Skip to main content
Erschienen in: Metallurgical and Materials Transactions B 3/2017

08.03.2017

Large-Eddy Simulation of Transient Horizontal Gas–Liquid Flow in Continuous Casting Using Dynamic Subgrid-Scale Model

verfasst von: Zhongqiu Liu, Baokuan Li

Erschienen in: Metallurgical and Materials Transactions B | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Euler–Euler simulations of transient horizontal gas–liquid flow in a continuous-casting mold are presented. The predictions were compared with previous experimental measurements by two-channel laser Doppler velocimeter. Simulations were performed to understand the sensitivity to different turbulence closure models [kɛ, shear stress transport (SST), Reynolds stress model (RSM), and large-eddy simulation (LES)] and different interfacial forces (drag, lift, virtual mass, wall lubrication, and turbulent dispersion). It was found that the LES model showed better agreement than the other turbulence models in predicting the velocity components of the liquid phase. Furthermore, an appropriate drag force coefficient model, lift force coefficient model, and virtual mass force coefficient were chosen. Meanwhile, the wall lubrication force and turbulent dispersion force did not have much effect on the current gas–liquid two-phase system. This work highlights the importance of choosing an appropriate bubble size in accordance with experiment. Finally, coupled with the optimized interfacial force models and bubble size, LES with a dynamic subgrid model was used to calculate the transient two-phase turbulent flow inside the mold. More instantaneous details of the two-phase flow characteristics in the mold were captured by LES, including multiscale vortex structures, fluctuation characteristics, and the vorticity distribution. The LES model can also be used to describe the time-averaged gas–liquid flow field, giving reasonably good agreement with mean experimental data. Thus, LES can be used effectively to study transient two-phase flow inside molds.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Iguchi and N. Kashi: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 453–60.CrossRef M. Iguchi and N. Kashi: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 453–60.CrossRef
2.
Zurück zum Zitat B.G. Thomas, L.J. Mika, and F.M. Najjar: Metall. Mater. Trans. B, 1990, vol. 21B, pp. 387–400.CrossRef B.G. Thomas, L.J. Mika, and F.M. Najjar: Metall. Mater. Trans. B, 1990, vol. 21B, pp. 387–400.CrossRef
3.
Zurück zum Zitat A. Ramos-Banderas, R.D. Morales, R. Sanchez-Perez, L. Garcia-Demedices, and G. Solorio-Diaz: Int. J. Multiphase Flow, 2005, vol. 31, pp. 643–65.CrossRef A. Ramos-Banderas, R.D. Morales, R. Sanchez-Perez, L. Garcia-Demedices, and G. Solorio-Diaz: Int. J. Multiphase Flow, 2005, vol. 31, pp. 643–65.CrossRef
4.
Zurück zum Zitat Z.Q. Liu, F.S. Qi, B.K. Li, and S.C.P. Cheung: Int. J. Multiphase Flow, 2016, vol. 79, pp. 190–201.CrossRef Z.Q. Liu, F.S. Qi, B.K. Li, and S.C.P. Cheung: Int. J. Multiphase Flow, 2016, vol. 79, pp. 190–201.CrossRef
5.
Zurück zum Zitat E. Krepper, D. Lucas, and H.M. Prasser: Nucl. Eng. Des., 2005, vol. 235, pp. 597–611.CrossRef E. Krepper, D. Lucas, and H.M. Prasser: Nucl. Eng. Des., 2005, vol. 235, pp. 597–611.CrossRef
6.
Zurück zum Zitat S.C.P. Cheung, G.H. Yeoh, and J.Y. Tu: Chem. Eng. Sci., 2007, vol. 62, pp. 4659–74.CrossRef S.C.P. Cheung, G.H. Yeoh, and J.Y. Tu: Chem. Eng. Sci., 2007, vol. 62, pp. 4659–74.CrossRef
7.
Zurück zum Zitat M.T. Dhotre, B. Niceno, and B.L. Smith: Chem. Eng. J., 2008, vol. 136, pp. 337–48.CrossRef M.T. Dhotre, B. Niceno, and B.L. Smith: Chem. Eng. J., 2008, vol. 136, pp. 337–48.CrossRef
8.
Zurück zum Zitat M.V. Tabib, S.A. Roy, and J.B. Joshi: Chem. Eng. J., 2008, vol. 139, pp. 589–614.CrossRef M.V. Tabib, S.A. Roy, and J.B. Joshi: Chem. Eng. J., 2008, vol. 139, pp. 589–614.CrossRef
9.
Zurück zum Zitat N.G. Deen, T. Solberg, and B.H. Hjertager: Chem. Eng. Sci., 2001, vol. 56, pp. 6341–49.CrossRef N.G. Deen, T. Solberg, and B.H. Hjertager: Chem. Eng. Sci., 2001, vol. 56, pp. 6341–49.CrossRef
10.
Zurück zum Zitat D.S. Zhang, N.G. Deen, and J.A.M. Kuipers: Ind. Eng. Chem. Res., 2009, vol. 48, pp. 47–57.CrossRef D.S. Zhang, N.G. Deen, and J.A.M. Kuipers: Ind. Eng. Chem. Res., 2009, vol. 48, pp. 47–57.CrossRef
11.
Zurück zum Zitat B.G. Thomas, Q. Yuan, S. Mahmood, R. Liu, and R. Chaudhary: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 22–35.CrossRef B.G. Thomas, Q. Yuan, S. Mahmood, R. Liu, and R. Chaudhary: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 22–35.CrossRef
12.
Zurück zum Zitat S.M. Lee, S.J. Kim, and H.G. Lee: J. Iron Steel Res. Int., 2011, vol. 18, pp. 220–26. S.M. Lee, S.J. Kim, and H.G. Lee: J. Iron Steel Res. Int., 2011, vol. 18, pp. 220–26.
13.
14.
15.
Zurück zum Zitat Z.Q. Liu, B.K. Li, and M.F. Jiang: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 675–97.CrossRef Z.Q. Liu, B.K. Li, and M.F. Jiang: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 675–97.CrossRef
16.
Zurück zum Zitat H. Bai and B.G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 253–67.CrossRef H. Bai and B.G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 253–67.CrossRef
17.
Zurück zum Zitat Z.Q. Liu, B.K. Li, M.F. Jiang, and F. Tsukihashi: ISIJ Int., 2013, vol. 53, pp. 484–92.CrossRef Z.Q. Liu, B.K. Li, M.F. Jiang, and F. Tsukihashi: ISIJ Int., 2013, vol. 53, pp. 484–92.CrossRef
18.
Zurück zum Zitat Z.Q. Liu, B.K. Li, M.F. Jiang, and F. Tsukihashi: ISIJ Int., 2014, vol. 54, pp. 1314–23.CrossRef Z.Q. Liu, B.K. Li, M.F. Jiang, and F. Tsukihashi: ISIJ Int., 2014, vol. 54, pp. 1314–23.CrossRef
19.
Zurück zum Zitat A. Ramos-Banderas, R. Sánchez-Perez, R.D. Morales, J. Palafox-ramos, L. Demedices-Garcia, and M. Diaz-cruz: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 449–60.CrossRef A. Ramos-Banderas, R. Sánchez-Perez, R.D. Morales, J. Palafox-ramos, L. Demedices-Garcia, and M. Diaz-cruz: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 449–60.CrossRef
20.
Zurück zum Zitat Q. Yuan, S. Sivaramkrishnan, S.P. Vanka, and B.G. Thomas: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 967–82.CrossRef Q. Yuan, S. Sivaramkrishnan, S.P. Vanka, and B.G. Thomas: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 967–82.CrossRef
21.
Zurück zum Zitat Z.Q. Liu, F.S. Qi, B.K. Li, and M.F. Jiang: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 933–52.CrossRef Z.Q. Liu, F.S. Qi, B.K. Li, and M.F. Jiang: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 933–52.CrossRef
22.
Zurück zum Zitat H.A. Jakobsen, B.H. Sannaes, S. Grevskott, and H.F. Svendsen: Ind. Eng. Chem. Res., 1997, vol. 36, pp. 4052–74.CrossRef H.A. Jakobsen, B.H. Sannaes, S. Grevskott, and H.F. Svendsen: Ind. Eng. Chem. Res., 1997, vol. 36, pp. 4052–74.CrossRef
23.
Zurück zum Zitat Y. Sato, M. Sadatomi, and K. Sekiguchi: Int. J. Multiphase Flow, 1975, vol. 2, pp. 79–87.CrossRef Y. Sato, M. Sadatomi, and K. Sekiguchi: Int. J. Multiphase Flow, 1975, vol. 2, pp. 79–87.CrossRef
25.
26.
Zurück zum Zitat D. Lakehal, B.L. Smith, and M. Milelli: J. Turb., 2002, vol. 3, pp. 1–20.CrossRef D. Lakehal, B.L. Smith, and M. Milelli: J. Turb., 2002, vol. 3, pp. 1–20.CrossRef
27.
Zurück zum Zitat M. Germano, U. Piomelli, P. Moin, and W.H. Cabot: Phys. Fluids A, 1991, vol. 3, pp. 1760–65.CrossRef M. Germano, U. Piomelli, P. Moin, and W.H. Cabot: Phys. Fluids A, 1991, vol. 3, pp. 1760–65.CrossRef
29.
Zurück zum Zitat D.A. Drew and R.T. Lahey: Int. J. Multiphase Flow, 1987, vol. 13, pp. 113–21.CrossRef D.A. Drew and R.T. Lahey: Int. J. Multiphase Flow, 1987, vol. 13, pp. 113–21.CrossRef
30.
Zurück zum Zitat D.Z. Zhang and W.B. Vanderheyden: Int. J. Multiphase Flow, 2002, vol. 28, pp. 805–22.CrossRef D.Z. Zhang and W.B. Vanderheyden: Int. J. Multiphase Flow, 2002, vol. 28, pp. 805–22.CrossRef
31.
Zurück zum Zitat A. Tomiyma, H. Tamai, I. Zun, and S. Hosokawa: Chem. Eng. Sci., 2002, vol. 57, pp. 1949–58. A. Tomiyma, H. Tamai, I. Zun, and S. Hosokawa: Chem. Eng. Sci., 2002, vol. 57, pp. 1949–58.
32.
33.
Zurück zum Zitat L.A. Schiller and Z. Naumaan: Ver Deutsch. Ing., 1935, vol. 77, 138 pp. L.A. Schiller and Z. Naumaan: Ver Deutsch. Ing., 1935, vol. 77, 138 pp.
34.
35.
Zurück zum Zitat R. Mei and J. F. Klausner: Int. J. Heat Fluid Flow, 1994, vol. 15, pp. 62–65.CrossRef R. Mei and J. F. Klausner: Int. J. Heat Fluid Flow, 1994, vol. 15, pp. 62–65.CrossRef
36.
Zurück zum Zitat D. Legendre and J. Magnaudet: J. Fluid Mech., 1998, vol. 368, pp. 81–126.CrossRef D. Legendre and J. Magnaudet: J. Fluid Mech., 1998, vol. 368, pp. 81–126.CrossRef
37.
Zurück zum Zitat S.S. Thakre and J.B. Joshi: Chem. Eng. Sci., 1999, vol. 54, pp. 5055–60.CrossRef S.S. Thakre and J.B. Joshi: Chem. Eng. Sci., 1999, vol. 54, pp. 5055–60.CrossRef
38.
39.
Zurück zum Zitat S.P. Antal, R.T. Lahey, and J.E. Flaherty: Int. J. Multiphase Flow, 1991, vol. 7, pp. 635–52.CrossRef S.P. Antal, R.T. Lahey, and J.E. Flaherty: Int. J. Multiphase Flow, 1991, vol. 7, pp. 635–52.CrossRef
40.
Zurück zum Zitat T. Frank, P. Zwart, E. Krepper, H.M. Prasser, and D. Lucas: Nucl. Eng. Des., 2008, vol. 238, pp. 647–59.CrossRef T. Frank, P. Zwart, E. Krepper, H.M. Prasser, and D. Lucas: Nucl. Eng. Des., 2008, vol. 238, pp. 647–59.CrossRef
41.
Zurück zum Zitat M. Lopez de Bertodano: Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, 1991. M. Lopez de Bertodano: Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, 1991.
42.
Zurück zum Zitat A.D. Burns, T. Frank, I. Hamill, and J. Shi: Proceeding of the Fifth International Conference on Multiphase Flow, Yokohama, Japan. 2004. A.D. Burns, T. Frank, I. Hamill, and J. Shi: Proceeding of the Fifth International Conference on Multiphase Flow, Yokohama, Japan. 2004.
43.
Zurück zum Zitat B.G. Thomas, Q. Yuan, S. Sivaramakrishnan, T. Shi, S.P. Vanka, and M.B. Assar: ISIJ Int., 2001, vol. 41, pp. 1262–71.CrossRef B.G. Thomas, Q. Yuan, S. Sivaramakrishnan, T. Shi, S.P. Vanka, and M.B. Assar: ISIJ Int., 2001, vol. 41, pp. 1262–71.CrossRef
44.
Zurück zum Zitat K. Timmel, T. Wondrak, M. Roder, F. Stefani, S. Eckeert, and G. Gerbeth: Steel Res. Int., 2014, vol. 85, pp. 1283–90.CrossRef K. Timmel, T. Wondrak, M. Roder, F. Stefani, S. Eckeert, and G. Gerbeth: Steel Res. Int., 2014, vol. 85, pp. 1283–90.CrossRef
Metadaten
Titel
Large-Eddy Simulation of Transient Horizontal Gas–Liquid Flow in Continuous Casting Using Dynamic Subgrid-Scale Model
verfasst von
Zhongqiu Liu
Baokuan Li
Publikationsdatum
08.03.2017
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions B / Ausgabe 3/2017
Print ISSN: 1073-5615
Elektronische ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-017-0947-3

Weitere Artikel der Ausgabe 3/2017

Metallurgical and Materials Transactions B 3/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.