Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 1-3/2007

01-03-2007

Mechanical fatigue of Sn-rich Pb-free solder alloys

Authors: J. K. Shang, Q. L. Zeng, L. Zhang, Q. S. Zhu

Published in: Journal of Materials Science: Materials in Electronics | Issue 1-3/2007

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Recent fatigue studies of Sn-rich Pb-free solder alloys are reviewed to provide an overview of the current understanding of cyclic deformation, cyclic softening, fatigue crack initiation, fatigue crack growth, and fatigue life behavior in these alloys. Because of their low melting temperatures, these alloys demonstrated extensive cyclic creep deformation at room temperature. Limited amount of data have shown that the cyclic creep rate is strongly dependent on stress amplitude, peak stress, stress ratio and cyclic frequency. At constant cyclic strain amplitudes, most Sn-rich alloys exhibit cycle-dependent and cyclic softening. The softening is more pronounced at larger strain amplitudes and higher temperatures, and in fine grain structures. Characteristic of these alloys, fatigue cracks tend to initiate at grain and phase boundaries very early in the fatigue life, involving considerable amount of grain boundary cavitation and sliding. The growth of fatigue cracks in these alloys may follow both transgranular and intergranular paths, depending on the stress ratio and frequency of the cyclic loading. At low stress ratios and high frequencies, fatigue crack growth rate correlates well with the range of stress intensities or J-integrals but the time-dependent C* integral provides a better correlation with the crack velocity at high stress ratios and low frequencies. The fatigue life of the alloys is a strong function of the strain amplitude, cyclic frequency, temperature, and microstructure. While a few sets of fatigue life data are available, these data, when analyzed in terms of the Coffin–Mason equation, showed large variations, with the fatigue ductility exponent ranging from  −0.43 to  −1.14 and the fatigue ductility from 0.04 to 20.9. Several approaches have been suggested to explain the differences in the fatigue life behavior, including revision of the Coffin–Mason analysis and use of alternative fatigue life models.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference D.R. Frear, W.B. Jones, K.R. Kinsman (eds.), Solder Mechanics-A State of the Art Assessment (TMS Publication, Warrendale PA, 1991) D.R. Frear, W.B. Jones, K.R. Kinsman (eds.), Solder Mechanics-A State of the Art Assessment (TMS Publication, Warrendale PA, 1991)
2.
go back to reference J.H. Lau (ed.), Solder Joint Reliability: Theory and Applications (Van Nostrand Reinhold, New York, NY, 1991) J.H. Lau (ed.), Solder Joint Reliability: Theory and Applications (Van Nostrand Reinhold, New York, NY, 1991)
3.
go back to reference D.R. Frear, S.N. Burchett, H.S. Morgan, J.H. Lau (eds.), The Mechanics of Solder Alloy Interconnects (Van Nostrand Reinhold, New York, NY, 1994) D.R. Frear, S.N. Burchett, H.S. Morgan, J.H. Lau (eds.), The Mechanics of Solder Alloy Interconnects (Van Nostrand Reinhold, New York, NY, 1994)
4.
go back to reference R.N. Wild, Welding J.: Welding Res. Suppl. 51, 521-s–526-s (1972) R.N. Wild, Welding J.: Welding Res. Suppl. 51, 521-s–526-s (1972)
5.
go back to reference E.R. Bangs, R.E. Beal, Welding J.: Welding Res. Suppl. 54, 377s–383s (1975) E.R. Bangs, R.E. Beal, Welding J.: Welding Res. Suppl. 54, 377s–383s (1975)
6.
go back to reference D.R. Frear, D. Grivas, J.W. Morris Jr., J. Electron. Mater. 17, 171–180 (1988) D.R. Frear, D. Grivas, J.W. Morris Jr., J. Electron. Mater. 17, 171–180 (1988)
7.
go back to reference D.R. Frear, D. Grivas, J.W. Morris Jr., J. Metals 40(6), 18–22 (1988) D.R. Frear, D. Grivas, J.W. Morris Jr., J. Metals 40(6), 18–22 (1988)
8.
go back to reference D.R. Frear, D. Grivas, J.W. Morris Jr., J. Electron. Mater. 18, 671–680 (1989) D.R. Frear, D. Grivas, J.W. Morris Jr., J. Electron. Mater. 18, 671–680 (1989)
9.
go back to reference D.R. Frear, IEEE Trans. Comp. Hybrids, Manuf. Technol., 12, 492–501 (1989)CrossRef D.R. Frear, IEEE Trans. Comp. Hybrids, Manuf. Technol., 12, 492–501 (1989)CrossRef
10.
go back to reference D. Tribula, D. Grivas, D.R. Frear, J.W. Morris Jr., ASME J. Electron. Packag. 111, 83–89 (1989)CrossRef D. Tribula, D. Grivas, D.R. Frear, J.W. Morris Jr., ASME J. Electron. Packag. 111, 83–89 (1989)CrossRef
11.
go back to reference R. Satoh, K. Arakawa, M. Harada, K. Matsui, IEEE Trans. Comp. Hybrids, Manuf. Technol. 14, 224–232 (1991)CrossRef R. Satoh, K. Arakawa, M. Harada, K. Matsui, IEEE Trans. Comp. Hybrids, Manuf. Technol. 14, 224–232 (1991)CrossRef
12.
go back to reference J. Seyyedi, ASME J. Electron. Packag. 115, 305–311 (1993) J. Seyyedi, ASME J. Electron. Packag. 115, 305–311 (1993)
13.
go back to reference N.F. Enke, T.J. Kilinski, S.A. Schroeder, J.R. Lesniak, IEEE Trans. Comp. Hybrids, Manuf. Technol. 12, 459–468 (1989)CrossRef N.F. Enke, T.J. Kilinski, S.A. Schroeder, J.R. Lesniak, IEEE Trans. Comp. Hybrids, Manuf. Technol. 12, 459–468 (1989)CrossRef
14.
go back to reference T.S.E. Summers, J.W. Morris Jr., ASME J. Electron. Packag. 112, 94–99 (1990) T.S.E. Summers, J.W. Morris Jr., ASME J. Electron. Packag. 112, 94–99 (1990)
15.
go back to reference Z. Mei, J.W. Morris Jr., ASME J. Electron. Packag. 114, 104–108 (1992) Z. Mei, J.W. Morris Jr., ASME J. Electron. Packag. 114, 104–108 (1992)
16.
go back to reference Z. Guo, A. F. Sprecher, H. Conrad, ASME J. Electron. Packag. 114, 112–117 (1992) Z. Guo, A. F. Sprecher, H. Conrad, ASME J. Electron. Packag. 114, 112–117 (1992)
17.
go back to reference Z. Guo, H. Conrad, ASME J. Electron. Packag. 115, 159–164 (1993) Z. Guo, H. Conrad, ASME J. Electron. Packag. 115, 159–164 (1993)
18.
go back to reference W. Engelmaier, IEEE Trans. Comp. Hybrids, Manuf. Technol. CHMT-6, 232–237 (1983)CrossRef W. Engelmaier, IEEE Trans. Comp. Hybrids, Manuf. Technol. CHMT-6, 232–237 (1983)CrossRef
19.
go back to reference R. Subrahmanyan, J. R. Wilcox, C.-Y. Li, IEEE Trans. Comp. Hybrids, Manuf. Technol. 12, 480–491 (1989)CrossRef R. Subrahmanyan, J. R. Wilcox, C.-Y. Li, IEEE Trans. Comp. Hybrids, Manuf. Technol. 12, 480–491 (1989)CrossRef
20.
21.
go back to reference H.D. Solomon, IEEE Trans. Comp. Hybrids, Manuf. Technol. CHMT-9, 423–432 (1986)CrossRef H.D. Solomon, IEEE Trans. Comp. Hybrids, Manuf. Technol. CHMT-9, 423–432 (1986)CrossRef
22.
go back to reference E.C. Cutiongco, S. Waynman, M.E. Fine, D.A. Jeannnotte, ASME J. Electron. Packag. 112, 110–114 (1990) E.C. Cutiongco, S. Waynman, M.E. Fine, D.A. Jeannnotte, ASME J. Electron. Packag. 112, 110–114 (1990)
23.
go back to reference W.A. Logsdon, P.K. Liaw, M.A. Burke, Eng. Fract. Mech. 36, 183–218 (1990)CrossRef W.A. Logsdon, P.K. Liaw, M.A. Burke, Eng. Fract. Mech. 36, 183–218 (1990)CrossRef
25.
go back to reference S.-M. Lee, D.S. Stone, ASME J. Electron. Packag. 114, 118–121 (1992) S.-M. Lee, D.S. Stone, ASME J. Electron. Packag. 114, 118–121 (1992)
28.
go back to reference T. Siewert, S. Liu, D.R. Smith, J.C. Madeni, NIST Report “Database for Solder Properties with Emphasis on New Lead-Free Solders". Sept. 2000 T. Siewert, S. Liu, D.R. Smith, J.C. Madeni, NIST Report “Database for Solder Properties with Emphasis on New Lead-Free Solders". Sept. 2000
29.
go back to reference S. Vaynman, H. Mavoori, M.E. Fine, Advances in electronic packaging, Proc. international Intersociety electronic packaging Conf.—INTERPAC-95,American society of Mechanical engineers, 135–146 (1995) S. Vaynman, H. Mavoori, M.E. Fine, Advances in electronic packaging, Proc. international Intersociety electronic packaging Conf.—INTERPAC-95,American society of Mechanical engineers, 135–146 (1995)
30.
go back to reference J. Liang, N. Gollhardt, S.P. Lee, S.A. Schroeder, M.L. Morris, Fatigue Fract. Eng. Mater. Struc. 19, 1401–1409 (1996) J. Liang, N. Gollhardt, S.P. Lee, S.A. Schroeder, M.L. Morris, Fatigue Fract. Eng. Mater. Struc. 19, 1401–1409 (1996)
31.
go back to reference Y. Kariya, M. Otsuka, J. Electron. Mater. 27, 866 (1998) Y. Kariya, M. Otsuka, J. Electron. Mater. 27, 866 (1998)
32.
go back to reference Y. Kariya, M. Otsuka, J. Electron. Mater. 27, 1229–1235 (1998) Y. Kariya, M. Otsuka, J. Electron. Mater. 27, 1229–1235 (1998)
33.
go back to reference Y. Kariya, T. Morihata, E. Hazawa, M. Otsuka, J. Electron. Mater. 30, 1184–89 (2001) Y. Kariya, T. Morihata, E. Hazawa, M. Otsuka, J. Electron. Mater. 30, 1184–89 (2001)
34.
go back to reference C. Kanchanomai, Y. Miyashita, Y. Mutoh, J. Electron. Mater. 31, 456–65 (2002) C. Kanchanomai, Y. Miyashita, Y. Mutoh, J. Electron. Mater. 31, 456–65 (2002)
35.
36.
go back to reference Q.L. Zeng, Z.G. Wang, A.P. Xian, J.K. Shang, J. Electron. Mater. 34, 62–67 (2005) Q.L. Zeng, Z.G. Wang, A.P. Xian, J.K. Shang, J. Electron. Mater. 34, 62–67 (2005)
37.
38.
go back to reference Q. Zeng, Z. G. Wang, A.P. Xian, J.K. Shang, Chin. J. Mater. Res. 18(1), 11–17 (2004) Q. Zeng, Z. G. Wang, A.P. Xian, J.K. Shang, Chin. J. Mater. Res. 18(1), 11–17 (2004)
39.
40.
go back to reference C. Kanchanomai, Y. Miyashita, Y. Mutoh, S.L. Mannan, Mater. Sci. Eng. A 345, 90–98 (2003)CrossRef C. Kanchanomai, Y. Miyashita, Y. Mutoh, S.L. Mannan, Mater. Sci. Eng. A 345, 90–98 (2003)CrossRef
41.
go back to reference R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials (John Wiley & Sons, New York, 1996) R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials (John Wiley & Sons, New York, 1996)
42.
43.
go back to reference L.M. Kachanov, Introduction to Continuum Damage Mechanics. (Kluwers Academic Publishers, 1986) L.M. Kachanov, Introduction to Continuum Damage Mechanics. (Kluwers Academic Publishers, 1986)
44.
go back to reference R. Zallen, The Physics of Amorphous Solids. (John Wiley & Sons, New York, 1983)CrossRef R. Zallen, The Physics of Amorphous Solids. (John Wiley & Sons, New York, 1983)CrossRef
45.
go back to reference C. Kanchanomai, Y. Miyashita, Y. Mutoh, J. Electron. Mater. 31, 142–151 (2002) C. Kanchanomai, Y. Miyashita, Y. Mutoh, J. Electron. Mater. 31, 142–151 (2002)
46.
go back to reference S. Choi, K.N. Subramanian, J.P. Lucas, T.R. Bieler, J. Electron. Mater. 29, 1249 (2000) S. Choi, K.N. Subramanian, J.P. Lucas, T.R. Bieler, J. Electron. Mater. 29, 1249 (2000)
47.
go back to reference M.A. Martin, E.W.C. Coenen, W.P. Vellinga, M.G.D. Geers, Sripta Mater. 53, 927–932 (2005)CrossRef M.A. Martin, E.W.C. Coenen, W.P. Vellinga, M.G.D. Geers, Sripta Mater. 53, 927–932 (2005)CrossRef
48.
49.
go back to reference Y. Mutoh, J. Zhao, Y. Miyashita, C. Kanchanomai, Soldering Surf. Mount Technol. 14/3, 37–45 (2002) Y. Mutoh, J. Zhao, Y. Miyashita, C. Kanchanomai, Soldering Surf. Mount Technol. 14/3, 37–45 (2002)
50.
go back to reference J. Zhao, Y. Mutoh, Y. Miyashita, S.L.Mannan, J. Electron. Mater. 31, 879–886 (2002) J. Zhao, Y. Mutoh, Y. Miyashita, S.L.Mannan, J. Electron. Mater. 31, 879–886 (2002)
51.
go back to reference J. Zhao, Y. Mutoh, Y. Miyashita, L. Wang, Eng. Fract. Mech. 70, 2187–21 (2003)CrossRef J. Zhao, Y. Mutoh, Y. Miyashita, L. Wang, Eng. Fract. Mech. 70, 2187–21 (2003)CrossRef
52.
go back to reference C. Anderson, Z. Lai, J. Liu, H. Jiang, Y. Yu, Mater. Sci. Eng. A 394, 20–27 (2005)CrossRef C. Anderson, Z. Lai, J. Liu, H. Jiang, Y. Yu, Mater. Sci. Eng. A 394, 20–27 (2005)CrossRef
53.
go back to reference J.H.L. Pang, B.S. Xiong, T.H. Low, Thin Solid Films 462–463, 408–12 (2004)CrossRef J.H.L. Pang, B.S. Xiong, T.H. Low, Thin Solid Films 462463, 408–12 (2004)CrossRef
54.
go back to reference C. Kanchanomai, Y. Mutoh, J. Electron. Mater. 33, 329–333 (2004) C. Kanchanomai, Y. Mutoh, J. Electron. Mater. 33, 329–333 (2004)
55.
56.
Metadata
Title
Mechanical fatigue of Sn-rich Pb-free solder alloys
Authors
J. K. Shang
Q. L. Zeng
L. Zhang
Q. S. Zhu
Publication date
01-03-2007
Published in
Journal of Materials Science: Materials in Electronics / Issue 1-3/2007
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-006-9027-1

Other articles of this Issue 1-3/2007

Journal of Materials Science: Materials in Electronics 1-3/2007 Go to the issue