Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 13/2021

18-08-2021 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Microstructure and Compressive Properties of Co21Cu16Fe21Ti21V21 High Entropy Alloy

Authors: J. J. Yi, L. Yang, M. Q. Xu, L. Wang

Published in: Physics of Metals and Metallography | Issue 13/2021

Login to get access
share
SHARE

Abstract

The phase components, microstructure, and compressive properties of a novel Co21Cu16Fe21Ti21V21 high entropy alloy in as-cast and annealed conditions were investigated. The phase composition in both states was composed of FCC+BCC. The BCC phase was the primary phase, and the FCC phase corresponded to Cu-rich regions. Through an annealing treatment, the yield strength, σ0.2, decreased from 1950 ± 15 MPa to 1600 ±15 MPa, but the elongation of around 13% changed slightly. In this work, the solid solution strengthening in the Cu-rich regions was deteriorated due to the ejection of the rest of principal elements via annealing, while the number of microvoids seemed to be decreased against those in the as-cast alloy. The combination of both factors simultaneously takes responsibility for the decreased strength and the enhanced elongation.
Literature
1.
go back to reference Y. Zhang, X. Yang, and P.K. Liaw, “Alloy design and properties optimization of high-entropy alloys,” JOM 64 (7), 830–838 (2012). CrossRef Y. Zhang, X. Yang, and P.K. Liaw, “Alloy design and properties optimization of high-entropy alloys,” JOM 64 (7), 830–838 (2012). CrossRef
2.
go back to reference Y. Dong, Y. Lu, J. Kong, et al., “Microstructure and mechanical properties of multi-component AlCrFeNiMo x high-entropy alloys,” J. Alloys Compd. 573, 96–101 (2013). CrossRef Y. Dong, Y. Lu, J. Kong, et al., “Microstructure and mechanical properties of multi-component AlCrFeNiMo x high-entropy alloys,” J. Alloys Compd. 573, 96–101 (2013). CrossRef
3.
go back to reference B. Gludovatz, A. Hohenwarter, D. Catoor, et al., “A fracture-resistant high-entropy alloy for cryogenic applications,” Science 345 (6201), 1153–1158 (2014). CrossRef B. Gludovatz, A. Hohenwarter, D. Catoor, et al., “A fracture-resistant high-entropy alloy for cryogenic applications,” Science 345 (6201), 1153–1158 (2014). CrossRef
4.
go back to reference J. W. Qiao, H. L. Jia, and P. K. Liaw, “Metallic glass matrix composites,” Mater. Sci. Eng., R 100, 1–69 (2016). J. W. Qiao, H. L. Jia, and P. K. Liaw, “Metallic glass matrix composites,” Mater. Sci. Eng., R 100, 1–69 (2016).
5.
go back to reference Y. Zhang, T. T. Zuo, Z. Tang, et al., “Microstructures and properties of high-entropy alloys,” Prog. Mater Sci. 61, 1–93 (2014). CrossRef Y. Zhang, T. T. Zuo, Z. Tang, et al., “Microstructures and properties of high-entropy alloys,” Prog. Mater Sci. 61, 1–93 (2014). CrossRef
6.
go back to reference J. W. Yeh, S. K. Chen, S. J. Lin, et al., “Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes,” Adv. Eng. Mater. 6, 299–303 (2004). CrossRef J. W. Yeh, S. K. Chen, S. J. Lin, et al., “Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes,” Adv. Eng. Mater. 6, 299–303 (2004). CrossRef
7.
go back to reference B. Cantor, I. T. H. Chang, P. Knight, et al., “Microstructural development in equiatomic multicomponent alloys,” Mater. Sci. Eng., A 375– 377, 213–218 (2004). CrossRef B. Cantor, I. T. H. Chang, P. Knight, et al., “Microstructural development in equiatomic multicomponent alloys,” Mater. Sci. Eng., A 375377, 213–218 (2004). CrossRef
8.
go back to reference S. Yoshida, T. Ikeuchi, T. Bhattacharjee, et al., “Effect of elemental combination on friction stress and Hall–Petch relationship in face-centered cubic high/medium entropy alloys,” Acta Mater. 171, 201–215 (2019). CrossRef S. Yoshida, T. Ikeuchi, T. Bhattacharjee, et al., “Effect of elemental combination on friction stress and Hall–Petch relationship in face-centered cubic high/medium entropy alloys,” Acta Mater. 171, 201–215 (2019). CrossRef
9.
go back to reference D. B. Miracle and O. N. Senkov, “A critical review of high entropy alloys and related concepts,” Acta Mater. 122, 448-511 (2017). CrossRef D. B. Miracle and O. N. Senkov, “A critical review of high entropy alloys and related concepts,” Acta Mater. 122, 448-511 (2017). CrossRef
10.
go back to reference M. H. Tsai and J. W. Yeh, “High-entropy alloys: a critical review,” Mater. Res. Lett. 2 (3), 107–123 (2014). CrossRef M. H. Tsai and J. W. Yeh, “High-entropy alloys: a critical review,” Mater. Res. Lett. 2 (3), 107–123 (2014). CrossRef
11.
go back to reference R. R. Eleti, T. Bhattacharjee, A. Shibata, et al., “Unique deformation behavior and microstructure evolution in high temperature processing of HfNbTaTiZr refractory high entropy alloy,” Acta Mater. 171, 132–145 (2019). CrossRef R. R. Eleti, T. Bhattacharjee, A. Shibata, et al., “Unique deformation behavior and microstructure evolution in high temperature processing of HfNbTaTiZr refractory high entropy alloy,” Acta Mater. 171, 132–145 (2019). CrossRef
12.
go back to reference J. Li, Q. Fang, B. Liu, et al., “Transformation induced softening and plasticity in high entropy alloys,” Acta Mater. 147, 35–41 (2018). CrossRef J. Li, Q. Fang, B. Liu, et al., “Transformation induced softening and plasticity in high entropy alloys,” Acta Mater. 147, 35–41 (2018). CrossRef
13.
go back to reference I. Basu, V. Ocelik, and J. T. M. De Hosson, “Size dependent plasticity and damage response in multiphase body centered cubic high entropy alloys,” Acta Mater. 150, 104–116 (2018). CrossRef I. Basu, V. Ocelik, and J. T. M. De Hosson, “Size dependent plasticity and damage response in multiphase body centered cubic high entropy alloys,” Acta Mater. 150, 104–116 (2018). CrossRef
14.
go back to reference K. F. Quiambao, S. J. McDonnell, D. K. Schreiber, et al., “Passivation of a corrosion resistant high entropy alloy in non-oxidizing sulfate solutions,” Acta Mater. 164, 362–376 (2019). CrossRef K. F. Quiambao, S. J. McDonnell, D. K. Schreiber, et al., “Passivation of a corrosion resistant high entropy alloy in non-oxidizing sulfate solutions,” Acta Mater. 164, 362–376 (2019). CrossRef
15.
go back to reference M. V. Ivchenko, V. G. Pushin, A. N. Uksusnikov, and N. Wanderka, “Microstructure features of high-entropy equiatomic cast AlCrFeCoNiCu alloys,” Phys. Met. Metallogr. 114, 514–520 (2013). CrossRef M. V. Ivchenko, V. G. Pushin, A. N. Uksusnikov, and N. Wanderka, “Microstructure features of high-entropy equiatomic cast AlCrFeCoNiCu alloys,” Phys. Met. Metallogr. 114, 514–520 (2013). CrossRef
16.
go back to reference M. V. Ivchenko, V. G. Pushin, A. N. Uksusnikov, N. Wanderka, and N. I. Kourov, “Specific features of cast high-entropy AlCrFeCoNiCu alloys produced by ultrarapid quenching from the melt,” Phys. Met. Metallogr. 114, 503–513 (2013). CrossRef M. V. Ivchenko, V. G. Pushin, A. N. Uksusnikov, N. Wanderka, and N. I. Kourov, “Specific features of cast high-entropy AlCrFeCoNiCu alloys produced by ultrarapid quenching from the melt,” Phys. Met. Metallogr. 114, 503–513 (2013). CrossRef
17.
go back to reference J. W. Yeh, S. K. Chen, J. Y. Gan, et al., “Formation of simple crystal structures in Cu–Co–Ni–Cr–Al–Fe–Ti–V alloys with multiprincipal metallic elements,” Metall. Mater. Trans. A 35, 2533–2536 (2004). CrossRef J. W. Yeh, S. K. Chen, J. Y. Gan, et al., “Formation of simple crystal structures in Cu–Co–Ni–Cr–Al–Fe–Ti–V alloys with multiprincipal metallic elements,” Metall. Mater. Trans. A 35, 2533–2536 (2004). CrossRef
18.
go back to reference C. J. Tong, M. R. Chen, S. K. Chen, et al., “Mechanical performance of the Al xCoCrCuFeNi high-entropy alloy system with multiprincipal elements,” Metall. Mater. Trans. A 36, 1263–1271 (2004). CrossRef C. J. Tong, M. R. Chen, S. K. Chen, et al., “Mechanical performance of the Al xCoCrCuFeNi high-entropy alloy system with multiprincipal elements,” Metall. Mater. Trans. A 36, 1263–1271 (2004). CrossRef
19.
go back to reference K. B. Zhang, Z. Y. Fu, J. Y. Zhang, et al., “Microstructure and mechanical properties of CoCrFeNiTiAl x high-entropy alloys,” Mater. Sci. Eng., A 508 (1–2), 214–219 (2009). CrossRef K. B. Zhang, Z. Y. Fu, J. Y. Zhang, et al., “Microstructure and mechanical properties of CoCrFeNiTiAl x high-entropy alloys,” Mater. Sci. Eng., A 508 (1–2), 214–219 (2009). CrossRef
20.
go back to reference N. D. Stepanov, D. G. Shaysultanov, G. A. Salishchev, et al., “Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiV x high entropy alloys,” J. Alloys Compd. 628, 170–185 (2015). CrossRef N. D. Stepanov, D. G. Shaysultanov, G. A. Salishchev, et al., “Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiV x high entropy alloys,” J. Alloys Compd. 628, 170–185 (2015). CrossRef
21.
go back to reference X. Wang, H. Xie, L. Jia, et al., “Effect of Ti, Al and Cu addition on structural evolution and phase constitution of FeCoNi system equimolar alloys,” Mater. Sci. Forum 724, 335–338 (2012). CrossRef X. Wang, H. Xie, L. Jia, et al., “Effect of Ti, Al and Cu addition on structural evolution and phase constitution of FeCoNi system equimolar alloys,” Mater. Sci. Forum 724, 335–338 (2012). CrossRef
22.
go back to reference S. Singh, N. Wanderka, B. S. Murty, et al., “Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy,” Acta Mater. 59 (1), 182–190 (2011). CrossRef S. Singh, N. Wanderka, B. S. Murty, et al., “Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy,” Acta Mater. 59 (1), 182–190 (2011). CrossRef
23.
go back to reference S. Praveen, B. S. Murty, and R. S. Kottada, “Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys,” Mater. Sci. Eng., A 534, 83–89 (2012). CrossRef S. Praveen, B. S. Murty, and R. S. Kottada, “Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys,” Mater. Sci. Eng., A 534, 83–89 (2012). CrossRef
24.
go back to reference M. H. Tsai, H. Yuan, G. Cheng, et al., “Morphology, structure and composition of precipitates in Al 0.3CoCrCu 0.5FeNi high-entropy alloy,” Intermetallics 32, 329–336 (2013). CrossRef M. H. Tsai, H. Yuan, G. Cheng, et al., “Morphology, structure and composition of precipitates in Al 0.3CoCrCu 0.5FeNi high-entropy alloy,” Intermetallics 32, 329–336 (2013). CrossRef
25.
go back to reference L. Liu, J. B. Zhu, C. Zhang, et al., “Microstructure and the properties of FeCoCuNiSn x high entropy alloys,” Mater. Sci. Eng., A 548, 64–68 (2012). CrossRef L. Liu, J. B. Zhu, C. Zhang, et al., “Microstructure and the properties of FeCoCuNiSn x high entropy alloys,” Mater. Sci. Eng., A 548, 64–68 (2012). CrossRef
26.
go back to reference L. Liu, J. B. Zhu, L. Li, et al., “Microstructure and tensile properties of FeMnNiCuCoSn x high entropy alloys,” Mater. Des. 44, 223–227 (2013). CrossRef L. Liu, J. B. Zhu, L. Li, et al., “Microstructure and tensile properties of FeMnNiCuCoSn x high entropy alloys,” Mater. Des. 44, 223–227 (2013). CrossRef
27.
go back to reference S. Samal, S. Mohanty, A. K. Misra, et al., “Mechanical behavior of novel suction cast Ti–Cu–Fe–Co–Ni high entropy alloys,” Mater. Sci. Forum 790–791, 503–508 (2014). CrossRef S. Samal, S. Mohanty, A. K. Misra, et al., “Mechanical behavior of novel suction cast Ti–Cu–Fe–Co–Ni high entropy alloys,” Mater. Sci. Forum 790–791, 503–508 (2014). CrossRef
28.
go back to reference Y. Lederer, C. Toher, K. S. Vecchio, et al., “The search for high entropy alloys: a high-throughput ab- initio approach,” Acta Mater. 159, 364–383 (2018). CrossRef Y. Lederer, C. Toher, K. S. Vecchio, et al., “The search for high entropy alloys: a high-throughput ab- initio approach,” Acta Mater. 159, 364–383 (2018). CrossRef
29.
go back to reference X.F. Wang, Y. Zhang, Y. Qiao, et al., “Novel microstructure and properties of multicomponent CoCrCuFeNiTi x alloys,” Intermetallics 15 (3), 357–362 (2007). CrossRef X.F. Wang, Y. Zhang, Y. Qiao, et al., “Novel microstructure and properties of multicomponent CoCrCuFeNiTi x alloys,” Intermetallics 15 (3), 357–362 (2007). CrossRef
30.
go back to reference Z. Hu, Y. Zhan, G. Zhang, et al., “Effect of rare earth Y addition on the microstructure and mechanical properties of high entropy AlCoCrCuNiTi alloys,” Mater. Des. 31 (3), 1599–1602 (2010). CrossRef Z. Hu, Y. Zhan, G. Zhang, et al., “Effect of rare earth Y addition on the microstructure and mechanical properties of high entropy AlCoCrCuNiTi alloys,” Mater. Des. 31 (3), 1599–1602 (2010). CrossRef
31.
go back to reference S. Varalakshmi, M. Kamaraj, and B. S. Murty, “Processing and properties of nanocrystalline CuNiCoZnAlTi high entropy alloys by mechanical alloying,” Mater. Sci. Eng., A 527 (4–5), 1027–1030 (2010). CrossRef S. Varalakshmi, M. Kamaraj, and B. S. Murty, “Processing and properties of nanocrystalline CuNiCoZnAlTi high entropy alloys by mechanical alloying,” Mater. Sci. Eng., A 527 (4–5), 1027–1030 (2010). CrossRef
Metadata
Title
Microstructure and Compressive Properties of Co21Cu16Fe21Ti21V21 High Entropy Alloy
Authors
J. J. Yi
L. Yang
M. Q. Xu
L. Wang
Publication date
18-08-2021
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 13/2021
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X2113010X