Skip to main content
Top
Published in: Quantum Information Processing 2/2021

01-02-2021

Mediated semi-quantum secure direct communication

Authors: Zhenbang Rong, Daowen Qiu, Paulo Mateus, Xiangfu Zou

Published in: Quantum Information Processing | Issue 2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Quantum secure direct communication (QSDC) makes two quantum users transmit secret message directly without first producing a shared secret key. Semi-quantum secure direct communication is a particular case of QSDC when one of the two users is a classical user. How to develop a similar protocol if both users are classical? In this paper, we proposed a mediated semi-quantum secure direct communication protocol where both classical users can transmit secret message with the help of a fully quantum third party. Classical users can generate and measure qubits in the computational basis, so they must rely on the third party to prepare alternative bases and perform alternative measurements. The security analysis shows that the protocol can effectively prevent secret message from eavesdropping even if the third party is untrusted. Moreover, the analysis shows that TP’s measurement operation can be associated with linear optical Bell measurements, where only two of the four Bell states would be measured. Finally, we perform an efficiency analysis that shows the protocol can reduce quantum resources at the expense of efficiency.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bennett, C., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. IEEE (1984) Bennett, C., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. IEEE (1984)
2.
go back to reference Lo, H., Chau, H.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050 (1999)ADSCrossRef Lo, H., Chau, H.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050 (1999)ADSCrossRef
3.
go back to reference Shor, P., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)ADSCrossRef Shor, P., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)ADSCrossRef
5.
6.
go back to reference Long, G., Liu, X.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)ADSCrossRef Long, G., Liu, X.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)ADSCrossRef
7.
go back to reference Deng, F., Long, G., Liu, X.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)ADSCrossRef Deng, F., Long, G., Liu, X.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)ADSCrossRef
8.
go back to reference Deng, F., Long, G.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69(5), 052319 (2004)ADSCrossRef Deng, F., Long, G.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69(5), 052319 (2004)ADSCrossRef
9.
go back to reference Cai, Q., Li, B.: Deterministic secure communication without using entanglement. Chin. Phys. Lett. 21(4), 601–603 (2004)ADSCrossRef Cai, Q., Li, B.: Deterministic secure communication without using entanglement. Chin. Phys. Lett. 21(4), 601–603 (2004)ADSCrossRef
10.
go back to reference Wang, J., Zhang, Q., Tang, C.: Quantum secure direct communication based on order rearrangement of single photons. Phys. Lett. A 358(4), 256–258 (2006)ADSMATHCrossRef Wang, J., Zhang, Q., Tang, C.: Quantum secure direct communication based on order rearrangement of single photons. Phys. Lett. A 358(4), 256–258 (2006)ADSMATHCrossRef
11.
go back to reference Liu, D., Chen, J., Jiang, W.: High-capacity quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 51(9), 2923–2929 (2012)MATHCrossRef Liu, D., Chen, J., Jiang, W.: High-capacity quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 51(9), 2923–2929 (2012)MATHCrossRef
12.
go back to reference Chang, Y., Xu, C., Zhang, S., et al.: Quantum secure direct communication and authentication protocol with single photons. Chin. Sci. Bull. 58(36), 4571–4576 (2013)CrossRef Chang, Y., Xu, C., Zhang, S., et al.: Quantum secure direct communication and authentication protocol with single photons. Chin. Sci. Bull. 58(36), 4571–4576 (2013)CrossRef
13.
go back to reference Gu, B., Huang, Y., Fang, X., et al.: Robust quantum secure communication with spatial quantum states of single photons. Int. J. Theor. Phys. 52(12), 4461–4469 (2013)MathSciNetMATHCrossRef Gu, B., Huang, Y., Fang, X., et al.: Robust quantum secure communication with spatial quantum states of single photons. Int. J. Theor. Phys. 52(12), 4461–4469 (2013)MathSciNetMATHCrossRef
14.
go back to reference Jian, Z., Jin, G., Wang, T.: Efficient quantum secure direct communication using the orbital angular momentum of single photons. Int. J. Theor. Phys. 55(3), 1–9 (2015) Jian, Z., Jin, G., Wang, T.: Efficient quantum secure direct communication using the orbital angular momentum of single photons. Int. J. Theor. Phys. 55(3), 1–9 (2015)
15.
go back to reference Gao, T., Yan, F., Wang, Z.: Quantum secure direct communication by EPR pairs and entanglement swapping. Nuovo cimento della Societa italiana di fisica B Relat Class Stat Phys 119(3), 313–318 (2004)ADS Gao, T., Yan, F., Wang, Z.: Quantum secure direct communication by EPR pairs and entanglement swapping. Nuovo cimento della Societa italiana di fisica B Relat Class Stat Phys 119(3), 313–318 (2004)ADS
16.
go back to reference Deng, F., Li, X., Li, C., et al.: Quantum secure direct communication network with Einstein–Podolsky–Rosen pairs. Phys. Lett. A 359(5), 359–365 (2006)ADSMATHCrossRef Deng, F., Li, X., Li, C., et al.: Quantum secure direct communication network with Einstein–Podolsky–Rosen pairs. Phys. Lett. A 359(5), 359–365 (2006)ADSMATHCrossRef
17.
go back to reference Li, X., Li, C., Deng, F., et al.: Quantum secure direct communication with quantum encryption based on pure entangled states. Chin. Phys. 16(8), 2149–5153 (2007)CrossRef Li, X., Li, C., Deng, F., et al.: Quantum secure direct communication with quantum encryption based on pure entangled states. Chin. Phys. 16(8), 2149–5153 (2007)CrossRef
18.
go back to reference Wang, C., Hao, L., Song, S., et al.: Quantum direct communication based on quantum search algorithm. Int. J. Quantum Inf. 8(3), 443–450 (2010)MATHCrossRef Wang, C., Hao, L., Song, S., et al.: Quantum direct communication based on quantum search algorithm. Int. J. Quantum Inf. 8(3), 443–450 (2010)MATHCrossRef
19.
go back to reference Wang, T., Li, T., Du, F., et al.: High-capacity quantum secure direct communication based on quantum hyperdense coding with hyperentanglement. Chin. Phys. Lett. 28(4), 040305 (2011)ADSCrossRef Wang, T., Li, T., Du, F., et al.: High-capacity quantum secure direct communication based on quantum hyperdense coding with hyperentanglement. Chin. Phys. Lett. 28(4), 040305 (2011)ADSCrossRef
20.
go back to reference Gu, B., Huang, Y., Fang, X., et al.: A two-step quantum secure direct communication protocol with hyperentanglement. Chin. Phys. B 20(10), 100309 (2011)ADSCrossRef Gu, B., Huang, Y., Fang, X., et al.: A two-step quantum secure direct communication protocol with hyperentanglement. Chin. Phys. B 20(10), 100309 (2011)ADSCrossRef
21.
go back to reference Gu, B., Huang, Y., Fang, X., et al.: Bidirectional quantum secure direct communication network protocol with hyperentanglement. Commun. Theor. Phys. 56(4), 659–663 (2011)ADSMATHCrossRef Gu, B., Huang, Y., Fang, X., et al.: Bidirectional quantum secure direct communication network protocol with hyperentanglement. Commun. Theor. Phys. 56(4), 659–663 (2011)ADSMATHCrossRef
22.
go back to reference Gu, B., Zhang, C., Cheng, G., et al.: Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel. Sci. China Phys. Mech. Astron. 54(5), 942–947 (2011)ADSCrossRef Gu, B., Zhang, C., Cheng, G., et al.: Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel. Sci. China Phys. Mech. Astron. 54(5), 942–947 (2011)ADSCrossRef
23.
go back to reference Ren, B., Wei, H., Hua, M., et al.: Photonic spatial Bell-state analysis for robust quantum secure direct communication using quantum dot-cavity systems. Eur. Phys. J. D 67(2), 30 (2013)ADSCrossRef Ren, B., Wei, H., Hua, M., et al.: Photonic spatial Bell-state analysis for robust quantum secure direct communication using quantum dot-cavity systems. Eur. Phys. J. D 67(2), 30 (2013)ADSCrossRef
24.
go back to reference Zhao, X., Li, J., Niu, P., et al.: Two-step quantum secure direct communication scheme with frequency coding. Chin. Phys. B 26(3), 030302 (2017)ADSCrossRef Zhao, X., Li, J., Niu, P., et al.: Two-step quantum secure direct communication scheme with frequency coding. Chin. Phys. B 26(3), 030302 (2017)ADSCrossRef
25.
go back to reference Wang, C., Deng, F., Long, G.: Multi-step quantum secure direct communication using multi-particle Green–Horne–Zeilinger state. Opt. Commun. 253(1–3), 15–20 (2005)ADSCrossRef Wang, C., Deng, F., Long, G.: Multi-step quantum secure direct communication using multi-particle Green–Horne–Zeilinger state. Opt. Commun. 253(1–3), 15–20 (2005)ADSCrossRef
26.
go back to reference Wang, C., Deng, F., Li, Y., et al.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71(4), 044305 (2005)ADSCrossRef Wang, C., Deng, F., Li, Y., et al.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71(4), 044305 (2005)ADSCrossRef
27.
go back to reference Shi, J., Gong, Y., Xu, P., et al.: Quantum secure direct communication by using three-dimensional hyperentanglement. Commun. Theor. Phys. 56(5), 831–836 (2011)ADSMathSciNetMATHCrossRef Shi, J., Gong, Y., Xu, P., et al.: Quantum secure direct communication by using three-dimensional hyperentanglement. Commun. Theor. Phys. 56(5), 831–836 (2011)ADSMathSciNetMATHCrossRef
28.
go back to reference Gao, G., Fang, M., Yang, R.: Quantum secure direct communication by swapping entanglements of \(3\times 3\)-dimensional Bell states. Int. J. Theor. Phys. 50(3), 882–887 (2011)MATHCrossRef Gao, G., Fang, M., Yang, R.: Quantum secure direct communication by swapping entanglements of \(3\times 3\)-dimensional Bell states. Int. J. Theor. Phys. 50(3), 882–887 (2011)MATHCrossRef
29.
go back to reference Sun, Z., Du, R., Long, D.: Quantum secure direct communication with two-photon four-qubit cluster states. Int. J. Theor. Phys. 51(6), 1946–1952 (2012)MATHCrossRef Sun, Z., Du, R., Long, D.: Quantum secure direct communication with two-photon four-qubit cluster states. Int. J. Theor. Phys. 51(6), 1946–1952 (2012)MATHCrossRef
30.
go back to reference Zheng, C., Long, G., et al.: Quantum secure direct dialogue using Einstein–Podolsky–Rosen pairs. Sci. China Phys. Mech. Astron. 57(7), 1238–1243 (2014)ADSCrossRef Zheng, C., Long, G., et al.: Quantum secure direct dialogue using Einstein–Podolsky–Rosen pairs. Sci. China Phys. Mech. Astron. 57(7), 1238–1243 (2014)ADSCrossRef
31.
go back to reference Jin, X., Ji, X., Zhang, Y., et al.: Three-party quantum secure direct communication based on GHZ states. Phys. Lett. A 354(1–2), 67–70 (2006)ADSCrossRef Jin, X., Ji, X., Zhang, Y., et al.: Three-party quantum secure direct communication based on GHZ states. Phys. Lett. A 354(1–2), 67–70 (2006)ADSCrossRef
32.
go back to reference Wang, M., Yan, F.: Three-party simultaneous quantum secure direct communication scheme with EPR pairs. Chin. Phys. Lett. 24(9), 2486 (2007)ADSCrossRef Wang, M., Yan, F.: Three-party simultaneous quantum secure direct communication scheme with EPR pairs. Chin. Phys. Lett. 24(9), 2486 (2007)ADSCrossRef
33.
34.
go back to reference Chong, S., Hwang, T.: The enhancement of three-party simultaneous quantum secure direct communication scheme with EPR pairs. Opt. Commun. 284(1), 515–518 (2011)ADSCrossRef Chong, S., Hwang, T.: The enhancement of three-party simultaneous quantum secure direct communication scheme with EPR pairs. Opt. Commun. 284(1), 515–518 (2011)ADSCrossRef
36.
go back to reference Chen, S., Zhou, L., Zhong, W., et al.: Three-step three-party quantum secure direct communication. Sci. China Phys. Mech. Astron. 61(9), 90312 (2018)ADSCrossRef Chen, S., Zhou, L., Zhong, W., et al.: Three-step three-party quantum secure direct communication. Sci. China Phys. Mech. Astron. 61(9), 90312 (2018)ADSCrossRef
37.
go back to reference Liu, Z., Chen, H.: Analysis and improvement of large payload bidirectional quantum secure direct communication without information leakage. Int. J. Theor. Phys. 57(2), 311–321 (2018)MathSciNetMATHCrossRef Liu, Z., Chen, H.: Analysis and improvement of large payload bidirectional quantum secure direct communication without information leakage. Int. J. Theor. Phys. 57(2), 311–321 (2018)MathSciNetMATHCrossRef
38.
go back to reference Cao, Z., Li, Y., Peng, J., et al.: Controlled quantum secure direct communication protocol based on huffman compression coding. Int. J. Theor. Phys. 57(12), 3632–3642 (2018)MathSciNetMATHCrossRef Cao, Z., Li, Y., Peng, J., et al.: Controlled quantum secure direct communication protocol based on huffman compression coding. Int. J. Theor. Phys. 57(12), 3632–3642 (2018)MathSciNetMATHCrossRef
39.
go back to reference Tsai, C., Hwang, T.: Six-qubit decoherence-free state measurement method and its application to development of authenticated quantum secure direct communication protocol. Int. J. Theor. Phys. 57(8), 2513–2522 (2018)MathSciNetMATHCrossRef Tsai, C., Hwang, T.: Six-qubit decoherence-free state measurement method and its application to development of authenticated quantum secure direct communication protocol. Int. J. Theor. Phys. 57(8), 2513–2522 (2018)MathSciNetMATHCrossRef
40.
go back to reference Shang, Y., Yu, W., Li, M., et al.: Quantum communication protocols by quantum walks with two coins. EPL 124(6), 60009 (2019)CrossRef Shang, Y., Yu, W., Li, M., et al.: Quantum communication protocols by quantum walks with two coins. EPL 124(6), 60009 (2019)CrossRef
41.
go back to reference Niu, P., Zhou, Z., Lin, Z., et al.: Measurement-device-independent quantum communication without encryption. Sci. Bull. 63(20), 1345–1350 (2018)CrossRef Niu, P., Zhou, Z., Lin, Z., et al.: Measurement-device-independent quantum communication without encryption. Sci. Bull. 63(20), 1345–1350 (2018)CrossRef
42.
go back to reference Zhou, Z., Sheng, Y., Niu, P.: Measurement-device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron. 63(3), 230362 (2020)CrossRef Zhou, Z., Sheng, Y., Niu, P.: Measurement-device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron. 63(3), 230362 (2020)CrossRef
43.
go back to reference Gao, Z., Li, T., Li, Z.: Long-distance measurement-device-independent quantum secure direct communication. EPL 125(4), 40004 (2019)ADSCrossRef Gao, Z., Li, T., Li, Z.: Long-distance measurement-device-independent quantum secure direct communication. EPL 125(4), 40004 (2019)ADSCrossRef
44.
go back to reference Zhou, L., Sheng, Y., Long, G.: Device-independent quantum secure direct communication against collective attacks. Sci. Bull. 65(1), 12–20 (2020)CrossRef Zhou, L., Sheng, Y., Long, G.: Device-independent quantum secure direct communication against collective attacks. Sci. Bull. 65(1), 12–20 (2020)CrossRef
45.
go back to reference Hu, J., Yu, B., Jing, M., et al.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5(9), e16144 (2016)CrossRef Hu, J., Yu, B., Jing, M., et al.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5(9), e16144 (2016)CrossRef
46.
go back to reference Zhang, W., Ding, D., Sheng, Y., et al.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)ADSCrossRef Zhang, W., Ding, D., Sheng, Y., et al.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)ADSCrossRef
47.
go back to reference Zhu, F., Zhang, W., Sheng, Y., et al.: Experimental long-distance quantum secure direct communication. Sci. Bull. 62(22), 1519–1524 (2017)CrossRef Zhu, F., Zhang, W., Sheng, Y., et al.: Experimental long-distance quantum secure direct communication. Sci. Bull. 62(22), 1519–1524 (2017)CrossRef
48.
go back to reference Chen, Y., Chen, Y., Yu, I.: High-efficiency coherent light storage for the application of quantum memory. AAPPS Bull. 26(5), 3–8 (2016) Chen, Y., Chen, Y., Yu, I.: High-efficiency coherent light storage for the application of quantum memory. AAPPS Bull. 26(5), 3–8 (2016)
49.
go back to reference Shapiro, J., Boroson, D., Dixon, P., et al.: Quantum low probability of intercept. J. Opt. Soc. Am. B 36(3), B41–B50 (2019)CrossRef Shapiro, J., Boroson, D., Dixon, P., et al.: Quantum low probability of intercept. J. Opt. Soc. Am. B 36(3), B41–B50 (2019)CrossRef
50.
go back to reference Lum, D., Howell, J., Allman, M., et al.: A quantum enigma machine: experimentally demonstrating quantum data locking. Phys. Rev. A 94(2), 022315 (2016)ADSCrossRef Lum, D., Howell, J., Allman, M., et al.: A quantum enigma machine: experimentally demonstrating quantum data locking. Phys. Rev. A 94(2), 022315 (2016)ADSCrossRef
51.
go back to reference Wu, J., Lin, Z., Yin, L., et al.: Security of quantum secure direct communication based on Wyner’s wiretap channel theory. Quantum Eng. 1(4), e26 (2019)CrossRef Wu, J., Lin, Z., Yin, L., et al.: Security of quantum secure direct communication based on Wyner’s wiretap channel theory. Quantum Eng. 1(4), e26 (2019)CrossRef
52.
go back to reference Qi, R., Sun, Z., Lin, Z.: Implementation and security analysis of practical quantum secure direct communication. Light Sci. Appl. 8(1), 22 (2019)ADSCrossRef Qi, R., Sun, Z., Lin, Z.: Implementation and security analysis of practical quantum secure direct communication. Light Sci. Appl. 8(1), 22 (2019)ADSCrossRef
55.
go back to reference Zou, X., Qiu, D.: Three-step semiquantum secure direct communication protocol. Sci. China Phys. Mech. Astron. 57(9), 1696–1702 (2014)ADSCrossRef Zou, X., Qiu, D.: Three-step semiquantum secure direct communication protocol. Sci. China Phys. Mech. Astron. 57(9), 1696–1702 (2014)ADSCrossRef
56.
go back to reference Gu, J., Lin, P., Hwang, T.: Double C-NOT attack and counterattack on three-step semi-quantum secure direct communication protocol. Quantum Inf. Process. 17(7), 182 (2018)ADSMathSciNetMATHCrossRef Gu, J., Lin, P., Hwang, T.: Double C-NOT attack and counterattack on three-step semi-quantum secure direct communication protocol. Quantum Inf. Process. 17(7), 182 (2018)ADSMathSciNetMATHCrossRef
57.
go back to reference Xie, C., Li, L., Situ, H., et al.: Semi-quantum secure direct communication scheme based on bell states. Int. J. Theor. Phys. 57(6), 1881–1887 (2018)MathSciNetMATHCrossRef Xie, C., Li, L., Situ, H., et al.: Semi-quantum secure direct communication scheme based on bell states. Int. J. Theor. Phys. 57(6), 1881–1887 (2018)MathSciNetMATHCrossRef
58.
go back to reference Yang, C., Tsai, C.: Advanced semi-quantum secure direct communication protocol based on bell states against flip attack. Quantum Inf. Process. 19(4), 126 (2020)ADSMathSciNetCrossRef Yang, C., Tsai, C.: Advanced semi-quantum secure direct communication protocol based on bell states against flip attack. Quantum Inf. Process. 19(4), 126 (2020)ADSMathSciNetCrossRef
59.
go back to reference Zhang, M., Li, H., Xia, Z., et al.: Semiquantum secure direct communication using EPR pairs. Quantum Inf. Process. 16(5), 117 (2017)ADSMATHCrossRef Zhang, M., Li, H., Xia, Z., et al.: Semiquantum secure direct communication using EPR pairs. Quantum Inf. Process. 16(5), 117 (2017)ADSMATHCrossRef
60.
go back to reference Sun, Y., Yan, L., Chang, Y., et al.: Two semi-quantum secure direct communication protocols based on Bell states. Mod. Phys. Lett. A 34(1), 1950004 (2019)ADSCrossRef Sun, Y., Yan, L., Chang, Y., et al.: Two semi-quantum secure direct communication protocols based on Bell states. Mod. Phys. Lett. A 34(1), 1950004 (2019)ADSCrossRef
61.
go back to reference Rong, Z., Qiu, D., Zou, X.: Semi-quantum secure direct communication with entanglement. Int. J. Theor. Phys. 59, 1807–1819 (2020)MathSciNetMATHCrossRef Rong, Z., Qiu, D., Zou, X.: Semi-quantum secure direct communication with entanglement. Int. J. Theor. Phys. 59, 1807–1819 (2020)MathSciNetMATHCrossRef
62.
go back to reference Rong, Z., Qiu, D., Zou, X.: Two single-state semi-quantum secure direct communication protocols based on single photons. Int. J. Mod. Phys. B 34(11), 2050106 (2020)ADSMathSciNetMATHCrossRef Rong, Z., Qiu, D., Zou, X.: Two single-state semi-quantum secure direct communication protocols based on single photons. Int. J. Mod. Phys. B 34(11), 2050106 (2020)ADSMathSciNetMATHCrossRef
63.
64.
go back to reference Almousa, S., Barbeau, M.: Delay and reflection attacks in authenticated semi-quantum direct communications. In: 2016 IEEE Globecom Workshops (GC Wkshps), Washington, DC, pp. 1–7. IEEE (2016) Almousa, S., Barbeau, M.: Delay and reflection attacks in authenticated semi-quantum direct communications. In: 2016 IEEE Globecom Workshops (GC Wkshps), Washington, DC, pp. 1–7. IEEE (2016)
65.
go back to reference Lu, H., Barbeau, M., Nayak, A.: Economic no-key semi-quantum direct communication protocol. In: 2017 IEEE Globecom Workshops (GC Wkshps), Singapore, pp. 1–7. IEEE (2016) Lu, H., Barbeau, M., Nayak, A.: Economic no-key semi-quantum direct communication protocol. In: 2017 IEEE Globecom Workshops (GC Wkshps), Singapore, pp. 1–7. IEEE (2016)
66.
go back to reference Lu, H., Barbeau, M., Nayak, A.: Keyless semi-quantum point-to-point communication protocol with low resource requirements. Sci. Rep. 9(64), 1–15 (2019) Lu, H., Barbeau, M., Nayak, A.: Keyless semi-quantum point-to-point communication protocol with low resource requirements. Sci. Rep. 9(64), 1–15 (2019)
67.
go back to reference Tao, Z., Chang, Y., Zhang, S., et al.: Two semi-quantum direct communication protocols with mutual authentication based on Bell states. Int. J. Theor. Phys. 58(14), 2986–2993 (2019)MATHCrossRef Tao, Z., Chang, Y., Zhang, S., et al.: Two semi-quantum direct communication protocols with mutual authentication based on Bell states. Int. J. Theor. Phys. 58(14), 2986–2993 (2019)MATHCrossRef
68.
go back to reference Wang, M., Liu, J., Gong, L.: Semiquantum secure direct communication with authentication based on single-photons. Int. J. Quantum Inf. 17(3), 1950024 (2019)MathSciNetMATHCrossRef Wang, M., Liu, J., Gong, L.: Semiquantum secure direct communication with authentication based on single-photons. Int. J. Quantum Inf. 17(3), 1950024 (2019)MathSciNetMATHCrossRef
69.
70.
go back to reference Liu, Z., Hwang, T.: Mediated semi-quantum key distribution without invoking quantum measurement. Ann. Phys. 530(4), 1700206 (2018)MathSciNetCrossRef Liu, Z., Hwang, T.: Mediated semi-quantum key distribution without invoking quantum measurement. Ann. Phys. 530(4), 1700206 (2018)MathSciNetCrossRef
71.
go back to reference Lin, P., Tsai, C., Hwang, T.: Mediated semi-quantum key distribution using single photons. Ann. Phys. 531(8), 1800374 (2019)MathSciNetCrossRef Lin, P., Tsai, C., Hwang, T.: Mediated semi-quantum key distribution using single photons. Ann. Phys. 531(8), 1800374 (2019)MathSciNetCrossRef
72.
go back to reference Massa, F., Yadav, P., Moqanaki, A., et al.: Experimental Quantum Cryptography with Classical Users. arXiv preprint arXiv:1908.01780 (2019) Massa, F., Yadav, P., Moqanaki, A., et al.: Experimental Quantum Cryptography with Classical Users. arXiv preprint arXiv:​1908.​01780 (2019)
73.
go back to reference Tsai, C., Yang, C., Lee, N.: Lightweight mediated semi-quantum key distribution protocol. Mod. Phys. Lett. A 34(34), 1950281 (2019)ADSCrossRef Tsai, C., Yang, C., Lee, N.: Lightweight mediated semi-quantum key distribution protocol. Mod. Phys. Lett. A 34(34), 1950281 (2019)ADSCrossRef
74.
go back to reference Tsai, C., Yang, C.: Lightweight Mediated Semi-Quantum Key Distribution Protocol with a Dishonest Third Party based on Bell States. arXiv preprint arXiv:1909.02788 (2019) Tsai, C., Yang, C.: Lightweight Mediated Semi-Quantum Key Distribution Protocol with a Dishonest Third Party based on Bell States. arXiv preprint arXiv:​1909.​02788 (2019)
75.
go back to reference Krawec, W.: Multi-mediated semi-quantum key distribution. In: 2019 IEEE Globecom Workshops (GC Wkshps), Waikoloa, HI, USA, pp. 1–6. IEEE (2019) Krawec, W.: Multi-mediated semi-quantum key distribution. In: 2019 IEEE Globecom Workshops (GC Wkshps), Waikoloa, HI, USA, pp. 1–6. IEEE (2019)
76.
go back to reference Deng, F., Long, G.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)ADSCrossRef Deng, F., Long, G.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)ADSCrossRef
78.
go back to reference Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635–5638 (2000)ADSCrossRef Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635–5638 (2000)ADSCrossRef
Metadata
Title
Mediated semi-quantum secure direct communication
Authors
Zhenbang Rong
Daowen Qiu
Paulo Mateus
Xiangfu Zou
Publication date
01-02-2021
Publisher
Springer US
Published in
Quantum Information Processing / Issue 2/2021
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-020-02965-2

Other articles of this Issue 2/2021

Quantum Information Processing 2/2021 Go to the issue