad, Z., & Ahmed, W. (2018). Load balancing and collision avoidance using opportunistic routing in wireless sensor networks. In IEEE 32nd international conference on advanced information networking and applications (AINA) (pp. 236–243). IEEE.
71.
Zurück zum Zitat Khan, M. A., Javaid, N., Wadud, Z., Gull, S., Imran, M., & Nasr, K. (2017). Towards energy balancing in heterogeneous wireless sensor networks. In 13th International conference on wireless communications and mobile computing (IWCMC) (pp. 786–791). IEEE. Khan, M. A., Javaid, N., Wadud, Z., Gull, S., Imran, M., & Nasr, K. (2017). Towards energy balancing in heterogeneous wireless sensor networks. In 13th International conference on wireless communications and mobile computing (IWCMC) (pp. 786–791). IEEE.
72.
Zurück zum Zitat Khan, T., Singh, K., Abdel-Basset, M., Long, H. V., Singh, S. P., Manjul, M., et al. (2019). A novel and comprehensive trust estimation clustering based approach for large scale wireless sensor networks. IEEE Access, 7, 58221–58240.CrossRef Khan, T., Singh, K., Abdel-Basset, M., Long, H. V., Singh, S. P., Manjul, M., et al. (2019). A novel and comprehensive trust estimation clustering based approach for large scale wireless sensor networks. IEEE Access, 7, 58221–58240.CrossRef
73.
Zurück zum Zitat Khanmirza, H. (2017). Mitigating energy hole problem with power control in heterogeneous sensor networks. In Iranian conference on electrical engineering (ICEE) (pp. 736–741). IEEE. Khanmirza, H. (2017). Mitigating energy hole problem with power control in heterogeneous sensor networks. In Iranian conference on electrical engineering (ICEE) (pp. 736–741). IEEE.
74.
Zurück zum Zitat Kim, H. Y. (2016). An energy-efficient load balancing scheme to extend lifetime in wireless sensor networks. Cluster Computing, 19(1), 279–283.CrossRef Kim, H. Y. (2016). An energy-efficient load balancing scheme to extend lifetime in wireless sensor networks. Cluster Computing, 19(1), 279–283.CrossRef
75.
Zurück zum Zitat Kim, H. Y., & Kim, J. (2017). An energy-efficient balancing scheme in wireless sensor networks. Wireless Personal Communications, 94(1), 17–29.CrossRef Kim, H. Y., & Kim, J. (2017). An energy-efficient balancing scheme in wireless sensor networks. Wireless Personal Communications, 94(1), 17–29.CrossRef
76.
Zurück zum Zitat Ko, J., Lim, J. H., Chen, Y., Musvaloiu-E, R., Terzis, A., Masson, G. M., et al. (2010). MEDiSN: Medical emergency detection in sensor networks. ACM Transactions on Embedded Computing Systems (TECS), 10(1), 11.CrossRef Ko, J., Lim, J. H., Chen, Y., Musvaloiu-E, R., Terzis, A., Masson, G. M., et al. (2010). MEDiSN: Medical emergency detection in sensor networks. ACM Transactions on Embedded Computing Systems (TECS), 10(1), 11.CrossRef
77.
Zurück zum Zitat Koley, I., & Samanta, T. (2018). Mobile sink based data collection for energy efficient coordination in wireless sensor network using cooperative game model. Telecommunication Systems, 71, 377–396.CrossRef Koley, I., & Samanta, T. (2018). Mobile sink based data collection for energy efficient coordination in wireless sensor network using cooperative game model. Telecommunication Systems, 71, 377–396.CrossRef
78.
Zurück zum Zitat Kulshrestha, J., & Mishra, M. (2017). An adaptive energy balanced and energy efficient approach for data gathering in wireless sensor networks. Ad Hoc Networks, 54, 130–146.CrossRef Kulshrestha, J., & Mishra, M. (2017). An adaptive energy balanced and energy efficient approach for data gathering in wireless sensor networks. Ad Hoc Networks, 54, 130–146.CrossRef
79.
Zurück zum Zitat Kulshrestha, J., & Mishra, M. K. (2018). Energy balanced data gathering approaches in wireless sensor networks using mixed-hop communication. Computing, 100, 1033–1058.CrossRef Kulshrestha, J., & Mishra, M. K. (2018). Energy balanced data gathering approaches in wireless sensor networks using mixed-hop communication. Computing, 100, 1033–1058.CrossRef
80.
Zurück zum Zitat Kumar, S., & Kim, H. (2019). Energy efficient scheduling in wireless sensor networks for periodic data gathering. IEEE Access, 7, 11410–11426.CrossRef Kumar, S., & Kim, H. (2019). Energy efficient scheduling in wireless sensor networks for periodic data gathering. IEEE Access, 7, 11410–11426.CrossRef
81.
Zurück zum Zitat Leone, P., Nikoletseas, S., & Rolim, J. (2010). Stochastic models and adaptive algorithms for energy balance in sensor networks. Theory of Computing Systems, 47(2), 433–453.CrossRef Leone, P., Nikoletseas, S., & Rolim, J. (2010). Stochastic models and adaptive algorithms for energy balance in sensor networks. Theory of Computing Systems, 47(2), 433–453.CrossRef
82.
Zurück zum Zitat Leone, P., Nikoletseas, S., & Rolim, J. D. (2011). Energy-balanced data propagation in wireless sensor networks, chap. 16 (pp. 481–513). Berlin: Springer. Leone, P., Nikoletseas, S., & Rolim, J. D. (2011). Energy-balanced data propagation in wireless sensor networks, chap. 16 (pp. 481–513). Berlin: Springer.
83.
Zurück zum Zitat Li, F., Yang, H., Zou, Y., Yu, D., & Yu, J. (2019). Joint optimization of routing and storage node deployment in heterogeneous wireless sensor networks towards reliable data storage. In International conference on wireless algorithms, systems, and applications (pp. 162–174). Berlin: Springer. Li, F., Yang, H., Zou, Y., Yu, D., & Yu, J. (2019). Joint optimization of routing and storage node deployment in heterogeneous wireless sensor networks towards reliable data storage. In International conference on wireless algorithms, systems, and applications (pp. 162–174). Berlin: Springer.
84.
Zurück zum Zitat Li, X., Li, D., Wan, J., Vasilakos, A. V., Lai, C. F., & Wang, S. (2017). A review of industrial wireless networks in the context of industry 4.0. Wireless Networks, 23(1), 23–41.CrossRef Li, X., Li, D., Wan, J., Vasilakos, A. V., Lai, C. F., & Wang, S. (2017). A review of industrial wireless networks in the context of industry 4.0. Wireless Networks, 23(1), 23–41.CrossRef
85.
Zurück zum Zitat Lindsey, S., & Raghavendra, C. S. (2002). PEGASIS: Power-efficient gathering in sensor information systems. Aerospace Conference Proceedings, 3, 1125–1130. Lindsey, S., & Raghavendra, C. S. (2002). PEGASIS: Power-efficient gathering in sensor information systems. Aerospace Conference Proceedings, 3, 1125–1130.
86.
Zurück zum Zitat Liu, F., & Chang, Y. (2019). An energy aware adaptive kernel density estimation approach to unequal clustering in wireless sensor networks. IEEE Access, 7, 40569–40580.CrossRef Liu, F., & Chang, Y. (2019). An energy aware adaptive kernel density estimation approach to unequal clustering in wireless sensor networks. IEEE Access, 7, 40569–40580.CrossRef
87.
Zurück zum Zitat Liu, T., Gu, T., Jin, N., & Zhu, Y. (2017). A mixed transmission strategy to achieve energy balancing in Wireless sensor networks. IEEE Transactions on Wireless Communications, 16(4), 2111–2122.CrossRef Liu, T., Gu, T., Jin, N., & Zhu, Y. (2017). A mixed transmission strategy to achieve energy balancing in Wireless sensor networks. IEEE Transactions on Wireless Communications, 16(4), 2111–2122.CrossRef
88.
Zurück zum Zitat Liu, T., Peng, J., Yang, J., Chen, G., & Xu, W. (2017). Avoidance of energy hole problem based on feedback mechanism for Heterogeneous sensor networks. International Journal of Distributed Sensor Networks, 13(6), 1550147717713625. Liu, T., Peng, J., Yang, J., Chen, G., & Xu, W. (2017). Avoidance of energy hole problem based on feedback mechanism for Heterogeneous sensor networks. International Journal of Distributed Sensor Networks, 13(6), 1550147717713625.
89.
Zurück zum Zitat Liu, X. (2016). A novel transmission range adjustment strategy for energy hole Avoiding in wireless sensor networks. Journal of Network and Computer Applications, 67, 43–52.CrossRef Liu, X. (2016). A novel transmission range adjustment strategy for energy hole Avoiding in wireless sensor networks. Journal of Network and Computer Applications, 67, 43–52.CrossRef
90.
Zurück zum Zitat Liu, X., Zhu, R., Anjum, A., Wang, J., Zhang, H., & Ma, M. (2020). Intelligent data fusion algorithm based on hybrid delay-aware Adaptive clustering in wireless sensor networks. Future Generation Computer Systems, 104, 1–14.CrossRef Liu, X., Zhu, R., Anjum, A., Wang, J., Zhang, H., & Ma, M. (2020). Intelligent data fusion algorithm based on hybrid delay-aware Adaptive clustering in wireless sensor networks. Future Generation Computer Systems, 104, 1–14.CrossRef
91.
Zurück zum Zitat Liu, Z., Xiu, D., & Guo, W. (2005). An energy-balanced model for data transmission in sensor networks. In 62nd IEEE vehicular technology conference (Vol. 4, pp. 2332–2336). Liu, Z., Xiu, D., & Guo, W. (2005). An energy-balanced model for data transmission in sensor networks. In 62nd IEEE vehicular technology conference (Vol. 4, pp. 2332–2336).
92.
Zurück zum Zitat Mann, P. S., & Singh, S. (2019). Improved artificial bee colony metaheuristic for energy-efficient clustering in wireless sensor networks. Artificial Intelligence Review, 51(3), 329–354.CrossRef Mann, P. S., & Singh, S. (2019). Improved artificial bee colony metaheuristic for energy-efficient clustering in wireless sensor networks. Artificial Intelligence Review, 51(3), 329–354.CrossRef
93.
Zurück zum Zitat Mehra, P. S., Doja, M., & Alam, B. (2019). Zonal based approach for clustering in heterogeneous WSN. International Journal of Information Technology, 11(3), 507–515.CrossRef Mehra, P. S., Doja, M., & Alam, B. (2019). Zonal based approach for clustering in heterogeneous WSN. International Journal of Information Technology, 11(3), 507–515.CrossRef
94.
Zurück zum Zitat Mir, Z. H., & Ko, Y. B. (2020). Self-adaptive neighbor discovery in wireless sensor networks with sectored-antennas. Computer Standards & Interfaces, 70, 103427.CrossRef Mir, Z. H., & Ko, Y. B. (2020). Self-adaptive neighbor discovery in wireless sensor networks with sectored-antennas. Computer Standards & Interfaces, 70, 103427.CrossRef
95.
Zurück zum Zitat Mishra, R., Jha, V., Tripathi, R. K., & Sharma, A. K. (2018). Corona based node distribution scheme targeting energy balancing in wireless sensor networks for the sensors having limited sensing range. Wireless Networks, 26, 879–896.CrossRef Mishra, R., Jha, V., Tripathi, R. K., & Sharma, A. K. (2018). Corona based node distribution scheme targeting energy balancing in wireless sensor networks for the sensors having limited sensing range. Wireless Networks, 26, 879–896.CrossRef
96.
Zurück zum Zitat Mitra, R., & Sharma, S. (2018). Proactive data routing using controlled mobility of a mobile sink in wireless sensor networks. Computers & Electrical Engineering, 70, 21–36.CrossRef Mitra, R., & Sharma, S. (2018). Proactive data routing using controlled mobility of a mobile sink in wireless sensor networks. Computers & Electrical Engineering, 70, 21–36.CrossRef
97.
Zurück zum Zitat Mosavvar, I., & Ghaffari, A. (2019). Data aggregation in wireless sensor networks using firefly algorithm. Wireless Personal Communications, 104(1), 307–324.CrossRef Mosavvar, I., & Ghaffari, A. (2019). Data aggregation in wireless sensor networks using firefly algorithm. Wireless Personal Communications, 104(1), 307–324.CrossRef
98.
Zurück zum Zitat Moussa, N., Hamidi-Alaoui, Z., & El Alaoui, A. E. B. (2020). ECRP: An energy-aware cluster-based routing protocol for wireless sensor networks. Wireless Networks, 26, 2915–2928.CrossRef Moussa, N., Hamidi-Alaoui, Z., & El Alaoui, A. E. B. (2020). ECRP: An energy-aware cluster-based routing protocol for wireless sensor networks. Wireless Networks, 26, 2915–2928.CrossRef
99.
Zurück zum Zitat Mukherjee, S., Amin, R., & Biswas, G. (2019). Design of routing protocol for multi-sink based wireless sensor networks. Wireless Networks, 25(7), 4331–4347.CrossRef Mukherjee, S., Amin, R., & Biswas, G. (2019). Design of routing protocol for multi-sink based wireless sensor networks. Wireless Networks, 25(7), 4331–4347.CrossRef
100.
Zurück zum Zitat Natarajan, M., & Subramanian, S. (2019). A cross-layer design: Energy efficient multilevel dynamic feedback scheduling in wireless sensor networks using deadline aware active time quantum for environmental monitoring. International Journal of Electronics, 106(1), 87–108.CrossRef Natarajan, M., & Subramanian, S. (2019). A cross-layer design: Energy efficient multilevel dynamic feedback scheduling in wireless sensor networks using deadline aware active time quantum for environmental monitoring. International Journal of Electronics, 106(1), 87–108.CrossRef
101.
Zurück zum Zitat Nguyen, K. V., Le Nguyen, P., Vu, Q. H., & Van Do, T. (2017). An energy efficient and load balanced distributed routing scheme for wireless sensor networks with holes. Journal of Systems and Software, 123, 92–105.CrossRef Nguyen, K. V., Le Nguyen, P., Vu, Q. H., & Van Do, T. (2017). An energy efficient and load balanced distributed routing scheme for wireless sensor networks with holes. Journal of Systems and Software, 123, 92–105.CrossRef
102.
Zurück zum Zitat Nikoletseas, S. (2010). On the energy balance problem in distributed sensor networks. Computer Science Review, 4(2), 65–79.CrossRef Nikoletseas, S. (2010). On the energy balance problem in distributed sensor networks. Computer Science Review, 4(2), 65–79.CrossRef
103.
Zurück zum Zitat Pan, J. S., Dao, T. K., et al. (2019). A compact bat algorithm for unequal clustering in wireless sensor networks. Applied Sciences, 9(10), 1973.CrossRef Pan, J. S., Dao, T. K., et al. (2019). A compact bat algorithm for unequal clustering in wireless sensor networks. Applied Sciences, 9(10), 1973.CrossRef
104.
Zurück zum Zitat Papachary, B., Venkatanaga, A. M., & Kalpana, G. (2020). A TDMA based energy efficient unequal clustering protocol for wireless sensor network using PSO. In Recent trends and advances in artificial intelligence and internet of things (pp. 119–124). Berlin: Springer. Papachary, B., Venkatanaga, A. M., & Kalpana, G. (2020). A TDMA based energy efficient unequal clustering protocol for wireless sensor network using PSO. In Recent trends and advances in artificial intelligence and internet of things (pp. 119–124). Berlin: Springer.
105.
Zurück zum Zitat Patil, M., & Sharma, C. (2018). Energy-efficient packet routing model for wireless sensor network. In Advances in electronics, communication and computing (pp. 341–350). Berlin: Springer. Patil, M., & Sharma, C. (2018). Energy-efficient packet routing model for wireless sensor network. In Advances in electronics, communication and computing (pp. 341–350). Berlin: Springer.
106.
Zurück zum Zitat Peng, Y., Al-Hazemi, F., Boutaba, R., Tong, F., Hwang, I. S., & Youn, C. H. (2017). Enhancing energy efficiency via cooperative MIMO in wireless sensor networks: State of the art and future research directions. IEEE Communications Magazine, 55(11), 47–53.CrossRef Peng, Y., Al-Hazemi, F., Boutaba, R., Tong, F., Hwang, I. S., & Youn, C. H. (2017). Enhancing energy efficiency via cooperative MIMO in wireless sensor networks: State of the art and future research directions. IEEE Communications Magazine, 55(11), 47–53.CrossRef
107.
Zurück zum Zitat Pottie, G. J., & Kaiser, W. J. (2000). Wireless integrated network sensors. Communications of the ACM, 43(5), 51–58.CrossRef Pottie, G. J., & Kaiser, W. J. (2000). Wireless integrated network sensors. Communications of the ACM, 43(5), 51–58.CrossRef
108.
Zurück zum Zitat Poveda-García, M., Oliva-Sánchez, J., Sanchez-Iborra, R., Cañete-Rebenaque, D., & Gomez-Tornero, J. L. (2019). Dynamic wireless power transfer for cost-effective wireless sensor networks using frequency-scanned beaming. IEEE Access, 7, 8081–8094.CrossRef Poveda-García, M., Oliva-Sánchez, J., Sanchez-Iborra, R., Cañete-Rebenaque, D., & Gomez-Tornero, J. L. (2019). Dynamic wireless power transfer for cost-effective wireless sensor networks using frequency-scanned beaming. IEEE Access, 7, 8081–8094.CrossRef
109.
Zurück zum Zitat Powell, O., Leone, P., & Rolim, J. (2007). Energy optimal data propagation in wireless sensor networks. Journal of Parallel and Distributed Computing, 67(3), 302–317.CrossRef Powell, O., Leone, P., & Rolim, J. (2007). Energy optimal data propagation in wireless sensor networks. Journal of Parallel and Distributed Computing, 67(3), 302–317.CrossRef
110.
Zurück zum Zitat Qin, X., Zhang, B., & Li, C. (2019). Localized topology control and on-demand power-efficient routing for wireless ad hoc and sensor networks. Peer-to-Peer Networking and Applications, 12(1), 189–208.CrossRef Qin, X., Zhang, B., & Li, C. (2019). Localized topology control and on-demand power-efficient routing for wireless ad hoc and sensor networks. Peer-to-Peer Networking and Applications, 12(1), 189–208.CrossRef
111.
Zurück zum Zitat Raghunathan, V., Schurgers, C., Park, S., & Srivastava, M. B. (2002). Energy-aware wireless microsensor networks. IEEE Signal Processing Magazine, 19(2), 40–50.CrossRef Raghunathan, V., Schurgers, C., Park, S., & Srivastava, M. B. (2002). Energy-aware wireless microsensor networks. IEEE Signal Processing Magazine, 19(2), 40–50.CrossRef
112.
Zurück zum Zitat Rahman, A. A., Kahar, M. N. M., & Din, W. I. S. W. (2019). Distance based thresholds for 2-tier relay nodes selection in WSN. Computer Standards & Interfaces, 66, 103359.CrossRef Rahman, A. A., Kahar, M. N. M., & Din, W. I. S. W. (2019). Distance based thresholds for 2-tier relay nodes selection in WSN. Computer Standards & Interfaces, 66, 103359.CrossRef
113.
Zurück zum Zitat Rajawat, A., & Singhal, P. (2019). Design and implementation of a dual-band rectifier antenna for efficient RF energy harvesting in wireless sensor networks. Journal of Circuits, Systems and Computers, 28(02), 1950034.CrossRef Rajawat, A., & Singhal, P. (2019). Design and implementation of a dual-band rectifier antenna for efficient RF energy harvesting in wireless sensor networks. Journal of Circuits, Systems and Computers, 28(02), 1950034.CrossRef
114.
Zurück zum Zitat Rao, V., & Kar, S. (2019). Energy efficient routing in wireless sensor networks via circulating operator packets. Wireless Networks, 25(6), 3063–3080.CrossRef Rao, V., & Kar, S. (2019). Energy efficient routing in wireless sensor networks via circulating operator packets. Wireless Networks, 25(6), 3063–3080.CrossRef
115.
Zurück zum Zitat Rashid, B., & Rehmani, M. H. (2016). Applications of wireless sensor networks for urban areas: A survey. Journal of Network and Computer Applications, 60, 192–219.CrossRef Rashid, B., & Rehmani, M. H. (2016). Applications of wireless sensor networks for urban areas: A survey. Journal of Network and Computer Applications, 60, 192–219.CrossRef
116.
Zurück zum Zitat Ren, W., Hao, K., Li, C., Du, X., Liu, Y., & Wang, L. (2019). Fuzzy probabilistic topology control algorithm for underwater wireless sensor networks. In International conference on artificial intelligence for communications and networks (pp. 435–444). Berlin: Springer. Ren, W., Hao, K., Li, C., Du, X., Liu, Y., & Wang, L. (2019). Fuzzy probabilistic topology control algorithm for underwater wireless sensor networks. In International conference on artificial intelligence for communications and networks (pp. 435–444). Berlin: Springer.
117.
Zurück zum Zitat Rost, P., & Fettweis, G. (2010) . On the transmission-computation-energy tradeoff in wireless and fixed networks. In: GLOBECOM Workshops (GC Wkshps), 2010 IEEE, pp. 1394–1399 Rost, P., & Fettweis, G. (2010) . On the transmission-computation-energy tradeoff in wireless and fixed networks. In: GLOBECOM Workshops (GC Wkshps), 2010 IEEE, pp. 1394–1399
118.
Zurück zum Zitat Sabale, K., & Mini, S. (2019). Anchor node path planning for localization in wireless sensor networks. Wireless Networks, 25(1), 49–61.CrossRef Sabale, K., & Mini, S. (2019). Anchor node path planning for localization in wireless sensor networks. Wireless Networks, 25(1), 49–61.CrossRef
119.
Zurück zum Zitat Sadeghi, F., & Avokh, A. (2020). Load-balanced data gathering in internet of things using an energy-aware cuckoo-search algorithm. International Journal of Communication Systems, 33(9), e4385.CrossRef Sadeghi, F., & Avokh, A. (2020). Load-balanced data gathering in internet of things using an energy-aware cuckoo-search algorithm. International Journal of Communication Systems, 33(9), e4385.CrossRef
120.
Zurück zum Zitat Saginbekov, S., & Jhumka, A. (2017). Many-to-many data aggregation scheduling in wireless sensor networks with two sinks. Computer Networks, 123, 184–199.CrossRef Saginbekov, S., & Jhumka, A. (2017). Many-to-many data aggregation scheduling in wireless sensor networks with two sinks. Computer Networks, 123, 184–199.CrossRef
121.
Zurück zum Zitat Samara, G., & Aljaidi, M. (2019). Efficient energy, cost reduction, and QoS based routing protocol for wireless sensor networks. arXiv preprint arXiv:1903.09636. Samara, G., & Aljaidi, M. (2019). Efficient energy, cost reduction, and QoS based routing protocol for wireless sensor networks. arXiv preprint arXiv:​1903.​09636.
122.
Zurück zum Zitat Sarkar, A., & Murugan, T. S. (2019). Cluster head selection for energy efficient and delay-less routing in wireless sensor network. Wireless Networks, 25(1), 303–320.CrossRef Sarkar, A., & Murugan, T. S. (2019). Cluster head selection for energy efficient and delay-less routing in wireless sensor network. Wireless Networks, 25(1), 303–320.CrossRef
123.
Zurück zum Zitat Selvi, M., Velvizhy, P., Ganapathy, S., Nehemiah, H. K., & Kannan, A. (2019). A rule based delay constrained energy efficient routing technique for wireless sensor networks. Cluster Computing, 22(5), 10839–10848.CrossRef Selvi, M., Velvizhy, P., Ganapathy, S., Nehemiah, H. K., & Kannan, A. (2019). A rule based delay constrained energy efficient routing technique for wireless sensor networks. Cluster Computing, 22(5), 10839–10848.CrossRef
124.
Zurück zum Zitat Shallahuddin, A. A., Kadir, M. F. A., Mohamed, M. A., Abidin, A. F. A., Usop, N. S. M., Zakaria, Z. A., et al. (2020). An enhanced adaptive duty cycle scheme for optimum data transmission in wireless sensor network. In Information science and applications (pp. 33–40). Berlin: Springer. Shallahuddin, A. A., Kadir, M. F. A., Mohamed, M. A., Abidin, A. F. A., Usop, N. S. M., Zakaria, Z. A., et al. (2020). An enhanced adaptive duty cycle scheme for optimum data transmission in wireless sensor network. In Information science and applications (pp. 33–40). Berlin: Springer.
125.
Zurück zum Zitat Shankar, T., Eappen, G., Sahani, S., Rajesh, A., & Mageshvaran, R. (2019). Integrated cuckoo and monkey search algorithm for energy efficient clustering in wireless sensor networks. In Innovations in power and advanced computing technologies (i-PACT) (Vol. 1, pp. 1–4). IEEE. Shankar, T., Eappen, G., Sahani, S., Rajesh, A., & Mageshvaran, R. (2019). Integrated cuckoo and monkey search algorithm for energy efficient clustering in wireless sensor networks. In Innovations in power and advanced computing technologies (i-PACT) (Vol. 1, pp. 1–4). IEEE.
126.
Zurück zum Zitat Sharma, S., Bhatia, V., & Gupta, A. (2017). Noncoherent IR-UWB receiver using massive antenna arrays for wireless sensor networks. IEEE Sensors Letters, 2(1), 1–4.CrossRef Sharma, S., Bhatia, V., & Gupta, A. (2017). Noncoherent IR-UWB receiver using massive antenna arrays for wireless sensor networks. IEEE Sensors Letters, 2(1), 1–4.CrossRef
127.
Zurück zum Zitat Sharma, S., Patel, A. K., Mitra, R., & Jauhari, R. (2018). Reinforcement based optimal routing algorithm for multiple sink based wireless sensor networks. In Progress in intelligent computing techniques: Theory, practice, and applications (pp. 481–490). Berlin: Springer. Sharma, S., Patel, A. K., Mitra, R., & Jauhari, R. (2018). Reinforcement based optimal routing algorithm for multiple sink based wireless sensor networks. In Progress in intelligent computing techniques: Theory, practice, and applications (pp. 481–490). Berlin: Springer.
128.
Zurück zum Zitat Sharma, S., Puthal, D., Tazeen, S., Prasad, M., & Zomaya, A. Y. (2017). MSGR: A mode-switched grid-based sustainable routing protocol for wireless sensor networks. IEEE Access, 5, 19864–19875.CrossRef Sharma, S., Puthal, D., Tazeen, S., Prasad, M., & Zomaya, A. Y. (2017). MSGR: A mode-switched grid-based sustainable routing protocol for wireless sensor networks. IEEE Access, 5, 19864–19875.CrossRef
129.
Zurück zum Zitat Singh, S. P., & Sharma, S. (2015). A survey on cluster based routing protocols in wireless sensor networks. Procedia Computer Science, 45, 687–695.CrossRef Singh, S. P., & Sharma, S. (2015). A survey on cluster based routing protocols in wireless sensor networks. Procedia Computer Science, 45, 687–695.CrossRef
130.
Zurück zum Zitat So, J., & Byun, H. (2017). Load-balanced opportunistic routing for duty-cycled wireless sensor networks. IEEE Transactions on Mobile Computing, 16(7), 1940–1955.CrossRef So, J., & Byun, H. (2017). Load-balanced opportunistic routing for duty-cycled wireless sensor networks. IEEE Transactions on Mobile Computing, 16(7), 1940–1955.CrossRef
131.
Zurück zum Zitat Soua, R., & Minet, P. (2011). A survey on energy efficient techniques in wireless sensor networks. In 4th Joint IFIP wireless and mobile networking conference (WMNC 2011) (pp. 1–9). Soua, R., & Minet, P. (2011). A survey on energy efficient techniques in wireless sensor networks. In 4th Joint IFIP wireless and mobile networking conference (WMNC 2011) (pp. 1–9).
132.
Zurück zum Zitat Souai, S., Diallo, A., Ribero, J. M., & Aguili, T. (2020). Design of compact superdirective and reconfigurable array antenna associated with non-foster elements for IoT. In International workshop on antenna technology (iWAT) (pp. 1–4). IEEE. Souai, S., Diallo, A., Ribero, J. M., & Aguili, T. (2020). Design of compact superdirective and reconfigurable array antenna associated with non-foster elements for IoT. In International workshop on antenna technology (iWAT) (pp. 1–4). IEEE.
133.
Zurück zum Zitat Stojkoska, B. L. R., & Trivodaliev, K. V. (2017). A review of internet of things for smart home: Challenges and solutions. Journal of Cleaner Production, 140, 1454–1464.CrossRef Stojkoska, B. L. R., & Trivodaliev, K. V. (2017). A review of internet of things for smart home: Challenges and solutions. Journal of Cleaner Production, 140, 1454–1464.CrossRef
134.
Zurück zum Zitat Suryadevara, N. K. (2017). Wireless sensor sequence data model for smart home and IoT data analytics. In Proceedings of the first international conference on computational intelligence and informatics (pp. 441–447). Berlin: Springer. Suryadevara, N. K. (2017). Wireless sensor sequence data model for smart home and IoT data analytics. In Proceedings of the first international conference on computational intelligence and informatics (pp. 441–447). Berlin: Springer.
135.
Zurück zum Zitat Suzuki, M., Saruwatari, S., Kurata, N., & Morikawa, H. (2007). A high-density earthquake monitoring system using wireless sensor networks. In 5th International conference on embedded networked sensor systems (pp. 373–374). Suzuki, M., Saruwatari, S., Kurata, N., & Morikawa, H. (2007). A high-density earthquake monitoring system using wireless sensor networks. In 5th International conference on embedded networked sensor systems (pp. 373–374).
136.
Zurück zum Zitat Tabibi, S., & Ghaffari, A. (2019). Energy-efficient routing mechanism for mobile sink in wireless sensor networks using particle swarm optimization algorithm. Wireless Personal Communications, 104(1), 199–216.CrossRef Tabibi, S., & Ghaffari, A. (2019). Energy-efficient routing mechanism for mobile sink in wireless sensor networks using particle swarm optimization algorithm. Wireless Personal Communications, 104(1), 199–216.CrossRef
137.
Zurück zum Zitat Tan, X., Zhao, H., Han, G., Zhang, W., & Zhu, T. (2019). QSDN-wise: A new QoS-based routing protocol for software-defined wireless sensor networks. IEEE Access, 7, 61070–61082.CrossRef Tan, X., Zhao, H., Han, G., Zhang, W., & Zhu, T. (2019). QSDN-wise: A new QoS-based routing protocol for software-defined wireless sensor networks. IEEE Access, 7, 61070–61082.CrossRef
138.
Zurück zum Zitat Thirukrishna, J., Karthik, S., & Arunachalam, V. (2018). Revamp energy efficiency in homogeneous wireless sensor networks using optimized radio energy algorithm (OREA) and power-aware distance source routing protocol. Future Generation Computer Systems, 81, 331–339.CrossRef Thirukrishna, J., Karthik, S., & Arunachalam, V. (2018). Revamp energy efficiency in homogeneous wireless sensor networks using optimized radio energy algorithm (OREA) and power-aware distance source routing protocol. Future Generation Computer Systems, 81, 331–339.CrossRef
139.
Zurück zum Zitat Tran, H., Åkerberg, J., Björkman, M., & Tran, H. V. (2019). RF energy harvesting: An analysis of wireless sensor networks for reliable communication. Wireless Networks, 25(1), 185–199.CrossRef Tran, H., Åkerberg, J., Björkman, M., & Tran, H. V. (2019). RF energy harvesting: An analysis of wireless sensor networks for reliable communication. Wireless Networks, 25(1), 185–199.CrossRef
140.
Zurück zum Zitat Wang, J., Cao, J., Sherratt, R. S., & Park, J. H. (2017). An improved ant colony optimization-based approach with mobile sink for wireless sensor networks. The Journal of Supercomputing, 74, 6633–6645.CrossRef Wang, J., Cao, J., Sherratt, R. S., & Park, J. H. (2017). An improved ant colony optimization-based approach with mobile sink for wireless sensor networks. The Journal of Supercomputing, 74, 6633–6645.CrossRef
141.
Zurück zum Zitat Wang, J., Niu, Y., Cho, J., & Lee, S. (2007). Analysis of energy consumption in direct transmission and multi-hop transmission for wireless sensor networks. In Third international IEEE conference on signal-image technologies and internet-based system (pp. 275–280). IEEE. Wang, J., Niu, Y., Cho, J., & Lee, S. (2007). Analysis of energy consumption in direct transmission and multi-hop transmission for wireless sensor networks. In Third international IEEE conference on signal-image technologies and internet-based system (pp. 275–280). IEEE.
142.
Zurück zum Zitat Wang, X., Wu, X., & Zhang, X. (2017). Optimizing opportunistic routing in asynchronous wireless sensor networks. IEEE Communications Letters, 21(10), 2302–2305.CrossRef Wang, X., Wu, X., & Zhang, X. (2017). Optimizing opportunistic routing in asynchronous wireless sensor networks. IEEE Communications Letters, 21(10), 2302–2305.CrossRef
143.
Zurück zum Zitat Wang, Y., & Tan, H. (2016). Distributed probabilistic routing for sensor network lifetime optimization. Wireless Networks, 22(3), 975–989.CrossRef Wang, Y., & Tan, H. (2016). Distributed probabilistic routing for sensor network lifetime optimization. Wireless Networks, 22(3), 975–989.CrossRef
144.
Zurück zum Zitat Winkler, M., Street, M., Tuchs, K. D., & Wrona, K. (2012). Wireless sensor networks for military purposes. In Autonomous sensor networks (pp. 365–394). Berlin: Springer. Winkler, M., Street, M., Tuchs, K. D., & Wrona, K. (2012). Wireless sensor networks for military purposes. In Autonomous sensor networks (pp. 365–394). Berlin: Springer.
145.
Zurück zum Zitat Winkler, M., Tuchs, K. D., Hughes, K., & Barclay, G. (2008). Theoretical and practical aspects of military wireless sensor networks. Journal of Telecommunications and Information Technology, 2, 37–45. Winkler, M., Tuchs, K. D., Hughes, K., & Barclay, G. (2008). Theoretical and practical aspects of military wireless sensor networks. Journal of Telecommunications and Information Technology, 2, 37–45.
146.
Zurück zum Zitat Woznowski, P., Burrows, A., Diethe, T., Fafoutis, X., Hall, J., Hannuna, S., et al. (2017). Sphere: A sensor platform for healthcare in a residential environment. In Designing, developing, and facilitating smart cities (pp. 315–333). Berlin: Springer. Woznowski, P., Burrows, A., Diethe, T., Fafoutis, X., Hall, J., Hannuna, S., et al. (2017). Sphere: A sensor platform for healthcare in a residential environment. In Designing, developing, and facilitating smart cities (pp. 315–333). Berlin: Springer.
147.
Zurück zum Zitat Xin, H., & Liu, X. (2017). Energy-balanced transmission with accurate distances for strip-based wireless sensor networks. IEEE Access, 5(99), 16193–16204.CrossRef Xin, H., & Liu, X. (2017). Energy-balanced transmission with accurate distances for strip-based wireless sensor networks. IEEE Access, 5(99), 16193–16204.CrossRef
148.
Zurück zum Zitat Xiu-wu, Y., Hao, Y., Yong, L., & Ren-rong, X. (2020). A clustering routing algorithm based on wolf pack algorithm for heterogeneous wireless sensor networks. Computer Networks, 167, 106994.CrossRef Xiu-wu, Y., Hao, Y., Yong, L., & Ren-rong, X. (2020). A clustering routing algorithm based on wolf pack algorithm for heterogeneous wireless sensor networks. Computer Networks, 167, 106994.CrossRef
149.
Zurück zum Zitat Xue, Y., & Li, B. (2001). A location-aided power-aware routing protocol in mobile ad hoc networks. In Global telecommunications conference (GLOBECOM’01) (Vol. 5, pp. 2837–2841). Xue, Y., & Li, B. (2001). A location-aided power-aware routing protocol in mobile ad hoc networks. In Global telecommunications conference (GLOBECOM’01) (Vol. 5, pp. 2837–2841).
150.
Zurück zum Zitat Yahiaoui, S., Omar, M., Bouabdallah, A., Natalizio, E., & Challal, Y. (2018). An energy efficient and QoS aware routing protocol for wireless sensor and actuator networks. AEU-International Journal of Electronics and Communications, 83, 193–203.CrossRef Yahiaoui, S., Omar, M., Bouabdallah, A., Natalizio, E., & Challal, Y. (2018). An energy efficient and QoS aware routing protocol for wireless sensor and actuator networks. AEU-International Journal of Electronics and Communications, 83, 193–203.CrossRef
151.
Zurück zum Zitat Yetgin, H., Cheung, K. T. K., El-Hajjar, M., & Hanzo, L. H. (2017). A survey of network lifetime maximization techniques in wireless sensor networks. IEEE Communications Surveys & Tutorials, 19(2), 828–854.CrossRef Yetgin, H., Cheung, K. T. K., El-Hajjar, M., & Hanzo, L. H. (2017). A survey of network lifetime maximization techniques in wireless sensor networks. IEEE Communications Surveys & Tutorials, 19(2), 828–854.CrossRef
152.
Zurück zum Zitat Ying, X., Wang, R., Yu, M., Yu, R., Shi, W., & Wang, J. (2019). Nonuniform node distribution using adaptive poisson disk for wireless sensor networks. In IEEE wireless communications and networking conference (WCNC) (pp. 1–7). IEEE. Ying, X., Wang, R., Yu, M., Yu, R., Shi, W., & Wang, J. (2019). Nonuniform node distribution using adaptive poisson disk for wireless sensor networks. In IEEE wireless communications and networking conference (WCNC) (pp. 1–7). IEEE.
153.
Zurück zum Zitat Yousefi, M. H. N., Kavian, Y. S., & Mahmoudi, A. (2019). RTMCH: real-time multichannel MAC for wireless video sensor networks. Multimedia Tools and Applications, 78(6), 7803–7818.CrossRef Yousefi, M. H. N., Kavian, Y. S., & Mahmoudi, A. (2019). RTMCH: real-time multichannel MAC for wireless video sensor networks. Multimedia Tools and Applications, 78(6), 7803–7818.CrossRef
154.
Zurück zum Zitat Yu, C. M., & Ku, M. L. (2018). Joint hybrid transmission and adaptive routing for lifetime extension of WSNS. IEEE Access, 6, 21658–21667.CrossRef Yu, C. M., & Ku, M. L. (2018). Joint hybrid transmission and adaptive routing for lifetime extension of WSNS. IEEE Access, 6, 21658–21667.CrossRef
155.
Zurück zum Zitat Yu, C. M., Ku, M. L., & Chang, C. W. (2017). Hybrid multi-hop/single-hop opportunistic transmission of WSNS. In IEEE international conference on consumer electronics-Taiwan (ICCE-TW) (pp. 111–112). IEEE. Yu, C. M., Ku, M. L., & Chang, C. W. (2017). Hybrid multi-hop/single-hop opportunistic transmission of WSNS. In IEEE international conference on consumer electronics-Taiwan (ICCE-TW) (pp. 111–112). IEEE.
156.
Zurück zum Zitat Zafar, S., Bashir, A., & Chaudhry, S. A. (2019). Mobility-aware hierarchical clustering in mobile wireless sensor networks. IEEE Access, 7, 20394–20403.CrossRef Zafar, S., Bashir, A., & Chaudhry, S. A. (2019). Mobility-aware hierarchical clustering in mobile wireless sensor networks. IEEE Access, 7, 20394–20403.CrossRef
157.
Zurück zum Zitat Zhang, D., Chen, Z., Zhou, H., Chen, L., & Shen, X. S. (2016). Energy-balanced cooperative transmission based on relay selection and power control in energy harvesting wireless sensor network. Computer Networks, 104, 189–197.CrossRef Zhang, D., Chen, Z., Zhou, H., Chen, L., & Shen, X. S. (2016). Energy-balanced cooperative transmission based on relay selection and power control in energy harvesting wireless sensor network. Computer Networks, 104, 189–197.CrossRef
158.
Zurück zum Zitat Zhang, H., & Shen, H. (2009). Balancing energy consumption to maximize network lifetime in data-gathering sensor networks. IEEE Transactions on Parallel and Distributed Systems, 20(10), 1526–1539.CrossRef Zhang, H., & Shen, H. (2009). Balancing energy consumption to maximize network lifetime in data-gathering sensor networks. IEEE Transactions on Parallel and Distributed Systems, 20(10), 1526–1539.CrossRef
159.
Zurück zum Zitat Zhang, H., Shen, H., & Tan, Y. (2007). Optimal energy balanced data gathering in wireless sensor networks. In IEEE international parallel and distributed processing symposium (IPDPS) (pp. 1–10). Zhang, H., Shen, H., & Tan, Y. (2007). Optimal energy balanced data gathering in wireless sensor networks. In IEEE international parallel and distributed processing symposium (IPDPS) (pp. 1–10).
160.
Zurück zum Zitat Zhang, J., Zhao, E., Zhang, Q., & Liu, J. (2007). Energy-balanced solution for cluster-based wireless sensor networks with mixed communication modes. In International workshop on cross layer design (IWCLD’07) (pp. 29–32). Zhang, J., Zhao, E., Zhang, Q., & Liu, J. (2007). Energy-balanced solution for cluster-based wireless sensor networks with mixed communication modes. In International workshop on cross layer design (IWCLD’07) (pp. 29–32).
161.
Zurück zum Zitat Zhang, X., Tao, L., Yan, F., & Sung, D. K. (2019). Shortest-latency opportunistic routing in asynchronous wireless sensor networks with independent duty-cycling. IEEE Transactions on Mobile Computing, 19, 711–723.CrossRef Zhang, X., Tao, L., Yan, F., & Sung, D. K. (2019). Shortest-latency opportunistic routing in asynchronous wireless sensor networks with independent duty-cycling. IEEE Transactions on Mobile Computing, 19, 711–723.CrossRef
162.
Zurück zum Zitat Zhao, Y., Li, Z., Hao, B., & Shi, J. (2019). Sensor selection for TDOA-based localization in wireless sensor networks with non-line-of-sight condition. IEEE Transactions on Vehicular Technology, 68(10), 9935–9950.CrossRef Zhao, Y., Li, Z., Hao, B., & Shi, J. (2019). Sensor selection for TDOA-based localization in wireless sensor networks with non-line-of-sight condition. IEEE Transactions on Vehicular Technology, 68(10), 9935–9950.CrossRef
163.
Zurück zum Zitat Zhixin, L., Xinping, G., & Cailian, C. (2008). Energy-efficient optimal scheme based on mixed routing in wireless sensor networks. In 27th Chinese control conference, CCC 2008 (pp. 311–315). IEEE. Zhixin, L., Xinping, G., & Cailian, C. (2008). Energy-efficient optimal scheme based on mixed routing in wireless sensor networks. In 27th Chinese control conference, CCC 2008 (pp. 311–315). IEEE.
164.
Zurück zum Zitat Zhou, F., Trajcevski, G., Tamassia, R., Avci, B., Khokhar, A., & Scheuermann, P. (2017). Bypassing holes in sensor networks: Load-balance vs. latency. Ad Hoc Networks, 61, 16–32.CrossRef Zhou, F., Trajcevski, G., Tamassia, R., Avci, B., Khokhar, A., & Scheuermann, P. (2017). Bypassing holes in sensor networks: Load-balance vs. latency. Ad Hoc Networks, 61, 16–32.CrossRef
165.
Zurück zum Zitat Zhu, J., Zou, Y., & Zheng, B. (2017). Physical-layer security and reliability challenges for industrial wireless sensor networks. IEEE Access, 5, 5313–5320. Zhu, J., Zou, Y., & Zheng, B. (2017). Physical-layer security and reliability challenges for industrial wireless sensor networks. IEEE Access, 5, 5313–5320.
166.
Zurück zum Zitat Zuhairy, R. M., & Al Zamil, M. G. (2018). Energy-efficient load balancing in wireless sensor network: An application of multinomial regression analysis. International Journal of Distributed Sensor Networks, 14(3), 1550147718764641.CrossRef Zuhairy, R. M., & Al Zamil, M. G. (2018). Energy-efficient load balancing in wireless sensor network: An application of multinomial regression analysis. International Journal of Distributed Sensor Networks, 14(3), 1550147718764641.CrossRef
Metadaten
Titel
Energy balanced data gathering approaches, issues and research directions
verfasst von
Jagrati Kulshrestha
Manas Kumar Mishra
Publikationsdatum
10.09.2020
Verlag
Springer US
Erschienen in
Telecommunication Systems / Ausgabe 2/2021
Print ISSN: 1018-4864
Elektronische ISSN: 1572-9451
DOI
https://doi.org/10.1007/s11235-020-00714-5

Weitere Artikel der Ausgabe 2/2021

Telecommunication Systems 2/2021 Zur Ausgabe

Neuer Inhalt