Skip to main content
Top
Published in: Microsystem Technologies 1/2013

01-01-2013 | Technical Paper

Long-term behavior of nonionic surfactant-added PDMS for self-driven microchips

Authors: Hojjat Madadi, Jasmina Casals-Terré

Published in: Microsystem Technologies | Issue 1/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The outstanding characteristics of polydimethylsiloxane (PDMS) owe its extensive use to the fact that it is a base material for the microfluidic devices manufacturers’. In spite of favorable physical and chemical properties, the hydrophobic surface of PDMS is a handicap when pumping aqueous solutions through microchannels using only capillary forces. There are several techniques to achieve a hydrophilic behavior of PDMS, but most of them face the problem of hydrophobic recovery after a short period of time while most commercial microdevices require long storage and distribution times. The use of surfactant-added PDMS provides a novel method to overcome hydrophobicity and to control the hydrophobic recovery over a long period of time. There are many different types of surfactants and not a deep methodology to choose one in terms of efficiency, clearance and duration of the hydrophilic behavior. This paper has compared three non-ionic surfactants with different critical micelle concentration and chemical composition: Triton X-100, Brij 35 and Tween 20. Short and long-term studies were done using 5-μL deionized water droplet on the surface of the prepared surfactant-added PDMS. The experiments demonstrated that Triton X-100 is more efficient than Brij 35 and Tween 20 since with less concentration it achieves a maximum contact angle of around 23.5°. In terms of hydrophobic recovery, the experiments showed that using surfactants and controlling humidity of samples, hydrophobic recovery of the surfactant-added PDMS was negligible after 2 months. According to these results, the use of PDMS with Triton X-100 and Brij 35 provides a good potential for building capillary driven devices without the need of tedious preprocessing techniques.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abate AR, Lee D, Do T, Holtze C, Weitz DA (2008) Glass coating for PDMS microfluidic channels by sol–gel methods. Lab Chip 8:516–518CrossRef Abate AR, Lee D, Do T, Holtze C, Weitz DA (2008) Glass coating for PDMS microfluidic channels by sol–gel methods. Lab Chip 8:516–518CrossRef
go back to reference Atayde C, Doi I (2010) Highly stable hydrophilic surfaces of PDMS thin layer obtained by UV radiation and oxygen plasma treatments. Phys Status Solidi C 7(2):189–192CrossRef Atayde C, Doi I (2010) Highly stable hydrophilic surfaces of PDMS thin layer obtained by UV radiation and oxygen plasma treatments. Phys Status Solidi C 7(2):189–192CrossRef
go back to reference Berdichevsky Y, Khandurina J, Guttman A, Lo YH (2004) UV/ozone modification of poly(dimethylsiloxane) microfluidic channels. Sens Actuators B Chem 97:402–408CrossRef Berdichevsky Y, Khandurina J, Guttman A, Lo YH (2004) UV/ozone modification of poly(dimethylsiloxane) microfluidic channels. Sens Actuators B Chem 97:402–408CrossRef
go back to reference Bodas D, Khan-Malek Ch (2007) Hydrophilization and hydrophobic recovery of PDMS by oxygen plasma and chemical treatment—an SEM investigation. Sens Actuators B 123:368–373CrossRef Bodas D, Khan-Malek Ch (2007) Hydrophilization and hydrophobic recovery of PDMS by oxygen plasma and chemical treatment—an SEM investigation. Sens Actuators B 123:368–373CrossRef
go back to reference Chen HY, Elkasabi Y, Lahann J (2006) Surface modification of confined microgeometries via vapor-deposited polymer coatings. J Am Chem Soc 128(1):374–380CrossRef Chen HY, Elkasabi Y, Lahann J (2006) Surface modification of confined microgeometries via vapor-deposited polymer coatings. J Am Chem Soc 128(1):374–380CrossRef
go back to reference Dou Y-H, Bao N, Xu J-J, Meng F, Chen H-Y (2004) Separation of proteins on surface-modified poly(dimethylsiloxane) microfluidic devices. Electrophoresis 25:3024–3031CrossRef Dou Y-H, Bao N, Xu J-J, Meng F, Chen H-Y (2004) Separation of proteins on surface-modified poly(dimethylsiloxane) microfluidic devices. Electrophoresis 25:3024–3031CrossRef
go back to reference Eddington DT, Puccinelli JP, Beebe DJ (2006) Thermal aging and reduced hydrophobic recovery of polydimethylsiloxane. Sens Actuators B 114:170–172CrossRef Eddington DT, Puccinelli JP, Beebe DJ (2006) Thermal aging and reduced hydrophobic recovery of polydimethylsiloxane. Sens Actuators B 114:170–172CrossRef
go back to reference Efimenko K, Wallace EW, Genzer J (2002) Surface modification of Sylgard-184 Poly(dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment. J Colloid Interface Sci 254:306–315CrossRef Efimenko K, Wallace EW, Genzer J (2002) Surface modification of Sylgard-184 Poly(dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment. J Colloid Interface Sci 254:306–315CrossRef
go back to reference Hattori K, Sugiura S, Kanamori T (2011) Microenvironment array chip for cell culture environment screening. Lab Chip 11:212–214CrossRef Hattori K, Sugiura S, Kanamori T (2011) Microenvironment array chip for cell culture environment screening. Lab Chip 11:212–214CrossRef
go back to reference He T, Liang Q, Zhang K, Mu X, Luo T, Wang Y, Luo G (2011) A modified microfluidic chip for fabrication of paclitaxel-loaded poly(l-lactic acid) microspheres. Microfluid Nanofluid 10:1289–1298CrossRef He T, Liang Q, Zhang K, Mu X, Luo T, Wang Y, Luo G (2011) A modified microfluidic chip for fabrication of paclitaxel-loaded poly(l-lactic acid) microspheres. Microfluid Nanofluid 10:1289–1298CrossRef
go back to reference Hillborg H, Tomczak N, Oláh A, Schönherr H, Vancso GJ (2004) Nanoscale hydrophobic recovery: a chemical force microscopy study of UV/ozone-treated cross-linked Poly(dimethylsiloxane). Langmuir 20(3):785–794CrossRef Hillborg H, Tomczak N, Oláh A, Schönherr H, Vancso GJ (2004) Nanoscale hydrophobic recovery: a chemical force microscopy study of UV/ozone-treated cross-linked Poly(dimethylsiloxane). Langmuir 20(3):785–794CrossRef
go back to reference Hong SM, Kim SH, Kim JH, Hwang HI (2006) Hydrophilic surface modification of PDMS using atmospheric RF plasma. J Phys 34:656–661 Hong SM, Kim SH, Kim JH, Hwang HI (2006) Hydrophilic surface modification of PDMS using atmospheric RF plasma. J Phys 34:656–661
go back to reference Kang J, Yan J, Liu J, Qiu H, Yin X, Yang X, Wang E (2005) Dynamic coating for resolving rhodamine B adsorption to poly(dimethylsiloxane)/glass hybrid chip with laser-induced fluorescence detection. Talanta 66:1018–1024CrossRef Kang J, Yan J, Liu J, Qiu H, Yin X, Yang X, Wang E (2005) Dynamic coating for resolving rhodamine B adsorption to poly(dimethylsiloxane)/glass hybrid chip with laser-induced fluorescence detection. Talanta 66:1018–1024CrossRef
go back to reference Kim YC, Kim S, Kim D, Park S, Park J (2010) Plasma extraction in a capillary-driven microfluidic device using surfactant-added poly(dimethylsiloxane). Sens Actuators B 145:861–868CrossRef Kim YC, Kim S, Kim D, Park S, Park J (2010) Plasma extraction in a capillary-driven microfluidic device using surfactant-added poly(dimethylsiloxane). Sens Actuators B 145:861–868CrossRef
go back to reference Kim HT, Kim JK, Jeong OCh (2011) Hydrophilicity of surfactant-added poly(dimethylsilaxone) and its applications. Jpn J Appl Phys 50:06GL04-1-4 Kim HT, Kim JK, Jeong OCh (2011) Hydrophilicity of surfactant-added poly(dimethylsilaxone) and its applications. Jpn J Appl Phys 50:06GL04-1-4
go back to reference Lamour G, Hamraoui A (2010) Contact angle measurements using a simplified experimental setup. J Chem Educ 87(12):1403–1407CrossRef Lamour G, Hamraoui A (2010) Contact angle measurements using a simplified experimental setup. J Chem Educ 87(12):1403–1407CrossRef
go back to reference Lawton RA, Price CR, Runge AF, Doherty III WJ, Saavedra SS (2005) Air plasma treatment of submicron thick PDMS polymer films: effect of oxidation time and storage conditions. Colloids Surf A 253:213–215 Lawton RA, Price CR, Runge AF, Doherty III WJ, Saavedra SS (2005) Air plasma treatment of submicron thick PDMS polymer films: effect of oxidation time and storage conditions. Colloids Surf A 253:213–215
go back to reference Li M, Kim DP (2011) Silicate glass coated microchannels through a phase conversion process for glass-like electrokinetic performance. Lab Chip 11:1126–1131CrossRef Li M, Kim DP (2011) Silicate glass coated microchannels through a phase conversion process for glass-like electrokinetic performance. Lab Chip 11:1126–1131CrossRef
go back to reference Lin H, Chang S, Su Y (2010) On-demand double emulsification utilizing pneumatically actuated, selectively surface-modified PDMS micro-devices. Microfluid Nanofluid 9:1091–1102CrossRef Lin H, Chang S, Su Y (2010) On-demand double emulsification utilizing pneumatically actuated, selectively surface-modified PDMS micro-devices. Microfluid Nanofluid 9:1091–1102CrossRef
go back to reference Pinto S, Alves P, Matos CM, Santos AC, Rodrigues LR, Teixeira JA, Gil MH (2010) Poly(dimethyl siloxane) surface modification by low pressure plasma to improve its characteristics towards biomedical applications. Colloids Surf B 81:20–26CrossRef Pinto S, Alves P, Matos CM, Santos AC, Rodrigues LR, Teixeira JA, Gil MH (2010) Poly(dimethyl siloxane) surface modification by low pressure plasma to improve its characteristics towards biomedical applications. Colloids Surf B 81:20–26CrossRef
go back to reference Qiu J, Hu P, Liang R (2007) Separation and simultaneous determination of uric acid and ascorbic acid on a dynamically modified Poly(dimethylsiloxane) microchip. Anal Sci 23:1409–1414CrossRef Qiu J, Hu P, Liang R (2007) Separation and simultaneous determination of uric acid and ascorbic acid on a dynamically modified Poly(dimethylsiloxane) microchip. Anal Sci 23:1409–1414CrossRef
go back to reference Roman GT, McDaniel K, Culbertson CT (2006) High efficiency micellar electrokinetic chromatography of hydrophobic analytes on poly(dimethylsiloxane) microchips. Analyst 131:194–201CrossRef Roman GT, McDaniel K, Culbertson CT (2006) High efficiency micellar electrokinetic chromatography of hydrophobic analytes on poly(dimethylsiloxane) microchips. Analyst 131:194–201CrossRef
go back to reference Schrott W, Nebyla M, Přibyl M, Šnita D (2011) Detection of immunoglobulins in a laser induced fluorescence system utilizing polydimethysiloxane microchips with advanced surface and optical properties. Biomicrofluidics 5(1):14101CrossRef Schrott W, Nebyla M, Přibyl M, Šnita D (2011) Detection of immunoglobulins in a laser induced fluorescence system utilizing polydimethysiloxane microchips with advanced surface and optical properties. Biomicrofluidics 5(1):14101CrossRef
go back to reference Séguin C, McLachlan JM, Norton PR, Lagugne-Labarthet F (2010) Surface modification of poly(dimethylsiloxane) for microfluidic assay applications. Appl Surf Sci 256:2524–2531CrossRef Séguin C, McLachlan JM, Norton PR, Lagugne-Labarthet F (2010) Surface modification of poly(dimethylsiloxane) for microfluidic assay applications. Appl Surf Sci 256:2524–2531CrossRef
go back to reference Seo J, Lee LP (2006) Effects on wettability by surfactant accumulation/depletion in bulk polydimethylsilaxone (PDMS). Sens Actuators B 119:192–198CrossRef Seo J, Lee LP (2006) Effects on wettability by surfactant accumulation/depletion in bulk polydimethylsilaxone (PDMS). Sens Actuators B 119:192–198CrossRef
go back to reference Srinivasan S, McKinley GH, Cohen RE (2011) Assessing the accuracy of contact angle measurements for sessile drops on liquid-repellent surfaces. Langmuir 27:13582–13589CrossRef Srinivasan S, McKinley GH, Cohen RE (2011) Assessing the accuracy of contact angle measurements for sessile drops on liquid-repellent surfaces. Langmuir 27:13582–13589CrossRef
go back to reference Sui G, Wang J, Lee C, Lu W, Lee SP, Leyton JV, Wu AM, Tseng H (2006) Solution-phase surface modification in intact Poly(dimethylsiloxane) microfluidic channels. Anal Chem 78(15):5543–5551CrossRef Sui G, Wang J, Lee C, Lu W, Lee SP, Leyton JV, Wu AM, Tseng H (2006) Solution-phase surface modification in intact Poly(dimethylsiloxane) microfluidic channels. Anal Chem 78(15):5543–5551CrossRef
go back to reference Tan SH, Nguyen N-T, Chua YC, Kang TG (2010) Oxygen plasma treatment for reducing hydrophobicity of a sealed polydimethylsiloxane microchannel. Biomicrofluidics 4:32204CrossRef Tan SH, Nguyen N-T, Chua YC, Kang TG (2010) Oxygen plasma treatment for reducing hydrophobicity of a sealed polydimethylsiloxane microchannel. Biomicrofluidics 4:32204CrossRef
go back to reference Taylor DJ, Thomas RK, Penfold J (2007) Polymer/surfactant interactions at the air/water interface. Adv Colloid Interface Sci 132(2):69–110CrossRef Taylor DJ, Thomas RK, Penfold J (2007) Polymer/surfactant interactions at the air/water interface. Adv Colloid Interface Sci 132(2):69–110CrossRef
go back to reference Wong I, Ho C (2009) Surface molecular property modifications for poly (dimethylsiloxane) (PDMS) based microfluidic devices. Microfluid Nanofluidics 7:291–306CrossRef Wong I, Ho C (2009) Surface molecular property modifications for poly (dimethylsiloxane) (PDMS) based microfluidic devices. Microfluid Nanofluidics 7:291–306CrossRef
go back to reference Wu Zh, Hjort K (2009) Surface modification of PDMS by gradient-induced migration of embedded Pluronic. Lab Chip 9:1500–1503CrossRef Wu Zh, Hjort K (2009) Surface modification of PDMS by gradient-induced migration of embedded Pluronic. Lab Chip 9:1500–1503CrossRef
go back to reference Xu J, Gleason K (2010) Conformal, amine-functionalized thin films by initiated chemical vapor deposition (iCVD) for hydrolytically stable microfluidic devices. Chem Mater 22:1732–1738CrossRef Xu J, Gleason K (2010) Conformal, amine-functionalized thin films by initiated chemical vapor deposition (iCVD) for hydrolytically stable microfluidic devices. Chem Mater 22:1732–1738CrossRef
go back to reference Xu Y, Jiang H, Wang E (2007) Ionic liquid-assisted PDMS microchannel modification for efficiently resolving fluorescent dye and protein adsorption. Electrophoresis 28:4597–4605CrossRef Xu Y, Jiang H, Wang E (2007) Ionic liquid-assisted PDMS microchannel modification for efficiently resolving fluorescent dye and protein adsorption. Electrophoresis 28:4597–4605CrossRef
go back to reference Zhang Z, Feng X, Luo Q, Liu B (2009) Environmentally friendly surface modification of PDMS using PEG polymer brush. Electrophoresis 30:3174–3180CrossRef Zhang Z, Feng X, Luo Q, Liu B (2009) Environmentally friendly surface modification of PDMS using PEG polymer brush. Electrophoresis 30:3174–3180CrossRef
go back to reference Zhang Z, Feng X, Xu F, Liu X, Liu B (2010) Chemistry-based surface modification of poly(dimethylsiloxane) for protein separation in a microfluidic chip. Electrophoresis 31:3129–3136CrossRef Zhang Z, Feng X, Xu F, Liu X, Liu B (2010) Chemistry-based surface modification of poly(dimethylsiloxane) for protein separation in a microfluidic chip. Electrophoresis 31:3129–3136CrossRef
go back to reference Zhang C, Zhu X, Zhou L (2011) Morphology tunable pinning force and evaporation modes of water droplets on PDMS spherical cap micron-arrays. Chem Phys Lett 508:134–138CrossRef Zhang C, Zhu X, Zhou L (2011) Morphology tunable pinning force and evaporation modes of water droplets on PDMS spherical cap micron-arrays. Chem Phys Lett 508:134–138CrossRef
go back to reference Zhou J, Ellis AV, Voelcker NH (2010) Recent developments in PDMS surface modification for microfluidic devices. Electrophoresis 31:2–16CrossRef Zhou J, Ellis AV, Voelcker NH (2010) Recent developments in PDMS surface modification for microfluidic devices. Electrophoresis 31:2–16CrossRef
go back to reference Zhou J, Khodakov DA, Ellis AV, Voelcker NH (2012) Surface modification for PDMS-based microfluidic devices. Electrophoresis 33:89–104CrossRef Zhou J, Khodakov DA, Ellis AV, Voelcker NH (2012) Surface modification for PDMS-based microfluidic devices. Electrophoresis 33:89–104CrossRef
Metadata
Title
Long-term behavior of nonionic surfactant-added PDMS for self-driven microchips
Authors
Hojjat Madadi
Jasmina Casals-Terré
Publication date
01-01-2013
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 1/2013
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-012-1641-7

Other articles of this Issue 1/2013

Microsystem Technologies 1/2013 Go to the issue