Skip to main content
Top
Published in: Journal of Scientific Computing 1/2016

28-03-2015

High Order Semi-Lagrangian Methods for the Incompressible Navier–Stokes Equations

Authors: Elena Celledoni, Bawfeh Kingsley Kometa, Olivier Verdier

Published in: Journal of Scientific Computing | Issue 1/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We propose a class of semi-Lagrangian methods of high approximation order in space and time, based on spectral element space discretizations and exponential integrators of Runge–Kutta type. The methods were presented in Celledoni and Kometa (J Sci Comput 41(1):139–164, 2009) for simpler convection–diffusion equations. We discuss the extension of these methods to the Navier–Stokes equations, and their implementation using projections. Semi-Lagrangian methods up to order three are implemented and tested on various examples. The good performance of the methods for convection-dominated problems is demonstrated with numerical experiments.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
We also assume that the characteristic paths are integrated to high accuracy.
 
2
Extension to higher order methods is straightforward (See [30] and references therein).
 
3
See 6.2 for the definitions of these norms.
 
4
The projection does not need to be orthogonal, but should be guaranteed not to compromise the order of the method, an orthogonal projection will have this property. The target of the orthogonal projection map on the discrete divergence-free subspace is the element of shortest distance to the point which is projected. Since \(y_{n+1}=\Pi Y_s\) and \(\Vert y(t_{n+1})-Y_s\Vert = {\mathcal {O}}(h^{r+1}),\) where \(r\) is the order of the integration method, then
$$\begin{aligned} \Vert y(t_{n+1})-y_{n+1}\Vert \le \Vert y(t_{n+1})-Y_s\Vert +\Vert Y_s-y_{n+1}\Vert = {\mathcal {O}}(h^{r+1}), \end{aligned}$$
because
$$\begin{aligned} \Vert y_{n+1}-Y_s\Vert \le \Vert y(t_{n+1})-Y_s\Vert . \end{aligned}$$
 
Literature
1.
go back to reference Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit-explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25, 151–167 (1997)MathSciNetCrossRefMATH Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit-explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25, 151–167 (1997)MathSciNetCrossRefMATH
2.
go back to reference Ascher, U.M., Ruuth, S.J., Wetton, B.T.R.: Implicit–explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32(3), 797–823 (1995)MathSciNetCrossRefMATH Ascher, U.M., Ruuth, S.J., Wetton, B.T.R.: Implicit–explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32(3), 797–823 (1995)MathSciNetCrossRefMATH
3.
go back to reference Brown, D.L., Minion, M.L.: Performance of under-resolved two-dimensional incompressible flow simulations. J. Comput. Phys. 122(1), 165–183 (1995)MathSciNetCrossRefMATH Brown, D.L., Minion, M.L.: Performance of under-resolved two-dimensional incompressible flow simulations. J. Comput. Phys. 122(1), 165–183 (1995)MathSciNetCrossRefMATH
4.
go back to reference Bruneau, C.-H., Saad, M.: The 2d lid-driven cavity problem revisited. Comput. Fluids 35(3), 326–348 (2006)CrossRefMATH Bruneau, C.-H., Saad, M.: The 2d lid-driven cavity problem revisited. Comput. Fluids 35(3), 326–348 (2006)CrossRefMATH
5.
go back to reference Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer Series in Computational Physics. Springer, New York (1988)CrossRef Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer Series in Computational Physics. Springer, New York (1988)CrossRef
6.
go back to reference Celledoni, E.: Eulerian and semi-Lagrangian commutator-free exponential integrators. CRM Proc. Lect. Notes 39, 77–90 (2005)MathSciNet Celledoni, E.: Eulerian and semi-Lagrangian commutator-free exponential integrators. CRM Proc. Lect. Notes 39, 77–90 (2005)MathSciNet
7.
go back to reference Celledoni, E., Kometa, B.K.: Semi-Lagrangian Runge–Kutta exponential integrators for convection dominated problems. J. Sci. Comput. 41(1), 139–164 (2009)MathSciNetCrossRefMATH Celledoni, E., Kometa, B.K.: Semi-Lagrangian Runge–Kutta exponential integrators for convection dominated problems. J. Sci. Comput. 41(1), 139–164 (2009)MathSciNetCrossRefMATH
9.
go back to reference Celledoni, E., Kometa, B.K.: Semi-Lagrangian multistep exponential integrators for index 2 differential-algebraic systems. J. Comput. Phys. 230(9), 3413–3429 (2011)MathSciNetCrossRefMATH Celledoni, E., Kometa, B.K.: Semi-Lagrangian multistep exponential integrators for index 2 differential-algebraic systems. J. Comput. Phys. 230(9), 3413–3429 (2011)MathSciNetCrossRefMATH
10.
go back to reference Childs, P.N., Morton, K.W.: Characteristic Galerkin methods for scalar conservation laws in one dimension. SIAM J. Numer. Anal. 27, 553–594 (1990)MathSciNetCrossRefMATH Childs, P.N., Morton, K.W.: Characteristic Galerkin methods for scalar conservation laws in one dimension. SIAM J. Numer. Anal. 27, 553–594 (1990)MathSciNetCrossRefMATH
12.
13.
go back to reference Deville, M.O., Fischer, P.F., Mund, E.H.: High-Order Methods for Incompressible Fluid Flow. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2002)CrossRef Deville, M.O., Fischer, P.F., Mund, E.H.: High-Order Methods for Incompressible Fluid Flow. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2002)CrossRef
14.
go back to reference Eich-Soellner, E., Führer, C.: Numerical Methods in Multibody Dynamics, European Consortium for Mathematics in Industry. B. G. Teubner, Stuttgart (1998)CrossRef Eich-Soellner, E., Führer, C.: Numerical Methods in Multibody Dynamics, European Consortium for Mathematics in Industry. B. G. Teubner, Stuttgart (1998)CrossRef
15.
go back to reference Falcone, M., Ferretti, R.: Convergence analysis for a class of high-order semi-Lagrangian advection schemes. SIAM J. Numer. Anal. 35(3), 909–940 (1998). (electronic)MathSciNetCrossRefMATH Falcone, M., Ferretti, R.: Convergence analysis for a class of high-order semi-Lagrangian advection schemes. SIAM J. Numer. Anal. 35(3), 909–940 (1998). (electronic)MathSciNetCrossRefMATH
16.
go back to reference Falcone, M., Ferretti, R.: Semi-Lagrangian approximation schemes for linear and Hamilton-Jacobi equations. SIAM (to appear) Falcone, M., Ferretti, R.: Semi-Lagrangian approximation schemes for linear and Hamilton-Jacobi equations. SIAM (to appear)
17.
go back to reference Fischer, P., Mullen, J.: Filter-based stabilization of spectral element methods. C. R. Acad. Sci. Paris Sér. I Math. 332(3), 265–270 (2001)MathSciNetCrossRefMATH Fischer, P., Mullen, J.: Filter-based stabilization of spectral element methods. C. R. Acad. Sci. Paris Sér. I Math. 332(3), 265–270 (2001)MathSciNetCrossRefMATH
18.
go back to reference Fischer, P.F.: An overlapping Schwarz method for spectral element solution of the incompressible Navier–Stokes equations. J. Comput. Phys. 133(1), 84–101 (1997)MathSciNetCrossRefMATH Fischer, P.F.: An overlapping Schwarz method for spectral element solution of the incompressible Navier–Stokes equations. J. Comput. Phys. 133(1), 84–101 (1997)MathSciNetCrossRefMATH
19.
go back to reference Fischer, P.F., Kruse, G.W., Loth, F.: Spectral element method for transitional flows in complex geometries. J. Sci. Comput. 17(1–4), 81–98 (2002)MathSciNetCrossRefMATH Fischer, P.F., Kruse, G.W., Loth, F.: Spectral element method for transitional flows in complex geometries. J. Sci. Comput. 17(1–4), 81–98 (2002)MathSciNetCrossRefMATH
20.
go back to reference Ghia, U., Ghia, K.N., Shin, C.T.: High re-solutions for incompressible flow using the Navier–stokes equations and a multigrid method. J. Comput. Phys. 48(3), 387–411 (1982)CrossRefMATH Ghia, U., Ghia, K.N., Shin, C.T.: High re-solutions for incompressible flow using the Navier–stokes equations and a multigrid method. J. Comput. Phys. 48(3), 387–411 (1982)CrossRefMATH
21.
go back to reference Giraldo, F.X.: The Lagrange–Galerkin spectral element method on unstructured quadrilateral grids. J. Comput. Phys. 147(1), 114–146 (1998)MathSciNetCrossRefMATH Giraldo, F.X.: The Lagrange–Galerkin spectral element method on unstructured quadrilateral grids. J. Comput. Phys. 147(1), 114–146 (1998)MathSciNetCrossRefMATH
22.
go back to reference Giraldo, F.X., Perot, J.B., Fischer, P.F.: A spectral element semi-Lagrangian (SESL) method for the spherical shallow water equations. J. Comput. Phys. 190(2), 623–650 (2003)MathSciNetCrossRefMATH Giraldo, F.X., Perot, J.B., Fischer, P.F.: A spectral element semi-Lagrangian (SESL) method for the spherical shallow water equations. J. Comput. Phys. 190(2), 623–650 (2003)MathSciNetCrossRefMATH
23.
go back to reference Guermond, J.L., Shen, J.: A new class of truly consistent splitting schemes for incompressible flows. J. Comput. Phys. 192(1), 262–276 (2003)MathSciNetCrossRefMATH Guermond, J.L., Shen, J.: A new class of truly consistent splitting schemes for incompressible flows. J. Comput. Phys. 192(1), 262–276 (2003)MathSciNetCrossRefMATH
25.
go back to reference Hairer, E., Lubich, Ch., Wanner, G.: Geometric Numerical Integration, Second ed., Springer Series in Computational Mathematics, vol. 31, Structure-Preserving Algorithms for Ordinary Differential Equations. Springer, Berlin (2006) Hairer, E., Lubich, Ch., Wanner, G.: Geometric Numerical Integration, Second ed., Springer Series in Computational Mathematics, vol. 31, Structure-Preserving Algorithms for Ordinary Differential Equations. Springer, Berlin (2006)
26.
go back to reference Hairer, E., Wanner, G.: Solving Ordinary Differential Equations. II, Second ed., Springer Series in Computational Mathematics. Springer, Berlin (1996)CrossRef Hairer, E., Wanner, G.: Solving Ordinary Differential Equations. II, Second ed., Springer Series in Computational Mathematics. Springer, Berlin (1996)CrossRef
27.
go back to reference Kanevsky, A., Carpenter, M.H., Gottlieb, D., Hesthaven, J.S.: Application of implicit–explicit high order Runge–Kutta methods to discontinuous-Galerkin schemes. J. Comput. Phys. 225(2), 1753–1781 (2007)MathSciNetCrossRefMATH Kanevsky, A., Carpenter, M.H., Gottlieb, D., Hesthaven, J.S.: Application of implicit–explicit high order Runge–Kutta methods to discontinuous-Galerkin schemes. J. Comput. Phys. 225(2), 1753–1781 (2007)MathSciNetCrossRefMATH
28.
go back to reference Kennedy, C.A., Carpenter, M.H.: Additive Runge–Kutta schemes for convection–diffusion–reaction equations. Appl. Numer. Math. 44(1–2), 139–181 (2003)MathSciNetCrossRefMATH Kennedy, C.A., Carpenter, M.H.: Additive Runge–Kutta schemes for convection–diffusion–reaction equations. Appl. Numer. Math. 44(1–2), 139–181 (2003)MathSciNetCrossRefMATH
31.
go back to reference Maday, Y., Patera, A.T., Rønquist, E.M.: An operator-integration-factor splitting method for time-dependent problems: application to incompressible fluid flow. J. Sci. Comput. 5(4), 263–292 (1990)MathSciNetCrossRefMATH Maday, Y., Patera, A.T., Rønquist, E.M.: An operator-integration-factor splitting method for time-dependent problems: application to incompressible fluid flow. J. Sci. Comput. 5(4), 263–292 (1990)MathSciNetCrossRefMATH
32.
33.
go back to reference Rannacher, R.: On Chorin’s projection method for the incompressible Navier–Stokes equations, Lecture Notes in Mathematics, vol. 1530. Springer, Berlin (1991) Rannacher, R.: On Chorin’s projection method for the incompressible Navier–Stokes equations, Lecture Notes in Mathematics, vol. 1530. Springer, Berlin (1991)
34.
go back to reference Restelli, M., Bonaventura, L., Sacco, R.: A semi-Lagrangian discontinuous Galerkin method for scalar advection by incompressible flows. J. Comput. Phys. 216(1), 195–215 (2006)MathSciNetCrossRefMATH Restelli, M., Bonaventura, L., Sacco, R.: A semi-Lagrangian discontinuous Galerkin method for scalar advection by incompressible flows. J. Comput. Phys. 216(1), 195–215 (2006)MathSciNetCrossRefMATH
35.
go back to reference Shen, J.: On error estimates of projection methods for Navier–Stokes equations: first-order schemes. SIAM J. Numer. Anal. 29(1), 57–77 (1992)MathSciNetCrossRefMATH Shen, J.: On error estimates of projection methods for Navier–Stokes equations: first-order schemes. SIAM J. Numer. Anal. 29(1), 57–77 (1992)MathSciNetCrossRefMATH
36.
go back to reference Témam, R.: Sur l’approximation de la solution des équations de Navier–Stokes par la méthode des pas fractionnaires. II. Arch. Ration. Mech. Anal. 33, 377–385 (1969)CrossRefMATH Témam, R.: Sur l’approximation de la solution des équations de Navier–Stokes par la méthode des pas fractionnaires. II. Arch. Ration. Mech. Anal. 33, 377–385 (1969)CrossRefMATH
37.
go back to reference Xiu, D., Karniadakis, G.E.: A semi-Lagrangian high-order method for Navier–Stokes equations. J. Comput. Phys. 172(2), 658–684 (2001)MathSciNetCrossRefMATH Xiu, D., Karniadakis, G.E.: A semi-Lagrangian high-order method for Navier–Stokes equations. J. Comput. Phys. 172(2), 658–684 (2001)MathSciNetCrossRefMATH
Metadata
Title
High Order Semi-Lagrangian Methods for the Incompressible Navier–Stokes Equations
Authors
Elena Celledoni
Bawfeh Kingsley Kometa
Olivier Verdier
Publication date
28-03-2015
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 1/2016
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-015-0015-6

Other articles of this Issue 1/2016

Journal of Scientific Computing 1/2016 Go to the issue

Premium Partner