Skip to main content
Top
Published in: Journal of Scientific Computing 1/2016

19-03-2015

Fast Numerical Contour Integral Method for Fractional Diffusion Equations

Authors: Hong-Kui Pang, Hai-Wei Sun

Published in: Journal of Scientific Computing | Issue 1/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The numerical contour integral method with hyperbolic contour is exploited to solve space-fractional diffusion equations. By making use of the Toeplitz-like structure of spatial discretized matrices and the relevant properties, the regions that the spectra of resulting matrices lie in are derived. The resolvent norms of the resulting matrices are also shown to be bounded outside of the regions. Suitable parameters in the hyperbolic contour are selected based on these regions to solve the fractional diffusion equations. Numerical experiments are provided to demonstrate the efficiency of our contour integral methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Benson, D., Schumer, R., Meerschaert, M., Wheatcraft, S.: Fractional dispersion, Lévy motion, and the MADE tracer tests. Transp. Porous Med. 42, 211–240 (2001)MathSciNetCrossRef Benson, D., Schumer, R., Meerschaert, M., Wheatcraft, S.: Fractional dispersion, Lévy motion, and the MADE tracer tests. Transp. Porous Med. 42, 211–240 (2001)MathSciNetCrossRef
2.
go back to reference Chan, R., Jin, X.: An Introduction to Iterative Toeplitz Solvers. SIAM, Philadelphia (2007)MATHCrossRef Chan, R., Jin, X.: An Introduction to Iterative Toeplitz Solvers. SIAM, Philadelphia (2007)MATHCrossRef
3.
go back to reference Gavrilyuk, I.P., Makarov, V.L.: Exponentially convergent algorithms for the operator exponential with applications to inhomogeneous problems in Banach spaces. SIAM J. Numer. Anal. 43, 2144–2171 (2005)MATHMathSciNetCrossRef Gavrilyuk, I.P., Makarov, V.L.: Exponentially convergent algorithms for the operator exponential with applications to inhomogeneous problems in Banach spaces. SIAM J. Numer. Anal. 43, 2144–2171 (2005)MATHMathSciNetCrossRef
4.
go back to reference Hilfer, R.: Applications of Fractional Calculus in Physics. Word Scientific, Singapore (2000)MATHCrossRef Hilfer, R.: Applications of Fractional Calculus in Physics. Word Scientific, Singapore (2000)MATHCrossRef
5.
go back to reference Horn, R., Johnson, C.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)MATHCrossRef Horn, R., Johnson, C.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)MATHCrossRef
6.
go back to reference in ’t Hout, K.J., Weideman, J.A.C.: A contour integral method for the Black–Scholes and Heston equations. SIAM J. Sci. Comput. 33, 763–785 (2011)MATHMathSciNetCrossRef in ’t Hout, K.J., Weideman, J.A.C.: A contour integral method for the Black–Scholes and Heston equations. SIAM J. Sci. Comput. 33, 763–785 (2011)MATHMathSciNetCrossRef
7.
go back to reference Kirchner, J.W., Feng, X., Neal, C.: Fractal stream chemistry and its implications for containant transport in catchments. Nature 403, 524–526 (2000)CrossRef Kirchner, J.W., Feng, X., Neal, C.: Fractal stream chemistry and its implications for containant transport in catchments. Nature 403, 524–526 (2000)CrossRef
8.
go back to reference Lee, H., Lee, J., Sheen, D.: Laplace transform method for parabolic problems with time-dependent coefficients. SIAM J. Numer. Anal. 51, 112–125 (2013)MATHMathSciNetCrossRef Lee, H., Lee, J., Sheen, D.: Laplace transform method for parabolic problems with time-dependent coefficients. SIAM J. Numer. Anal. 51, 112–125 (2013)MATHMathSciNetCrossRef
9.
go back to reference Lee, S., Pang, H., Sun, H.: Shift-invert Arnoldi approximation to the Toeplitz matrix exponential. SIAM J. Sci. Comput. 32, 774–792 (2010)MATHMathSciNetCrossRef Lee, S., Pang, H., Sun, H.: Shift-invert Arnoldi approximation to the Toeplitz matrix exponential. SIAM J. Sci. Comput. 32, 774–792 (2010)MATHMathSciNetCrossRef
10.
11.
go back to reference Li, X., Xu, C.: Existence and uniqueness of the weak solution of the space–time fractional diffusion equation and a spectral method approximation. Commun. Comput. Phys. 8, 1016–1051 (2010)MathSciNet Li, X., Xu, C.: Existence and uniqueness of the weak solution of the space–time fractional diffusion equation and a spectral method approximation. Commun. Comput. Phys. 8, 1016–1051 (2010)MathSciNet
12.
go back to reference Lin, F., Yang, S., Jin, X.: Preconditioned iterative methods for fractional diffusion equation. J. Comput. Phys. 256, 109–117 (2014)MathSciNetCrossRef Lin, F., Yang, S., Jin, X.: Preconditioned iterative methods for fractional diffusion equation. J. Comput. Phys. 256, 109–117 (2014)MathSciNetCrossRef
13.
go back to reference Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker–Planck equation. J. Comput. Appl. Math. 166, 209–219 (2004)MATHMathSciNetCrossRef Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker–Planck equation. J. Comput. Appl. Math. 166, 209–219 (2004)MATHMathSciNetCrossRef
14.
go back to reference López-Fernández, M., Palencia, C.: On the numerical inversion of the Laplace transform of certain holomorphic mapping. Appl. Numer. Math. 51, 289–303 (2004)MATHMathSciNetCrossRef López-Fernández, M., Palencia, C.: On the numerical inversion of the Laplace transform of certain holomorphic mapping. Appl. Numer. Math. 51, 289–303 (2004)MATHMathSciNetCrossRef
15.
go back to reference López-Fernández, M., Palencia, C., Schädle, A.: A spectral order method for inverting sectorial Laplace transforms. SIAM J. Numer. Anal. 44, 1332–1350 (2006)MATHMathSciNetCrossRef López-Fernández, M., Palencia, C., Schädle, A.: A spectral order method for inverting sectorial Laplace transforms. SIAM J. Numer. Anal. 44, 1332–1350 (2006)MATHMathSciNetCrossRef
16.
go back to reference Magin, R.L.: Fractional Calculus in Bioengineering. Begell House, Redding (2006) Magin, R.L.: Fractional Calculus in Bioengineering. Begell House, Redding (2006)
17.
go back to reference Martensen, E.: Zur numerischen Auswertung uneigentlicher Integrale. ZAMM Z. Angew. Math. Mech. 48, T83–T85 (1968)MATHMathSciNet Martensen, E.: Zur numerischen Auswertung uneigentlicher Integrale. ZAMM Z. Angew. Math. Mech. 48, T83–T85 (1968)MATHMathSciNet
18.
go back to reference Mclean, W., Sloan, I.H., Thomée, V.: Time discretization via Laplace transformation of an integro-differential equation of parabolic type. Numer. Math. 102, 497–522 (2006)MATHMathSciNetCrossRef Mclean, W., Sloan, I.H., Thomée, V.: Time discretization via Laplace transformation of an integro-differential equation of parabolic type. Numer. Math. 102, 497–522 (2006)MATHMathSciNetCrossRef
19.
go back to reference Mclean, W., Thomée, V.: Time discretization of an evolution equation via Laplace transformation. IMA J. Numer. Anal. 24, 439–463 (2004)MATHMathSciNetCrossRef Mclean, W., Thomée, V.: Time discretization of an evolution equation via Laplace transformation. IMA J. Numer. Anal. 24, 439–463 (2004)MATHMathSciNetCrossRef
20.
go back to reference Mclean, W., Thomée, V.: Numerical solution via Laplace transformation of a fractional-order evolution equation. J. Integr. Equ. Appl. 22, 57–94 (2010)MATHCrossRef Mclean, W., Thomée, V.: Numerical solution via Laplace transformation of a fractional-order evolution equation. J. Integr. Equ. Appl. 22, 57–94 (2010)MATHCrossRef
21.
go back to reference Mclean, W., Thomée, V.: Maximum-norm error analysis of a numerical solution via Laplace transformation and quadrature of a fractional-order evolution equation. IMA J. Numer. Anal. 30, 208–230 (2010)MATHMathSciNetCrossRef Mclean, W., Thomée, V.: Maximum-norm error analysis of a numerical solution via Laplace transformation and quadrature of a fractional-order evolution equation. IMA J. Numer. Anal. 30, 208–230 (2010)MATHMathSciNetCrossRef
22.
go back to reference Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection–diffusion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)MATHMathSciNetCrossRef Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection–diffusion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)MATHMathSciNetCrossRef
23.
go back to reference Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)MATHMathSciNetCrossRef Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)MATHMathSciNetCrossRef
24.
go back to reference Pan, J., Ke, R., Ng, M., Sun, H.: Preconditioning techniques for diagonal-times-Toeplitz matrices in fractional diffusion equations. SIAM J. Sci. Comput. 36, A2698–A2719 (2014)MATHMathSciNetCrossRef Pan, J., Ke, R., Ng, M., Sun, H.: Preconditioning techniques for diagonal-times-Toeplitz matrices in fractional diffusion equations. SIAM J. Sci. Comput. 36, A2698–A2719 (2014)MATHMathSciNetCrossRef
26.
go back to reference Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)MATH Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)MATH
27.
go back to reference Qu, W., Lei, S., Vong, S.: Circulant and skew-circulant splitting iteration for fractional advection–diffusion equations. Int. J. Comput. Math. 91, 2232–2242 (2014)MATHMathSciNetCrossRef Qu, W., Lei, S., Vong, S.: Circulant and skew-circulant splitting iteration for fractional advection–diffusion equations. Int. J. Comput. Math. 91, 2232–2242 (2014)MATHMathSciNetCrossRef
28.
go back to reference Raberto, M., Scalas, E., Mainardi, F.: Waiting-times and returns in high-frequency financial data: an empirical study. Physica 314, 749–755 (2002)MATHCrossRef Raberto, M., Scalas, E., Mainardi, F.: Waiting-times and returns in high-frequency financial data: an empirical study. Physica 314, 749–755 (2002)MATHCrossRef
30.
go back to reference Shen, S., Liu, F.: Error analysis of an explicit finite difference approximation for the space fractional diffusion. ANZIAM J. 46, 871–887 (2005)MathSciNet Shen, S., Liu, F.: Error analysis of an explicit finite difference approximation for the space fractional diffusion. ANZIAM J. 46, 871–887 (2005)MathSciNet
31.
go back to reference Sheen, D., Sloan, I.H., Thomée, V.: A parallel method for time discretization of parabolic problems based on contour integral representation and quadrature. Math. Comput. 69, 177–195 (1999)CrossRef Sheen, D., Sloan, I.H., Thomée, V.: A parallel method for time discretization of parabolic problems based on contour integral representation and quadrature. Math. Comput. 69, 177–195 (1999)CrossRef
32.
go back to reference Sheen, D., Sloan, I.H., Thomée, V.: A parallel method for time discretization of parabolic equations based on Laplace transformation and quadrature. IMA J. Numer. Anal. 23, 269–299 (2003)MATHMathSciNetCrossRef Sheen, D., Sloan, I.H., Thomée, V.: A parallel method for time discretization of parabolic equations based on Laplace transformation and quadrature. IMA J. Numer. Anal. 23, 269–299 (2003)MATHMathSciNetCrossRef
34.
go back to reference Tadjeran, C., Meerschaert, M.M., Scheffler, H.P.: A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213, 205–213 (2006)MATHMathSciNetCrossRef Tadjeran, C., Meerschaert, M.M., Scheffler, H.P.: A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213, 205–213 (2006)MATHMathSciNetCrossRef
35.
go back to reference Tadjeran, C., Meerschaert, M.M.: A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J. Comput. Phys. 220, 813–823 (2007)MATHMathSciNetCrossRef Tadjeran, C., Meerschaert, M.M.: A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J. Comput. Phys. 220, 813–823 (2007)MATHMathSciNetCrossRef
37.
38.
go back to reference Wang, H., Basu, T.: A fast finite difference method for two-dimensional space-fractional diffusion equations. SIAM J. Sci. Comput. 34, A2444–A2458 (2012)MATHMathSciNetCrossRef Wang, H., Basu, T.: A fast finite difference method for two-dimensional space-fractional diffusion equations. SIAM J. Sci. Comput. 34, A2444–A2458 (2012)MATHMathSciNetCrossRef
39.
go back to reference Wang, H., Wang, K.: An \(O(N\log ^2N)\) alternating-direction finite difference method for two-dimensional fractional diffusion equations. J. Comput. Phys. 230, 7830–7839 (2011)MATHMathSciNetCrossRef Wang, H., Wang, K.: An \(O(N\log ^2N)\) alternating-direction finite difference method for two-dimensional fractional diffusion equations. J. Comput. Phys. 230, 7830–7839 (2011)MATHMathSciNetCrossRef
40.
go back to reference Wang, H., Wang, K., Sircar, T.: A direct \(O(N\log ^2N)\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095–8104 (2010)MATHMathSciNetCrossRef Wang, H., Wang, K., Sircar, T.: A direct \(O(N\log ^2N)\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095–8104 (2010)MATHMathSciNetCrossRef
42.
go back to reference Weideman, J.A.C., Trefethen, L.N.: Parabolic and hyperbolic contours for computing the Bromwich integral. Math. Comput. 76, 1341–1356 (2007)MATHMathSciNetCrossRef Weideman, J.A.C., Trefethen, L.N.: Parabolic and hyperbolic contours for computing the Bromwich integral. Math. Comput. 76, 1341–1356 (2007)MATHMathSciNetCrossRef
43.
go back to reference Zhou, H., Tian, W., Deng, W.: Quasi-compact finite difference schemes for space fractional diffusion equations. J. Sci. Comput. 56, 45–66 (2013)MATHMathSciNetCrossRef Zhou, H., Tian, W., Deng, W.: Quasi-compact finite difference schemes for space fractional diffusion equations. J. Sci. Comput. 56, 45–66 (2013)MATHMathSciNetCrossRef
Metadata
Title
Fast Numerical Contour Integral Method for Fractional Diffusion Equations
Authors
Hong-Kui Pang
Hai-Wei Sun
Publication date
19-03-2015
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 1/2016
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-015-0012-9

Other articles of this Issue 1/2016

Journal of Scientific Computing 1/2016 Go to the issue

Premium Partner