Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 2/2022

24-09-2021

Impact of Carbon Fiber Reinforcement on Mechanical and Tribological Behavior of 3D-Printed Polyethylene Terephthalate Glycol Polymer Composites—An Experimental Investigation

Authors: Aysha Farzana Kichloo, Ankush Raina, Mir Irfan Ul Haq, Mohd Shaharyar Wani

Published in: Journal of Materials Engineering and Performance | Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, PETG-based composite polymer using fused deposition modeling technique has been developed with carbon fiber (CF) as the reinforcement. The effect of the carbon fiber and the process parameters (layer thickness, infill pattern, infill percentage) on the tensile, flexural strength, and the tribological behavior of the developed composite polymer has been investigated. The study revealed that addition of carbon Fiber 20 wt.% as a reinforcement in PETG resulted in a composite which exhibited better tensile strength with maximum improvement of 114% for triangular pattern and minimum of 43.7% for full honeycomb pattern. The bending strength also enhanced in case of CFPETG with a maximum of 25% increase in flexural strength for full honeycomb. The tribological testing revealed substantial decrease in the COF with the addition of carbon fiber. A reduction of around 47.3% at low speeds (100 RPM) and around 44.79% reduction at high speeds (500 RPM) in COF was achieved in comparison to PETG. The fractographic analysis and worn surface analysis revealed distinct fracture modes and wear mechanisms for different composite samples suggesting the role of CF in improving the properties of the developed composites. The study revealed that the developed 3D printed composite could help to widen the scope of PETG as an engineering material.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M.I.U. Haq, S. Khuroo, A. Raina, S. Khajuria, M. Javaid, M.F.U. Haq et al., 3D Printing for Development of Medical Equipment Amidst Coronavirus (COVID-19) Pandemic—Review and Advancements, Res. Biomed. Eng. 2020, p. 1-11 M.I.U. Haq, S. Khuroo, A. Raina, S. Khajuria, M. Javaid, M.F.U. Haq et al., 3D Printing for Development of Medical Equipment Amidst Coronavirus (COVID-19) Pandemic—Review and Advancements, Res. Biomed. Eng. 2020, p. 1-11
2.
go back to reference A. Chadha, M.I.U. Haq, A. Raina, R.R. Singh, N.B. Penumarti and M.S. Bishnoi, Effect of Fused Deposition Modelling Process Parameters on Mechanical Properties of 3D Printed Parts, World J. Eng. 2019 A. Chadha, M.I.U. Haq, A. Raina, R.R. Singh, N.B. Penumarti and M.S. Bishnoi, Effect of Fused Deposition Modelling Process Parameters on Mechanical Properties of 3D Printed Parts, World J. Eng. 2019
3.
go back to reference Z.U. Baba, W.K. Shafi, M.I.U. Haq and A. Raina, Towards Sustainable Automobiles-Advancements and Challenges, Prog. Ind. Ecol. an Int. J., 2019, 13, p 315–331.CrossRef Z.U. Baba, W.K. Shafi, M.I.U. Haq and A. Raina, Towards Sustainable Automobiles-Advancements and Challenges, Prog. Ind. Ecol. an Int. J., 2019, 13, p 315–331.CrossRef
4.
go back to reference D. 1. Yang, C., Cao, Y., Shi, C., Li, A Controlled Cold Deposition 3D Printing Method for PEEK Materials D. 1. Yang, C., Cao, Y., Shi, C., Li, A Controlled Cold Deposition 3D Printing Method for PEEK Materials
5.
go back to reference C. Cozmei and F. Caloian, Additive Manufacturing Flickering at the Beginning of Existence, Procedia Econ. Financ., 2012, 3, p 457–462.CrossRef C. Cozmei and F. Caloian, Additive Manufacturing Flickering at the Beginning of Existence, Procedia Econ. Financ., 2012, 3, p 457–462.CrossRef
6.
go back to reference C.W.J. Lim, K.Q. Le, Q. Lu and C.H. Wong, An Overview of 3-D Printing in Manufacturing, Aerospace, and Automotive Industries, IEEE Potentials, 2016, 35, p 18–22.CrossRef C.W.J. Lim, K.Q. Le, Q. Lu and C.H. Wong, An Overview of 3-D Printing in Manufacturing, Aerospace, and Automotive Industries, IEEE Potentials, 2016, 35, p 18–22.CrossRef
7.
go back to reference L. Zhu, N. Li and P.R.N. Childs, Light-Weighting in Aerospace Component and System Design, Propuls. Power Res., 2018, 7, p 103–119.CrossRef L. Zhu, N. Li and P.R.N. Childs, Light-Weighting in Aerospace Component and System Design, Propuls. Power Res., 2018, 7, p 103–119.CrossRef
8.
go back to reference T.Q. Duong, E. Korolev and A. Inozemtcev, Selection of Reinforcing Fiber for High-strength Lightweight Concrete for 3D-Printing, in IOP Conference Series: Materials Science and Engineering, 2021 1030, p 12007 T.Q. Duong, E. Korolev and A. Inozemtcev, Selection of Reinforcing Fiber for High-strength Lightweight Concrete for 3D-Printing, in IOP Conference Series: Materials Science and Engineering, 2021 1030, p 12007
9.
go back to reference O.A. Mohamed, S.H. Masood and J.L. Bhowmik, Optimization of Fused Deposition Modeling Process Parameters: A Review of Current Research and Future Prospects, Adv. Manuf., 2015, 3, p 42–53.CrossRef O.A. Mohamed, S.H. Masood and J.L. Bhowmik, Optimization of Fused Deposition Modeling Process Parameters: A Review of Current Research and Future Prospects, Adv. Manuf., 2015, 3, p 42–53.CrossRef
10.
go back to reference S.-H. Ahn, M. Montero, D. Odell, S. Roundy and P.K. Wright, Anisotropic Material Properties of Fused Deposition Modeling ABS, Rapid Prototyp. J., 2002, 8, p 248–257.CrossRef S.-H. Ahn, M. Montero, D. Odell, S. Roundy and P.K. Wright, Anisotropic Material Properties of Fused Deposition Modeling ABS, Rapid Prototyp. J., 2002, 8, p 248–257.CrossRef
11.
go back to reference J.S. Chohan, R. Singh, K.S. Boparai, R. Penna and F. Fraternali, Dimensional Accuracy Analysis of Coupled Fused Deposition Modeling and Vapour Smoothing Operations for Biomedical Applications, Compos. Part B Eng., 2017, 117, p 138–149.CrossRef J.S. Chohan, R. Singh, K.S. Boparai, R. Penna and F. Fraternali, Dimensional Accuracy Analysis of Coupled Fused Deposition Modeling and Vapour Smoothing Operations for Biomedical Applications, Compos. Part B Eng., 2017, 117, p 138–149.CrossRef
12.
go back to reference J. Jordan, K.I. Jacob, R. Tannenbaum, M.A. Sharaf and I. Jasiuk, Experimental Trends in Polymer Nanocomposites—A Review, Mater. Sci. Eng. A, 2005, 393, p 1–11.CrossRef J. Jordan, K.I. Jacob, R. Tannenbaum, M.A. Sharaf and I. Jasiuk, Experimental Trends in Polymer Nanocomposites—A Review, Mater. Sci. Eng. A, 2005, 393, p 1–11.CrossRef
13.
go back to reference A.K. Sood, R.K. Ohdar and S.S. Mahapatra, Parametric Appraisal of Mechanical Property of Fused Deposition Modelling Processed Parts, Mater. Des., 2010, 31, p 287–295.CrossRef A.K. Sood, R.K. Ohdar and S.S. Mahapatra, Parametric Appraisal of Mechanical Property of Fused Deposition Modelling Processed Parts, Mater. Des., 2010, 31, p 287–295.CrossRef
14.
go back to reference J.N. Coleman, U. Khan and Y.K. Gunko, Mechanical Reinforcement of Polymers Using Carbon Nanotubes, Adv. Mater., 2006, 18, p 689–706.CrossRef J.N. Coleman, U. Khan and Y.K. Gunko, Mechanical Reinforcement of Polymers Using Carbon Nanotubes, Adv. Mater., 2006, 18, p 689–706.CrossRef
15.
go back to reference A. Sharma, S. Kumar, B. Tripathi, M. Singh and Y.K. Vijay, Aligned CNT/Polymer Nanocomposite Membranes for Hydrogen Separation, Int. J. Hydrogen Energy, 2009, 34, p 3977–3982.CrossRef A. Sharma, S. Kumar, B. Tripathi, M. Singh and Y.K. Vijay, Aligned CNT/Polymer Nanocomposite Membranes for Hydrogen Separation, Int. J. Hydrogen Energy, 2009, 34, p 3977–3982.CrossRef
16.
go back to reference J. Barrios-Muriel, F. Romero-Sánchez, F.J. Alonso-Sánchez and D. Rodriguez Salgado, Advances in Orthotic and Prosthetic Manufacturing: A Technology Review, Materials (Basel), 2020, 13, p 295.CrossRef J. Barrios-Muriel, F. Romero-Sánchez, F.J. Alonso-Sánchez and D. Rodriguez Salgado, Advances in Orthotic and Prosthetic Manufacturing: A Technology Review, Materials (Basel), 2020, 13, p 295.CrossRef
17.
go back to reference F. Klocke, A. Klink, D. Veselovac, D.K. Aspinwall, S.L. Soo, M. Schmidt et al., Turbomachinery Component Manufacture by Application of Electrochemical, Electro-Physical and Photonic Processes, CIRP Ann., 2014, 63, p 703–726.CrossRef F. Klocke, A. Klink, D. Veselovac, D.K. Aspinwall, S.L. Soo, M. Schmidt et al., Turbomachinery Component Manufacture by Application of Electrochemical, Electro-Physical and Photonic Processes, CIRP Ann., 2014, 63, p 703–726.CrossRef
18.
go back to reference J. Spale, V. Novotny, V. Mares and A.P. Weiß, 3D Printed Radial Impulse Cantilever Micro-Turboexpander for Preliminary Air Testing, in AIP Conference Proceedings, 2021, 2323, p 70002. J. Spale, V. Novotny, V. Mares and A.P. Weiß, 3D Printed Radial Impulse Cantilever Micro-Turboexpander for Preliminary Air Testing, in AIP Conference Proceedings, 2021, 2323, p 70002.
19.
go back to reference U.R. Tuzkaya et al., A Single Side Priority Based GA Approach for 3D Printing Center Integration to Spare Part Supply Chain in Automotive Industry, Teh. Vjesn. 2021, 28, 836–844. U.R. Tuzkaya et al., A Single Side Priority Based GA Approach for 3D Printing Center Integration to Spare Part Supply Chain in Automotive Industry, Teh. Vjesn. 2021, 28, 836–844.
20.
go back to reference C. De Vries, Volkswagen Autoeuropa: Maximizing production efficiency with 3D printed tools, jigs, and fixtures, Ultim. https//ultimaker.com/en/stories/43969-volkswagen-autoeuropa-maximizing-production-efficiency-with-3d-printed-tools-jigsand-fixtures (access 3/3/2019) (2017) C. De Vries, Volkswagen Autoeuropa: Maximizing production efficiency with 3D printed tools, jigs, and fixtures, Ultim. https//ultimaker.com/en/stories/43969-volkswagen-autoeuropa-maximizing-production-efficiency-with-3d-printed-tools-jigsand-fixtures (access 3/3/2019) (2017)
21.
go back to reference A.F. Kichloo, R. Aziz, M.I.U. Haq and A. Raina, Mechanical and Physical Behaviour of 3D printed Polymer Nanocomposites-A Review, Int. J. Ind. Syst. Eng., 2021, 38, p 484–502. A.F. Kichloo, R. Aziz, M.I.U. Haq and A. Raina, Mechanical and Physical Behaviour of 3D printed Polymer Nanocomposites-A Review, Int. J. Ind. Syst. Eng., 2021, 38, p 484–502.
22.
go back to reference A.D. Mazurchevici, D. Nedelcu, R. Popa et al., Additive Manufacturing of Composite Materials by FDM Technology: A Review, Indian J. Eng. Mater. Sci., 2021, 27, p 179–192. A.D. Mazurchevici, D. Nedelcu, R. Popa et al., Additive Manufacturing of Composite Materials by FDM Technology: A Review, Indian J. Eng. Mater. Sci., 2021, 27, p 179–192.
23.
go back to reference ASTM, Standard Terminology for Additive manufacturing -General Principles-Terminology. ASTM ISO/ASTM52900-15.West Conshohocken, (2015) ASTM, Standard Terminology for Additive manufacturing -General Principles-Terminology. ASTM ISO/ASTM52900-15.West Conshohocken, (2015)
24.
go back to reference R. Aziz, M.I.U. Haq and A. Raina, Effect of Surface Texturing on Friction Behaviour of 3D Printed Polylactic Acid (PLA), Polym. Test., 2020, 85, p 106434.CrossRef R. Aziz, M.I.U. Haq and A. Raina, Effect of Surface Texturing on Friction Behaviour of 3D Printed Polylactic Acid (PLA), Polym. Test., 2020, 85, p 106434.CrossRef
25.
go back to reference W.S.W. Harun, S. Sharif, M.H. Idris and K. Kadirgama, Characteristic Studies of Collapsibility of ABS Patterns Produced from FDM for Investment Casting, Mater. Res. Innov., 2009, 13, p 340–343.CrossRef W.S.W. Harun, S. Sharif, M.H. Idris and K. Kadirgama, Characteristic Studies of Collapsibility of ABS Patterns Produced from FDM for Investment Casting, Mater. Res. Innov., 2009, 13, p 340–343.CrossRef
26.
go back to reference N. Naveed, Investigate the Effects of Process Parameters on Material Properties and Microstructural Changes of 3D-Printed Specimens using Fused Deposition Modelling (FDM), Mater. Technol. 2020, p 1-14. N. Naveed, Investigate the Effects of Process Parameters on Material Properties and Microstructural Changes of 3D-Printed Specimens using Fused Deposition Modelling (FDM), Mater. Technol. 2020, p 1-14.
27.
go back to reference N. Naveed, Investigating the Material Properties and Microstructural Changes of Fused Filament Fabricated PLA and Tough-PLA Parts, Polymers (Basel)., 2021, 13, p 1487.CrossRef N. Naveed, Investigating the Material Properties and Microstructural Changes of Fused Filament Fabricated PLA and Tough-PLA Parts, Polymers (Basel)., 2021, 13, p 1487.CrossRef
28.
go back to reference X. Tian, T. Liu, C. Yang, Q. Wang and D. Li, Interface and Performance of 3D Printed Continuous Carbon Fiber Reinforced PLA Composites, Compos. Part A Appl. Sci. Manuf., 2016, 88, p 198–205.CrossRef X. Tian, T. Liu, C. Yang, Q. Wang and D. Li, Interface and Performance of 3D Printed Continuous Carbon Fiber Reinforced PLA Composites, Compos. Part A Appl. Sci. Manuf., 2016, 88, p 198–205.CrossRef
29.
go back to reference R. Kumar, M. I. Ul Haq, A. Raina, and A. Anand, Industrial Applications of Natural Fiber Reinforced Polymer Composites - Challenges and Opportunities, J. Sustain. Eng. 2018 R. Kumar, M. I. Ul Haq, A. Raina, and A. Anand, Industrial Applications of Natural Fiber Reinforced Polymer Composites - Challenges and Opportunities, J. Sustain. Eng. 2018
30.
go back to reference A.C. de Leon, Q. Chen, N.B. Palaganas, J.O. Palaganas, J. Manapat and R.C. Advincula, High Performance Polymer Nanocomposites for Additive Manufacturing Applications, React. Funct. Polym., 2016, 103, p 141–155.CrossRef A.C. de Leon, Q. Chen, N.B. Palaganas, J.O. Palaganas, J. Manapat and R.C. Advincula, High Performance Polymer Nanocomposites for Additive Manufacturing Applications, React. Funct. Polym., 2016, 103, p 141–155.CrossRef
31.
go back to reference W. Zhong, F. Li, Z. Zhang, L. Song and Z. Li, Short Fiber Reinforced Composites for Fused Deposition Modeling, Mater. Sci. Eng. A, 2001, 301, p 125–130.CrossRef W. Zhong, F. Li, Z. Zhang, L. Song and Z. Li, Short Fiber Reinforced Composites for Fused Deposition Modeling, Mater. Sci. Eng. A, 2001, 301, p 125–130.CrossRef
32.
go back to reference S. Dul, L. Fambri and A. Pegoretti, Filaments Production and Fused Deposition Modelling of ABS/Carbon Nanotubes Composites, Nanomaterials, 2018, 8, p 49.CrossRef S. Dul, L. Fambri and A. Pegoretti, Filaments Production and Fused Deposition Modelling of ABS/Carbon Nanotubes Composites, Nanomaterials, 2018, 8, p 49.CrossRef
33.
go back to reference V.C. Gavali, P.R. Kubade and H.B. Kulkarni, Mechanical and Thermomechanical Properties of Carbon Fibre Reinforced Thermoplastic Composite Fabricated Using Fused Deposition Modelling (FDM) Method: A Review, Int. J. Mech. Prod. Eng. Res. Dev., 2018, 8, p 1161–1168. V.C. Gavali, P.R. Kubade and H.B. Kulkarni, Mechanical and Thermomechanical Properties of Carbon Fibre Reinforced Thermoplastic Composite Fabricated Using Fused Deposition Modelling (FDM) Method: A Review, Int. J. Mech. Prod. Eng. Res. Dev., 2018, 8, p 1161–1168.
34.
go back to reference R.T.L. Ferreira, I.C. Amatte, T.A. Dutra and D. Bürger, Experimental Characterization and Micrography of 3D Printed PLA and PLA Reinforced with Short Carbon Fibers, Compos. Part B Eng., 2017, 124, p 88–100.CrossRef R.T.L. Ferreira, I.C. Amatte, T.A. Dutra and D. Bürger, Experimental Characterization and Micrography of 3D Printed PLA and PLA Reinforced with Short Carbon Fibers, Compos. Part B Eng., 2017, 124, p 88–100.CrossRef
35.
go back to reference K. Prashantha and F. Roger, Multifunctional Properties of 3D Printed Poly (Lactic Acid)/Graphene Nanocomposites by Fused Deposition Modeling, J. Macromol. Sci. Part A, 2017, 54, p 24–29.CrossRef K. Prashantha and F. Roger, Multifunctional Properties of 3D Printed Poly (Lactic Acid)/Graphene Nanocomposites by Fused Deposition Modeling, J. Macromol. Sci. Part A, 2017, 54, p 24–29.CrossRef
36.
go back to reference B. Coppola, N. Cappetti, L. Di Maio, P. Scarfato and L. Incarnato, Influence of 3D Printing Parameters on the Properties of PLA/Clay Nanocomposites, AIP Conf. Proc., 1981, 2018, p 20064. B. Coppola, N. Cappetti, L. Di Maio, P. Scarfato and L. Incarnato, Influence of 3D Printing Parameters on the Properties of PLA/Clay Nanocomposites, AIP Conf. Proc., 1981, 2018, p 20064.
37.
go back to reference Y. Nakagawa, K. Mori and T. Maeno, 3D Printing of Carbon Fibre-Reinforced Plastic Parts, Int. J. Adv. Manuf. Technol., 2017, 91, p 2811–2817.CrossRef Y. Nakagawa, K. Mori and T. Maeno, 3D Printing of Carbon Fibre-Reinforced Plastic Parts, Int. J. Adv. Manuf. Technol., 2017, 91, p 2811–2817.CrossRef
38.
go back to reference C. Yang, X. Tian, T. Liu, Y. Cao and D. Li, 3D Printing for Continuous Fiber Reinforced Thermoplastic Composites: Mechanism and Performance, Rapid Prototyp. J., 2017, 23, p 209–215.CrossRef C. Yang, X. Tian, T. Liu, Y. Cao and D. Li, 3D Printing for Continuous Fiber Reinforced Thermoplastic Composites: Mechanism and Performance, Rapid Prototyp. J., 2017, 23, p 209–215.CrossRef
39.
go back to reference I. Ferreira, D. Vale, M. Machado and J. Lino, Additive Manufacturing of Polyethylene Terephthalate Glycol/Carbon Fiber Composites: An Experimental Study from Filament to Printed Parts, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2018, p. 1464420718795197. I. Ferreira, D. Vale, M. Machado and J. Lino, Additive Manufacturing of Polyethylene Terephthalate Glycol/Carbon Fiber Composites: An Experimental Study from Filament to Printed Parts, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2018, p. 1464420718795197.
40.
go back to reference S. Berretta, R. Davies, Y.T. Shyng, Y. Wang and O. Ghita, Fused Deposition Modelling of High Temperature Polymers: Exploring CNT PEEK Composites, Polym. Test., 2017, 63, p 251–262.CrossRef S. Berretta, R. Davies, Y.T. Shyng, Y. Wang and O. Ghita, Fused Deposition Modelling of High Temperature Polymers: Exploring CNT PEEK Composites, Polym. Test., 2017, 63, p 251–262.CrossRef
41.
go back to reference R. Singh, N. Singh, A. Amendola and F. Fraternali, On the Wear Properties of Nylon6-SiC-Al2O3 Based Fused Deposition Modelling Feed Stock Filament, Compos. Part B Eng., 2017, 119, p 125–131.CrossRef R. Singh, N. Singh, A. Amendola and F. Fraternali, On the Wear Properties of Nylon6-SiC-Al2O3 Based Fused Deposition Modelling Feed Stock Filament, Compos. Part B Eng., 2017, 119, p 125–131.CrossRef
42.
go back to reference O.A. Mohamed, S.H. Masood and J.L. Bhowmik, A Parametric Investigation of the Friction Performance of PC-ABS Parts Processed by FDM Additive Manufacturing Process, Polym. Adv. Technol., 2017, 28, p 1911–1918.CrossRef O.A. Mohamed, S.H. Masood and J.L. Bhowmik, A Parametric Investigation of the Friction Performance of PC-ABS Parts Processed by FDM Additive Manufacturing Process, Polym. Adv. Technol., 2017, 28, p 1911–1918.CrossRef
43.
go back to reference O.A. Mohamed, S.H. Masood and J.L. Bhowmik, Analysis of Wear Behavior of Additively Manufactured PC-ABS Parts, Mater. Lett., 2018, 230, p 261–265.CrossRef O.A. Mohamed, S.H. Masood and J.L. Bhowmik, Analysis of Wear Behavior of Additively Manufactured PC-ABS Parts, Mater. Lett., 2018, 230, p 261–265.CrossRef
44.
go back to reference K.S. Boparai and R. Singh, Investigations for Enhancing Wear Properties of Rapid Tooling by Reinforcement of Nanoscale Fillers for Grinding Applications, J. Micro Nano-Manufacturing, 2018, 6, p 21004.CrossRef K.S. Boparai and R. Singh, Investigations for Enhancing Wear Properties of Rapid Tooling by Reinforcement of Nanoscale Fillers for Grinding Applications, J. Micro Nano-Manufacturing, 2018, 6, p 21004.CrossRef
45.
go back to reference J. Bustillos, D. Montero, P. Nautiyal, A. Loganathan, B. Boesl and A. Agarwal, Integration of Graphene in Poly (Lactic) Acid by 3D Printing to Develop Creep and Wear-Resistant Hierarchical Nanocomposites, Polym. Compos., 2018, 39, p 3877–3888.CrossRef J. Bustillos, D. Montero, P. Nautiyal, A. Loganathan, B. Boesl and A. Agarwal, Integration of Graphene in Poly (Lactic) Acid by 3D Printing to Develop Creep and Wear-Resistant Hierarchical Nanocomposites, Polym. Compos., 2018, 39, p 3877–3888.CrossRef
46.
go back to reference E.G. Ertane, A. Dorner-Reisel, O. Baran, T. Welzel, V. Matner and S. Svoboda, Processing and Wear Behaviour of 3D Printed PLA Reinforced with Biogenic Carbon, Adv. Tribol. 2018, 2018 E.G. Ertane, A. Dorner-Reisel, O. Baran, T. Welzel, V. Matner and S. Svoboda, Processing and Wear Behaviour of 3D Printed PLA Reinforced with Biogenic Carbon, Adv. Tribol. 2018, 2018
47.
go back to reference K. Wang, X. Xie, J. Wang, A. Zhao, Y. Peng and Y. Rao, Effects of Infill Characteristics and Strain Rate on the Deformation and Failure Properties of Additively Manufactured Polyamide-Based Composite Structures, Results Phys., 2020, 18, p 103346.CrossRef K. Wang, X. Xie, J. Wang, A. Zhao, Y. Peng and Y. Rao, Effects of Infill Characteristics and Strain Rate on the Deformation and Failure Properties of Additively Manufactured Polyamide-Based Composite Structures, Results Phys., 2020, 18, p 103346.CrossRef
48.
go back to reference M. Kamaal, M. Anas, H. Rastogi, N. Bhardwaj and A. Rahaman, Effect of FDM Process Parameters on Mechanical Properties of 3D-Printed Carbon Fibre–PLA Composite, Prog. Addit. Manuf., 2021, 6, p 63–69.CrossRef M. Kamaal, M. Anas, H. Rastogi, N. Bhardwaj and A. Rahaman, Effect of FDM Process Parameters on Mechanical Properties of 3D-Printed Carbon Fibre–PLA Composite, Prog. Addit. Manuf., 2021, 6, p 63–69.CrossRef
49.
go back to reference M. Nachtane, M. Tarfaoui, Y. Ledoux, S. Khammassi, E. Leneveu and J. Pelleter, Experimental Investigation on the Dynamic Behavior of 3D Printed CF-PEKK Composite Under Cyclic Uniaxial Compression, Compos. Struct., 2020, 247, p 112474.CrossRef M. Nachtane, M. Tarfaoui, Y. Ledoux, S. Khammassi, E. Leneveu and J. Pelleter, Experimental Investigation on the Dynamic Behavior of 3D Printed CF-PEKK Composite Under Cyclic Uniaxial Compression, Compos. Struct., 2020, 247, p 112474.CrossRef
50.
go back to reference K.S. Kumar, R. Soundararajan, G. Shanthosh, P. Saravanakumar and M. Ratteesh, Augmenting Effect of Infill Density and Annealing on Mechanical Properties of PETG and CFPETG Composites Fabricated by FDM, Mater. Today Proc., 2021, 45, p 2186–2191.CrossRef K.S. Kumar, R. Soundararajan, G. Shanthosh, P. Saravanakumar and M. Ratteesh, Augmenting Effect of Infill Density and Annealing on Mechanical Properties of PETG and CFPETG Composites Fabricated by FDM, Mater. Today Proc., 2021, 45, p 2186–2191.CrossRef
51.
go back to reference K.A.M. Menderes, A. Ipekçi and H. Saruhan, Investigation of 3d Printing Filling Structures Effect on Mechanical Properties and Surface Roughness of PET-G Material Products, Gaziosmanpacsa Bilim. Aracstirma Derg., 2017, 6, p 114–121. K.A.M. Menderes, A. Ipekçi and H. Saruhan, Investigation of 3d Printing Filling Structures Effect on Mechanical Properties and Surface Roughness of PET-G Material Products, Gaziosmanpacsa Bilim. Aracstirma Derg., 2017, 6, p 114–121.
52.
go back to reference U.K. uz Zaman, E. Boesch, A. Siadat, M. Rivette and A.A. Baqai, Impact of Fused Deposition Modeling (FDM) Process Parameters on Strength of Built Parts Using Taguchi—s Design of Experiments, Int. J. Adv. Manuf. Technol. 2018, p. 1-12. U.K. uz Zaman, E. Boesch, A. Siadat, M. Rivette and A.A. Baqai, Impact of Fused Deposition Modeling (FDM) Process Parameters on Strength of Built Parts Using Taguchi—s Design of Experiments, Int. J. Adv. Manuf. Technol. 2018, p. 1-12.
53.
go back to reference M. Fernandez-Vicente, W. Calle, S. Ferrandiz and A. Conejero, Effect of Infill Parameters on Tensile Mechanical Behavior in Desktop 3D Printing, 3D Print Addit. Manuf., 2016, 3, p 183–192.CrossRef M. Fernandez-Vicente, W. Calle, S. Ferrandiz and A. Conejero, Effect of Infill Parameters on Tensile Mechanical Behavior in Desktop 3D Printing, 3D Print Addit. Manuf., 2016, 3, p 183–192.CrossRef
54.
go back to reference S. Tandon, R. Kacker and K.G. Sudhakar, Experimental Investigation on Tensile Properties of the Polymer and Composite Specimens Printed in a Triangular Pattern, J. Manuf. Process., 2021, 68, p 706–715.CrossRef S. Tandon, R. Kacker and K.G. Sudhakar, Experimental Investigation on Tensile Properties of the Polymer and Composite Specimens Printed in a Triangular Pattern, J. Manuf. Process., 2021, 68, p 706–715.CrossRef
55.
go back to reference H. Li, T. Wang, J. Sun and Z. Yu, The Effect of Process Parameters in Fused Deposition Modelling on Bonding Degree and Mechanical Properties, Rapid Prototyp. J., 2018, 24, p 80–92.CrossRef H. Li, T. Wang, J. Sun and Z. Yu, The Effect of Process Parameters in Fused Deposition Modelling on Bonding Degree and Mechanical Properties, Rapid Prototyp. J., 2018, 24, p 80–92.CrossRef
56.
go back to reference C. Alvarez, L. Kenny, C. Lagos, F. Rodrigo and M. Aizpun, Investigating the Influence of Infill Percentage on the Mechanical Properties of Fused Deposition Modelled ABS Parts, Ing. Investig., 2016, 36, p 110–116. C. Alvarez, L. Kenny, C. Lagos, F. Rodrigo and M. Aizpun, Investigating the Influence of Infill Percentage on the Mechanical Properties of Fused Deposition Modelled ABS Parts, Ing. Investig., 2016, 36, p 110–116.
57.
go back to reference S. Hwang, E.I. Reyes, K. Moon, R.C. Rumpf and N.S. Kim, Thermo-Mechanical Characterization of Metal/Polymer Composite Filaments and Printing Parameter Study for Fused Deposition Modeling in the 3D Printing Process, J. Electron. Mater., 2015, 44, p 771–777.CrossRef S. Hwang, E.I. Reyes, K. Moon, R.C. Rumpf and N.S. Kim, Thermo-Mechanical Characterization of Metal/Polymer Composite Filaments and Printing Parameter Study for Fused Deposition Modeling in the 3D Printing Process, J. Electron. Mater., 2015, 44, p 771–777.CrossRef
58.
go back to reference A. Lanzotti, M. Grasso, G. Staiano and M. Martorelli, The Impact of Process Parameters on Mechanical Properties of Parts Fabricated in PLA with an Open-Source 3-D Printer, Rapid Prototyp. J., 2015, 21, p 604–617.CrossRef A. Lanzotti, M. Grasso, G. Staiano and M. Martorelli, The Impact of Process Parameters on Mechanical Properties of Parts Fabricated in PLA with an Open-Source 3-D Printer, Rapid Prototyp. J., 2015, 21, p 604–617.CrossRef
59.
go back to reference T. Hofstätter, I.W. Gutmann, T. Koch, D.B. Pedersen, G. Tosello, G. Heinz et al., Distribution and Orientation of Carbon Fibers in Polylactic, Proc. ASPE Summer Top. Meet. 2016 T. Hofstätter, I.W. Gutmann, T. Koch, D.B. Pedersen, G. Tosello, G. Heinz et al., Distribution and Orientation of Carbon Fibers in Polylactic, Proc. ASPE Summer Top. Meet. 2016
60.
go back to reference S. Meng, H. He, Y. Jia, P. Yu, B. Huang and J. Chen, Effect of Nanoparticles on the Mechanical Properties of Acrylonitrile--Butadiene--Styrene Specimens Fabricated by Fused Deposition Modeling, J. Appl. Polym. Sci. 2017, 134 S. Meng, H. He, Y. Jia, P. Yu, B. Huang and J. Chen, Effect of Nanoparticles on the Mechanical Properties of Acrylonitrile--Butadiene--Styrene Specimens Fabricated by Fused Deposition Modeling, J. Appl. Polym. Sci. 2017, 134
61.
go back to reference C. Giovedi, L.D.B. Machado, M. Augusto, E.S. Pino and P. Radino, Evaluation of the Mechanical Properties of Carbon Fiber after Electron Beam Irradiation, Nucl. Inst. Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, 2005, 236, p 526–530.CrossRef C. Giovedi, L.D.B. Machado, M. Augusto, E.S. Pino and P. Radino, Evaluation of the Mechanical Properties of Carbon Fiber after Electron Beam Irradiation, Nucl. Inst. Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, 2005, 236, p 526–530.CrossRef
62.
go back to reference A.K. Sood, V. Chaturvedi, S. Datta and S.S. Mahapatra, Optimization of Process Parameters in Fused Deposition Modeling Using Weighted Principal Component Analysis, J. Adv. Manuf. Syst., 2011, 10, p 241–259.CrossRef A.K. Sood, V. Chaturvedi, S. Datta and S.S. Mahapatra, Optimization of Process Parameters in Fused Deposition Modeling Using Weighted Principal Component Analysis, J. Adv. Manuf. Syst., 2011, 10, p 241–259.CrossRef
63.
go back to reference X. Yao, C. Luan, D. Zhang, L. Lan and J. Fu, Evaluation of Carbon Fiber-Embedded 3D Printed Structures for Strengthening and Structural-Health Monitoring, Mater. Des., 2017, 114, p 424–432.CrossRef X. Yao, C. Luan, D. Zhang, L. Lan and J. Fu, Evaluation of Carbon Fiber-Embedded 3D Printed Structures for Strengthening and Structural-Health Monitoring, Mater. Des., 2017, 114, p 424–432.CrossRef
64.
go back to reference O. Luzanin, V. Guduric, I. Ristic and S. Muhic, Investigating Impact of Five Build Parameters on the Maximum Flexural Force in FDM Specimens–a Definitive Screening Design Approach, Rapid Prototyp. J., 2017, 23, p 1088–1098.CrossRef O. Luzanin, V. Guduric, I. Ristic and S. Muhic, Investigating Impact of Five Build Parameters on the Maximum Flexural Force in FDM Specimens–a Definitive Screening Design Approach, Rapid Prototyp. J., 2017, 23, p 1088–1098.CrossRef
65.
go back to reference N. Li, Y. Li and S. Liu, Rapid Prototyping of Continuous Carbon Fiber Reinforced Polylactic Acid Composites by 3D Printing, J. Mater. Process. Technol., 2016, 238, p 218–225.CrossRef N. Li, Y. Li and S. Liu, Rapid Prototyping of Continuous Carbon Fiber Reinforced Polylactic Acid Composites by 3D Printing, J. Mater. Process. Technol., 2016, 238, p 218–225.CrossRef
66.
go back to reference G. Wypych, The Effect of Fillers on the Mechanical Properties of Filled Materials, Handbook of Fillers, 2016 G. Wypych, The Effect of Fillers on the Mechanical Properties of Filled Materials, Handbook of Fillers, 2016
67.
go back to reference M.I.U. Haq and A. Anand, Dry Sliding Friction and Wear Behaviour of Hybrid AA7075/Si3N4/Gr Self Lubricating Composites, Mater. Res. Express, 2018 M.I.U. Haq and A. Anand, Dry Sliding Friction and Wear Behaviour of Hybrid AA7075/Si3N4/Gr Self Lubricating Composites, Mater. Res. Express, 2018
68.
go back to reference Wear principles and resistance of materials. Beijing: Tsinghua University Press, 1993 Wear principles and resistance of materials. Beijing: Tsinghua University Press, 1993
69.
go back to reference R. Reinicke, F. Haupert and K. Friedrich, On the Tribological Behaviour of Selected, Injection Moulded Thermoplastic Composites, Compos. Part A Appl. Sci. Manuf., 1998, 29, p 763–771.CrossRef R. Reinicke, F. Haupert and K. Friedrich, On the Tribological Behaviour of Selected, Injection Moulded Thermoplastic Composites, Compos. Part A Appl. Sci. Manuf., 1998, 29, p 763–771.CrossRef
70.
go back to reference M.I. Ul Haq and A. Anand, Dry Sliding Friction and Wear Behaviour of Hybrid AA7075/Si3N4/Gr Self Lubricating Composites, Mater. Res. Express, 2018, 5, p 066544.CrossRef M.I. Ul Haq and A. Anand, Dry Sliding Friction and Wear Behaviour of Hybrid AA7075/Si3N4/Gr Self Lubricating Composites, Mater. Res. Express, 2018, 5, p 066544.CrossRef
71.
go back to reference M.I. Ul Haq, A. Raina, S. Mohan, A. Anand and M.F. Bin Abdollah, Potential of AA7075 as a Tribological Material for Industrial Applications-A Review, (2021) M.I. Ul Haq, A. Raina, S. Mohan, A. Anand and M.F. Bin Abdollah, Potential of AA7075 as a Tribological Material for Industrial Applications-A Review, (2021)
72.
go back to reference H.K. Garg and R. Singh, Comparison of Wear Behavior of ABS and Nylon6—Fe Powder Composite Parts Prepared with Fused Deposition Modelling, J. Cent. South Univ., 2015, 22, p 3705–3711.CrossRef H.K. Garg and R. Singh, Comparison of Wear Behavior of ABS and Nylon6—Fe Powder Composite Parts Prepared with Fused Deposition Modelling, J. Cent. South Univ., 2015, 22, p 3705–3711.CrossRef
73.
go back to reference K.C. Ludema and D. Tabor, The Friction and Visco-Elastic Properties of Polymeric Solids, Wear, 1966, 9, p 329–348.CrossRef K.C. Ludema and D. Tabor, The Friction and Visco-Elastic Properties of Polymeric Solids, Wear, 1966, 9, p 329–348.CrossRef
74.
go back to reference M.I. Ul Haq and A. Anand, Friction and Wear Behavior of AA 7075- Si3N4 Composites Under Dry Conditions: Effect of Sliding Speed, Silicon, 2018 M.I. Ul Haq and A. Anand, Friction and Wear Behavior of AA 7075- Si3N4 Composites Under Dry Conditions: Effect of Sliding Speed, Silicon, 2018
75.
go back to reference T.S. Barrett, G.W. Stachowiak and A.W. Batchelor, Effect of Roughness and Sliding Speed on the Wear and Friction of Ultra-High Molecular Weight Polyethylene, Wear, 1992, 153, p 331–350.CrossRef T.S. Barrett, G.W. Stachowiak and A.W. Batchelor, Effect of Roughness and Sliding Speed on the Wear and Friction of Ultra-High Molecular Weight Polyethylene, Wear, 1992, 153, p 331–350.CrossRef
76.
go back to reference E. Santner and H. Czichos, Tribology of Polymers, Tribol. Int., 1989, 22, p 103–109.CrossRef E. Santner and H. Czichos, Tribology of Polymers, Tribol. Int., 1989, 22, p 103–109.CrossRef
Metadata
Title
Impact of Carbon Fiber Reinforcement on Mechanical and Tribological Behavior of 3D-Printed Polyethylene Terephthalate Glycol Polymer Composites—An Experimental Investigation
Authors
Aysha Farzana Kichloo
Ankush Raina
Mir Irfan Ul Haq
Mohd Shaharyar Wani
Publication date
24-09-2021
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 2/2022
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06262-6

Other articles of this Issue 2/2022

Journal of Materials Engineering and Performance 2/2022 Go to the issue

Premium Partners