Skip to main content
Top
Published in: Metallurgical and Materials Transactions B 3/2017

08-03-2017

Large-Eddy Simulation of Transient Horizontal Gas–Liquid Flow in Continuous Casting Using Dynamic Subgrid-Scale Model

Authors: Zhongqiu Liu, Baokuan Li

Published in: Metallurgical and Materials Transactions B | Issue 3/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Euler–Euler simulations of transient horizontal gas–liquid flow in a continuous-casting mold are presented. The predictions were compared with previous experimental measurements by two-channel laser Doppler velocimeter. Simulations were performed to understand the sensitivity to different turbulence closure models [kɛ, shear stress transport (SST), Reynolds stress model (RSM), and large-eddy simulation (LES)] and different interfacial forces (drag, lift, virtual mass, wall lubrication, and turbulent dispersion). It was found that the LES model showed better agreement than the other turbulence models in predicting the velocity components of the liquid phase. Furthermore, an appropriate drag force coefficient model, lift force coefficient model, and virtual mass force coefficient were chosen. Meanwhile, the wall lubrication force and turbulent dispersion force did not have much effect on the current gas–liquid two-phase system. This work highlights the importance of choosing an appropriate bubble size in accordance with experiment. Finally, coupled with the optimized interfacial force models and bubble size, LES with a dynamic subgrid model was used to calculate the transient two-phase turbulent flow inside the mold. More instantaneous details of the two-phase flow characteristics in the mold were captured by LES, including multiscale vortex structures, fluctuation characteristics, and the vorticity distribution. The LES model can also be used to describe the time-averaged gas–liquid flow field, giving reasonably good agreement with mean experimental data. Thus, LES can be used effectively to study transient two-phase flow inside molds.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Iguchi and N. Kashi: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 453–60.CrossRef M. Iguchi and N. Kashi: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 453–60.CrossRef
2.
go back to reference B.G. Thomas, L.J. Mika, and F.M. Najjar: Metall. Mater. Trans. B, 1990, vol. 21B, pp. 387–400.CrossRef B.G. Thomas, L.J. Mika, and F.M. Najjar: Metall. Mater. Trans. B, 1990, vol. 21B, pp. 387–400.CrossRef
3.
go back to reference A. Ramos-Banderas, R.D. Morales, R. Sanchez-Perez, L. Garcia-Demedices, and G. Solorio-Diaz: Int. J. Multiphase Flow, 2005, vol. 31, pp. 643–65.CrossRef A. Ramos-Banderas, R.D. Morales, R. Sanchez-Perez, L. Garcia-Demedices, and G. Solorio-Diaz: Int. J. Multiphase Flow, 2005, vol. 31, pp. 643–65.CrossRef
4.
go back to reference Z.Q. Liu, F.S. Qi, B.K. Li, and S.C.P. Cheung: Int. J. Multiphase Flow, 2016, vol. 79, pp. 190–201.CrossRef Z.Q. Liu, F.S. Qi, B.K. Li, and S.C.P. Cheung: Int. J. Multiphase Flow, 2016, vol. 79, pp. 190–201.CrossRef
5.
go back to reference E. Krepper, D. Lucas, and H.M. Prasser: Nucl. Eng. Des., 2005, vol. 235, pp. 597–611.CrossRef E. Krepper, D. Lucas, and H.M. Prasser: Nucl. Eng. Des., 2005, vol. 235, pp. 597–611.CrossRef
6.
go back to reference S.C.P. Cheung, G.H. Yeoh, and J.Y. Tu: Chem. Eng. Sci., 2007, vol. 62, pp. 4659–74.CrossRef S.C.P. Cheung, G.H. Yeoh, and J.Y. Tu: Chem. Eng. Sci., 2007, vol. 62, pp. 4659–74.CrossRef
7.
go back to reference M.T. Dhotre, B. Niceno, and B.L. Smith: Chem. Eng. J., 2008, vol. 136, pp. 337–48.CrossRef M.T. Dhotre, B. Niceno, and B.L. Smith: Chem. Eng. J., 2008, vol. 136, pp. 337–48.CrossRef
8.
go back to reference M.V. Tabib, S.A. Roy, and J.B. Joshi: Chem. Eng. J., 2008, vol. 139, pp. 589–614.CrossRef M.V. Tabib, S.A. Roy, and J.B. Joshi: Chem. Eng. J., 2008, vol. 139, pp. 589–614.CrossRef
9.
go back to reference N.G. Deen, T. Solberg, and B.H. Hjertager: Chem. Eng. Sci., 2001, vol. 56, pp. 6341–49.CrossRef N.G. Deen, T. Solberg, and B.H. Hjertager: Chem. Eng. Sci., 2001, vol. 56, pp. 6341–49.CrossRef
10.
go back to reference D.S. Zhang, N.G. Deen, and J.A.M. Kuipers: Ind. Eng. Chem. Res., 2009, vol. 48, pp. 47–57.CrossRef D.S. Zhang, N.G. Deen, and J.A.M. Kuipers: Ind. Eng. Chem. Res., 2009, vol. 48, pp. 47–57.CrossRef
11.
go back to reference B.G. Thomas, Q. Yuan, S. Mahmood, R. Liu, and R. Chaudhary: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 22–35.CrossRef B.G. Thomas, Q. Yuan, S. Mahmood, R. Liu, and R. Chaudhary: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 22–35.CrossRef
12.
go back to reference S.M. Lee, S.J. Kim, and H.G. Lee: J. Iron Steel Res. Int., 2011, vol. 18, pp. 220–26. S.M. Lee, S.J. Kim, and H.G. Lee: J. Iron Steel Res. Int., 2011, vol. 18, pp. 220–26.
13.
14.
15.
go back to reference Z.Q. Liu, B.K. Li, and M.F. Jiang: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 675–97.CrossRef Z.Q. Liu, B.K. Li, and M.F. Jiang: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 675–97.CrossRef
16.
go back to reference H. Bai and B.G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 253–67.CrossRef H. Bai and B.G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 253–67.CrossRef
17.
go back to reference Z.Q. Liu, B.K. Li, M.F. Jiang, and F. Tsukihashi: ISIJ Int., 2013, vol. 53, pp. 484–92.CrossRef Z.Q. Liu, B.K. Li, M.F. Jiang, and F. Tsukihashi: ISIJ Int., 2013, vol. 53, pp. 484–92.CrossRef
18.
go back to reference Z.Q. Liu, B.K. Li, M.F. Jiang, and F. Tsukihashi: ISIJ Int., 2014, vol. 54, pp. 1314–23.CrossRef Z.Q. Liu, B.K. Li, M.F. Jiang, and F. Tsukihashi: ISIJ Int., 2014, vol. 54, pp. 1314–23.CrossRef
19.
go back to reference A. Ramos-Banderas, R. Sánchez-Perez, R.D. Morales, J. Palafox-ramos, L. Demedices-Garcia, and M. Diaz-cruz: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 449–60.CrossRef A. Ramos-Banderas, R. Sánchez-Perez, R.D. Morales, J. Palafox-ramos, L. Demedices-Garcia, and M. Diaz-cruz: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 449–60.CrossRef
20.
go back to reference Q. Yuan, S. Sivaramkrishnan, S.P. Vanka, and B.G. Thomas: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 967–82.CrossRef Q. Yuan, S. Sivaramkrishnan, S.P. Vanka, and B.G. Thomas: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 967–82.CrossRef
21.
go back to reference Z.Q. Liu, F.S. Qi, B.K. Li, and M.F. Jiang: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 933–52.CrossRef Z.Q. Liu, F.S. Qi, B.K. Li, and M.F. Jiang: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 933–52.CrossRef
22.
go back to reference H.A. Jakobsen, B.H. Sannaes, S. Grevskott, and H.F. Svendsen: Ind. Eng. Chem. Res., 1997, vol. 36, pp. 4052–74.CrossRef H.A. Jakobsen, B.H. Sannaes, S. Grevskott, and H.F. Svendsen: Ind. Eng. Chem. Res., 1997, vol. 36, pp. 4052–74.CrossRef
23.
go back to reference Y. Sato, M. Sadatomi, and K. Sekiguchi: Int. J. Multiphase Flow, 1975, vol. 2, pp. 79–87.CrossRef Y. Sato, M. Sadatomi, and K. Sekiguchi: Int. J. Multiphase Flow, 1975, vol. 2, pp. 79–87.CrossRef
25.
26.
go back to reference D. Lakehal, B.L. Smith, and M. Milelli: J. Turb., 2002, vol. 3, pp. 1–20.CrossRef D. Lakehal, B.L. Smith, and M. Milelli: J. Turb., 2002, vol. 3, pp. 1–20.CrossRef
27.
go back to reference M. Germano, U. Piomelli, P. Moin, and W.H. Cabot: Phys. Fluids A, 1991, vol. 3, pp. 1760–65.CrossRef M. Germano, U. Piomelli, P. Moin, and W.H. Cabot: Phys. Fluids A, 1991, vol. 3, pp. 1760–65.CrossRef
29.
go back to reference D.A. Drew and R.T. Lahey: Int. J. Multiphase Flow, 1987, vol. 13, pp. 113–21.CrossRef D.A. Drew and R.T. Lahey: Int. J. Multiphase Flow, 1987, vol. 13, pp. 113–21.CrossRef
30.
go back to reference D.Z. Zhang and W.B. Vanderheyden: Int. J. Multiphase Flow, 2002, vol. 28, pp. 805–22.CrossRef D.Z. Zhang and W.B. Vanderheyden: Int. J. Multiphase Flow, 2002, vol. 28, pp. 805–22.CrossRef
31.
go back to reference A. Tomiyma, H. Tamai, I. Zun, and S. Hosokawa: Chem. Eng. Sci., 2002, vol. 57, pp. 1949–58. A. Tomiyma, H. Tamai, I. Zun, and S. Hosokawa: Chem. Eng. Sci., 2002, vol. 57, pp. 1949–58.
33.
go back to reference L.A. Schiller and Z. Naumaan: Ver Deutsch. Ing., 1935, vol. 77, 138 pp. L.A. Schiller and Z. Naumaan: Ver Deutsch. Ing., 1935, vol. 77, 138 pp.
35.
go back to reference R. Mei and J. F. Klausner: Int. J. Heat Fluid Flow, 1994, vol. 15, pp. 62–65.CrossRef R. Mei and J. F. Klausner: Int. J. Heat Fluid Flow, 1994, vol. 15, pp. 62–65.CrossRef
36.
go back to reference D. Legendre and J. Magnaudet: J. Fluid Mech., 1998, vol. 368, pp. 81–126.CrossRef D. Legendre and J. Magnaudet: J. Fluid Mech., 1998, vol. 368, pp. 81–126.CrossRef
37.
38.
39.
go back to reference S.P. Antal, R.T. Lahey, and J.E. Flaherty: Int. J. Multiphase Flow, 1991, vol. 7, pp. 635–52.CrossRef S.P. Antal, R.T. Lahey, and J.E. Flaherty: Int. J. Multiphase Flow, 1991, vol. 7, pp. 635–52.CrossRef
40.
go back to reference T. Frank, P. Zwart, E. Krepper, H.M. Prasser, and D. Lucas: Nucl. Eng. Des., 2008, vol. 238, pp. 647–59.CrossRef T. Frank, P. Zwart, E. Krepper, H.M. Prasser, and D. Lucas: Nucl. Eng. Des., 2008, vol. 238, pp. 647–59.CrossRef
41.
go back to reference M. Lopez de Bertodano: Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, 1991. M. Lopez de Bertodano: Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, 1991.
42.
go back to reference A.D. Burns, T. Frank, I. Hamill, and J. Shi: Proceeding of the Fifth International Conference on Multiphase Flow, Yokohama, Japan. 2004. A.D. Burns, T. Frank, I. Hamill, and J. Shi: Proceeding of the Fifth International Conference on Multiphase Flow, Yokohama, Japan. 2004.
43.
go back to reference B.G. Thomas, Q. Yuan, S. Sivaramakrishnan, T. Shi, S.P. Vanka, and M.B. Assar: ISIJ Int., 2001, vol. 41, pp. 1262–71.CrossRef B.G. Thomas, Q. Yuan, S. Sivaramakrishnan, T. Shi, S.P. Vanka, and M.B. Assar: ISIJ Int., 2001, vol. 41, pp. 1262–71.CrossRef
44.
go back to reference K. Timmel, T. Wondrak, M. Roder, F. Stefani, S. Eckeert, and G. Gerbeth: Steel Res. Int., 2014, vol. 85, pp. 1283–90.CrossRef K. Timmel, T. Wondrak, M. Roder, F. Stefani, S. Eckeert, and G. Gerbeth: Steel Res. Int., 2014, vol. 85, pp. 1283–90.CrossRef
Metadata
Title
Large-Eddy Simulation of Transient Horizontal Gas–Liquid Flow in Continuous Casting Using Dynamic Subgrid-Scale Model
Authors
Zhongqiu Liu
Baokuan Li
Publication date
08-03-2017
Publisher
Springer US
Published in
Metallurgical and Materials Transactions B / Issue 3/2017
Print ISSN: 1073-5615
Electronic ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-017-0947-3

Other articles of this Issue 3/2017

Metallurgical and Materials Transactions B 3/2017 Go to the issue

Premium Partners