Skip to main content
Erschienen in: Journal of Scientific Computing 1/2016

28.03.2015

High Order Semi-Lagrangian Methods for the Incompressible Navier–Stokes Equations

verfasst von: Elena Celledoni, Bawfeh Kingsley Kometa, Olivier Verdier

Erschienen in: Journal of Scientific Computing | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We propose a class of semi-Lagrangian methods of high approximation order in space and time, based on spectral element space discretizations and exponential integrators of Runge–Kutta type. The methods were presented in Celledoni and Kometa (J Sci Comput 41(1):139–164, 2009) for simpler convection–diffusion equations. We discuss the extension of these methods to the Navier–Stokes equations, and their implementation using projections. Semi-Lagrangian methods up to order three are implemented and tested on various examples. The good performance of the methods for convection-dominated problems is demonstrated with numerical experiments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
We also assume that the characteristic paths are integrated to high accuracy.
 
2
Extension to higher order methods is straightforward (See [30] and references therein).
 
3
See 6.2 for the definitions of these norms.
 
4
The projection does not need to be orthogonal, but should be guaranteed not to compromise the order of the method, an orthogonal projection will have this property. The target of the orthogonal projection map on the discrete divergence-free subspace is the element of shortest distance to the point which is projected. Since \(y_{n+1}=\Pi Y_s\) and \(\Vert y(t_{n+1})-Y_s\Vert = {\mathcal {O}}(h^{r+1}),\) where \(r\) is the order of the integration method, then
$$\begin{aligned} \Vert y(t_{n+1})-y_{n+1}\Vert \le \Vert y(t_{n+1})-Y_s\Vert +\Vert Y_s-y_{n+1}\Vert = {\mathcal {O}}(h^{r+1}), \end{aligned}$$
because
$$\begin{aligned} \Vert y_{n+1}-Y_s\Vert \le \Vert y(t_{n+1})-Y_s\Vert . \end{aligned}$$
 
Literatur
1.
Zurück zum Zitat Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit-explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25, 151–167 (1997)MathSciNetCrossRefMATH Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit-explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25, 151–167 (1997)MathSciNetCrossRefMATH
2.
Zurück zum Zitat Ascher, U.M., Ruuth, S.J., Wetton, B.T.R.: Implicit–explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32(3), 797–823 (1995)MathSciNetCrossRefMATH Ascher, U.M., Ruuth, S.J., Wetton, B.T.R.: Implicit–explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32(3), 797–823 (1995)MathSciNetCrossRefMATH
3.
Zurück zum Zitat Brown, D.L., Minion, M.L.: Performance of under-resolved two-dimensional incompressible flow simulations. J. Comput. Phys. 122(1), 165–183 (1995)MathSciNetCrossRefMATH Brown, D.L., Minion, M.L.: Performance of under-resolved two-dimensional incompressible flow simulations. J. Comput. Phys. 122(1), 165–183 (1995)MathSciNetCrossRefMATH
4.
Zurück zum Zitat Bruneau, C.-H., Saad, M.: The 2d lid-driven cavity problem revisited. Comput. Fluids 35(3), 326–348 (2006)CrossRefMATH Bruneau, C.-H., Saad, M.: The 2d lid-driven cavity problem revisited. Comput. Fluids 35(3), 326–348 (2006)CrossRefMATH
5.
Zurück zum Zitat Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer Series in Computational Physics. Springer, New York (1988)CrossRef Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer Series in Computational Physics. Springer, New York (1988)CrossRef
6.
Zurück zum Zitat Celledoni, E.: Eulerian and semi-Lagrangian commutator-free exponential integrators. CRM Proc. Lect. Notes 39, 77–90 (2005)MathSciNet Celledoni, E.: Eulerian and semi-Lagrangian commutator-free exponential integrators. CRM Proc. Lect. Notes 39, 77–90 (2005)MathSciNet
7.
Zurück zum Zitat Celledoni, E., Kometa, B.K.: Semi-Lagrangian Runge–Kutta exponential integrators for convection dominated problems. J. Sci. Comput. 41(1), 139–164 (2009)MathSciNetCrossRefMATH Celledoni, E., Kometa, B.K.: Semi-Lagrangian Runge–Kutta exponential integrators for convection dominated problems. J. Sci. Comput. 41(1), 139–164 (2009)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Celledoni, E., Kometa, B.K.: Semi-Lagrangian multistep exponential integrators for index 2 differential-algebraic systems. J. Comput. Phys. 230(9), 3413–3429 (2011)MathSciNetCrossRefMATH Celledoni, E., Kometa, B.K.: Semi-Lagrangian multistep exponential integrators for index 2 differential-algebraic systems. J. Comput. Phys. 230(9), 3413–3429 (2011)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Childs, P.N., Morton, K.W.: Characteristic Galerkin methods for scalar conservation laws in one dimension. SIAM J. Numer. Anal. 27, 553–594 (1990)MathSciNetCrossRefMATH Childs, P.N., Morton, K.W.: Characteristic Galerkin methods for scalar conservation laws in one dimension. SIAM J. Numer. Anal. 27, 553–594 (1990)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Chorin, A.J.: On the convergence of discrete approximations to the Navier–Stokes equations. Math. Comput. 23, 341–353 (1969)MathSciNetCrossRefMATH Chorin, A.J.: On the convergence of discrete approximations to the Navier–Stokes equations. Math. Comput. 23, 341–353 (1969)MathSciNetCrossRefMATH
13.
Zurück zum Zitat Deville, M.O., Fischer, P.F., Mund, E.H.: High-Order Methods for Incompressible Fluid Flow. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2002)CrossRef Deville, M.O., Fischer, P.F., Mund, E.H.: High-Order Methods for Incompressible Fluid Flow. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2002)CrossRef
14.
Zurück zum Zitat Eich-Soellner, E., Führer, C.: Numerical Methods in Multibody Dynamics, European Consortium for Mathematics in Industry. B. G. Teubner, Stuttgart (1998)CrossRef Eich-Soellner, E., Führer, C.: Numerical Methods in Multibody Dynamics, European Consortium for Mathematics in Industry. B. G. Teubner, Stuttgart (1998)CrossRef
15.
Zurück zum Zitat Falcone, M., Ferretti, R.: Convergence analysis for a class of high-order semi-Lagrangian advection schemes. SIAM J. Numer. Anal. 35(3), 909–940 (1998). (electronic)MathSciNetCrossRefMATH Falcone, M., Ferretti, R.: Convergence analysis for a class of high-order semi-Lagrangian advection schemes. SIAM J. Numer. Anal. 35(3), 909–940 (1998). (electronic)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Falcone, M., Ferretti, R.: Semi-Lagrangian approximation schemes for linear and Hamilton-Jacobi equations. SIAM (to appear) Falcone, M., Ferretti, R.: Semi-Lagrangian approximation schemes for linear and Hamilton-Jacobi equations. SIAM (to appear)
17.
Zurück zum Zitat Fischer, P., Mullen, J.: Filter-based stabilization of spectral element methods. C. R. Acad. Sci. Paris Sér. I Math. 332(3), 265–270 (2001)MathSciNetCrossRefMATH Fischer, P., Mullen, J.: Filter-based stabilization of spectral element methods. C. R. Acad. Sci. Paris Sér. I Math. 332(3), 265–270 (2001)MathSciNetCrossRefMATH
18.
Zurück zum Zitat Fischer, P.F.: An overlapping Schwarz method for spectral element solution of the incompressible Navier–Stokes equations. J. Comput. Phys. 133(1), 84–101 (1997)MathSciNetCrossRefMATH Fischer, P.F.: An overlapping Schwarz method for spectral element solution of the incompressible Navier–Stokes equations. J. Comput. Phys. 133(1), 84–101 (1997)MathSciNetCrossRefMATH
19.
Zurück zum Zitat Fischer, P.F., Kruse, G.W., Loth, F.: Spectral element method for transitional flows in complex geometries. J. Sci. Comput. 17(1–4), 81–98 (2002)MathSciNetCrossRefMATH Fischer, P.F., Kruse, G.W., Loth, F.: Spectral element method for transitional flows in complex geometries. J. Sci. Comput. 17(1–4), 81–98 (2002)MathSciNetCrossRefMATH
20.
Zurück zum Zitat Ghia, U., Ghia, K.N., Shin, C.T.: High re-solutions for incompressible flow using the Navier–stokes equations and a multigrid method. J. Comput. Phys. 48(3), 387–411 (1982)CrossRefMATH Ghia, U., Ghia, K.N., Shin, C.T.: High re-solutions for incompressible flow using the Navier–stokes equations and a multigrid method. J. Comput. Phys. 48(3), 387–411 (1982)CrossRefMATH
21.
Zurück zum Zitat Giraldo, F.X.: The Lagrange–Galerkin spectral element method on unstructured quadrilateral grids. J. Comput. Phys. 147(1), 114–146 (1998)MathSciNetCrossRefMATH Giraldo, F.X.: The Lagrange–Galerkin spectral element method on unstructured quadrilateral grids. J. Comput. Phys. 147(1), 114–146 (1998)MathSciNetCrossRefMATH
22.
Zurück zum Zitat Giraldo, F.X., Perot, J.B., Fischer, P.F.: A spectral element semi-Lagrangian (SESL) method for the spherical shallow water equations. J. Comput. Phys. 190(2), 623–650 (2003)MathSciNetCrossRefMATH Giraldo, F.X., Perot, J.B., Fischer, P.F.: A spectral element semi-Lagrangian (SESL) method for the spherical shallow water equations. J. Comput. Phys. 190(2), 623–650 (2003)MathSciNetCrossRefMATH
23.
Zurück zum Zitat Guermond, J.L., Shen, J.: A new class of truly consistent splitting schemes for incompressible flows. J. Comput. Phys. 192(1), 262–276 (2003)MathSciNetCrossRefMATH Guermond, J.L., Shen, J.: A new class of truly consistent splitting schemes for incompressible flows. J. Comput. Phys. 192(1), 262–276 (2003)MathSciNetCrossRefMATH
25.
Zurück zum Zitat Hairer, E., Lubich, Ch., Wanner, G.: Geometric Numerical Integration, Second ed., Springer Series in Computational Mathematics, vol. 31, Structure-Preserving Algorithms for Ordinary Differential Equations. Springer, Berlin (2006) Hairer, E., Lubich, Ch., Wanner, G.: Geometric Numerical Integration, Second ed., Springer Series in Computational Mathematics, vol. 31, Structure-Preserving Algorithms for Ordinary Differential Equations. Springer, Berlin (2006)
26.
Zurück zum Zitat Hairer, E., Wanner, G.: Solving Ordinary Differential Equations. II, Second ed., Springer Series in Computational Mathematics. Springer, Berlin (1996)CrossRef Hairer, E., Wanner, G.: Solving Ordinary Differential Equations. II, Second ed., Springer Series in Computational Mathematics. Springer, Berlin (1996)CrossRef
27.
Zurück zum Zitat Kanevsky, A., Carpenter, M.H., Gottlieb, D., Hesthaven, J.S.: Application of implicit–explicit high order Runge–Kutta methods to discontinuous-Galerkin schemes. J. Comput. Phys. 225(2), 1753–1781 (2007)MathSciNetCrossRefMATH Kanevsky, A., Carpenter, M.H., Gottlieb, D., Hesthaven, J.S.: Application of implicit–explicit high order Runge–Kutta methods to discontinuous-Galerkin schemes. J. Comput. Phys. 225(2), 1753–1781 (2007)MathSciNetCrossRefMATH
28.
Zurück zum Zitat Kennedy, C.A., Carpenter, M.H.: Additive Runge–Kutta schemes for convection–diffusion–reaction equations. Appl. Numer. Math. 44(1–2), 139–181 (2003)MathSciNetCrossRefMATH Kennedy, C.A., Carpenter, M.H.: Additive Runge–Kutta schemes for convection–diffusion–reaction equations. Appl. Numer. Math. 44(1–2), 139–181 (2003)MathSciNetCrossRefMATH
31.
Zurück zum Zitat Maday, Y., Patera, A.T., Rønquist, E.M.: An operator-integration-factor splitting method for time-dependent problems: application to incompressible fluid flow. J. Sci. Comput. 5(4), 263–292 (1990)MathSciNetCrossRefMATH Maday, Y., Patera, A.T., Rønquist, E.M.: An operator-integration-factor splitting method for time-dependent problems: application to incompressible fluid flow. J. Sci. Comput. 5(4), 263–292 (1990)MathSciNetCrossRefMATH
32.
33.
Zurück zum Zitat Rannacher, R.: On Chorin’s projection method for the incompressible Navier–Stokes equations, Lecture Notes in Mathematics, vol. 1530. Springer, Berlin (1991) Rannacher, R.: On Chorin’s projection method for the incompressible Navier–Stokes equations, Lecture Notes in Mathematics, vol. 1530. Springer, Berlin (1991)
34.
Zurück zum Zitat Restelli, M., Bonaventura, L., Sacco, R.: A semi-Lagrangian discontinuous Galerkin method for scalar advection by incompressible flows. J. Comput. Phys. 216(1), 195–215 (2006)MathSciNetCrossRefMATH Restelli, M., Bonaventura, L., Sacco, R.: A semi-Lagrangian discontinuous Galerkin method for scalar advection by incompressible flows. J. Comput. Phys. 216(1), 195–215 (2006)MathSciNetCrossRefMATH
35.
Zurück zum Zitat Shen, J.: On error estimates of projection methods for Navier–Stokes equations: first-order schemes. SIAM J. Numer. Anal. 29(1), 57–77 (1992)MathSciNetCrossRefMATH Shen, J.: On error estimates of projection methods for Navier–Stokes equations: first-order schemes. SIAM J. Numer. Anal. 29(1), 57–77 (1992)MathSciNetCrossRefMATH
36.
Zurück zum Zitat Témam, R.: Sur l’approximation de la solution des équations de Navier–Stokes par la méthode des pas fractionnaires. II. Arch. Ration. Mech. Anal. 33, 377–385 (1969)CrossRefMATH Témam, R.: Sur l’approximation de la solution des équations de Navier–Stokes par la méthode des pas fractionnaires. II. Arch. Ration. Mech. Anal. 33, 377–385 (1969)CrossRefMATH
37.
Zurück zum Zitat Xiu, D., Karniadakis, G.E.: A semi-Lagrangian high-order method for Navier–Stokes equations. J. Comput. Phys. 172(2), 658–684 (2001)MathSciNetCrossRefMATH Xiu, D., Karniadakis, G.E.: A semi-Lagrangian high-order method for Navier–Stokes equations. J. Comput. Phys. 172(2), 658–684 (2001)MathSciNetCrossRefMATH
Metadaten
Titel
High Order Semi-Lagrangian Methods for the Incompressible Navier–Stokes Equations
verfasst von
Elena Celledoni
Bawfeh Kingsley Kometa
Olivier Verdier
Publikationsdatum
28.03.2015
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 1/2016
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-015-0015-6

Weitere Artikel der Ausgabe 1/2016

Journal of Scientific Computing 1/2016 Zur Ausgabe

Premium Partner