Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 1/2015

01-01-2015

Microwave Intercalation Synthesis of WO3 Nanoplates and Their NO-Sensing Properties

Authors: Yue Tu, Qiang Li, Danyu Jiang, Qi Wang, Tao Feng

Published in: Journal of Materials Engineering and Performance | Issue 1/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Tungsten(VI) oxide (WO3) nanoplates were successfully synthesized by microwave intercalation. Through microwave processing, an intermediate product H2W2O7·xH2O was prepared quickly to greatly decrease the time used to prepare WO3 nanoplates. The crystal structure and morphology of WO3 were characterized by x-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, and selected-area electron diffraction. The morphology of WO3 changed with an increase in calcining temperature. A mixed-potential NO x sensor using planar yttria-stabilized zirconia and WO3 as the sensing electrode (SE) was fabricated, and its performance in NO x detection at high temperature was examined. It was determined that at 500 °C, the sensor with the WO3-nanoplate SE had higher sensitivity to NO than the sensor with a SE consisting of WO3 microparticles. The response of the NO sensor with a WO3-nanoplate SE was linear with the logarithm of NO concentration in the range of 100-1000 ppm. The electrochemical impedance measurements indicate that the electrode reaction that occurred at the triple-phase boundary (TPB) of the sensor with WO3-nanoplate SE was stronger than the reaction that occurred at the TPB of the sensor with WO3-microparticle sensing electrode.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference C. López-Gándara, J.M. Fernández-Sanjuán, F.M. Ramos, and A. Cirera, Role of Nanostructured WO3 in Ion-Conducting Sensors for the Detection of NO x in Exhaust Gases From Lean Combustion Engines, Solid State Ionics, 2011, 184(1), p 83–87CrossRef C. López-Gándara, J.M. Fernández-Sanjuán, F.M. Ramos, and A. Cirera, Role of Nanostructured WO3 in Ion-Conducting Sensors for the Detection of NO x in Exhaust Gases From Lean Combustion Engines, Solid State Ionics, 2011, 184(1), p 83–87CrossRef
2.
go back to reference E. Hawe, C. Fitzpatrick, P. Chambers, G. Dooly, and E. Lewis, Hazardous Gas Detection Using an Integrating Sphere as a Multipass Gas Absorption Cell, Sens. Actuators A, 2008, 141(2), p 414–421CrossRef E. Hawe, C. Fitzpatrick, P. Chambers, G. Dooly, and E. Lewis, Hazardous Gas Detection Using an Integrating Sphere as a Multipass Gas Absorption Cell, Sens. Actuators A, 2008, 141(2), p 414–421CrossRef
3.
go back to reference N. Miura, G. Lu, and N. Yamazoe, High-Temperature Potentiometric:Amperometric NO x Sensors Combining Stabilized Zirconia with Mixed-Metal Oxide Electrode, Sens. Actuators B, 1998, 52(1-2), p 169–178CrossRef N. Miura, G. Lu, and N. Yamazoe, High-Temperature Potentiometric:Amperometric NO x Sensors Combining Stabilized Zirconia with Mixed-Metal Oxide Electrode, Sens. Actuators B, 1998, 52(1-2), p 169–178CrossRef
4.
go back to reference G. Lu, N. Miura, and N. Yamazoe, High-Temperature Sensors for NO and NO2 Based on Stabilized Zirconia and Spinel-Type Oxide Electrodes, J. Mater. Chem., 1997, 7(8), p 1445–1449CrossRef G. Lu, N. Miura, and N. Yamazoe, High-Temperature Sensors for NO and NO2 Based on Stabilized Zirconia and Spinel-Type Oxide Electrodes, J. Mater. Chem., 1997, 7(8), p 1445–1449CrossRef
5.
go back to reference S. Zhuiykov, T. Ono, N. Yamazoe, and N. Miura, High-Temperature NO x Sensors Using Zirconia Solid Electrolyte and Zinc-Family Oxide Sensing Electrode, Solid State Ionics, 2002, 152-153, p 801–807CrossRef S. Zhuiykov, T. Ono, N. Yamazoe, and N. Miura, High-Temperature NO x Sensors Using Zirconia Solid Electrolyte and Zinc-Family Oxide Sensing Electrode, Solid State Ionics, 2002, 152-153, p 801–807CrossRef
6.
go back to reference N. Miura, S. Zhuiykov, T. Ono, M. Hasei, and N. Yamazoe, Mixed Potential Type Sensor Using Stabilized Zirconia and ZnFe2O4 Sensing Electrode for NO x Detection at High Temperature, Sens Actuators B, 2002, 83(1-3), p 222–229CrossRef N. Miura, S. Zhuiykov, T. Ono, M. Hasei, and N. Yamazoe, Mixed Potential Type Sensor Using Stabilized Zirconia and ZnFe2O4 Sensing Electrode for NO x Detection at High Temperature, Sens Actuators B, 2002, 83(1-3), p 222–229CrossRef
7.
go back to reference C.O. Park, S.A. Akbar, and W. Weppner, Ceramic Electrolytes and Electrochemical Sensors, J. Mater. Sci., 2003, 38(23), p 4639–4660CrossRef C.O. Park, S.A. Akbar, and W. Weppner, Ceramic Electrolytes and Electrochemical Sensors, J. Mater. Sci., 2003, 38(23), p 4639–4660CrossRef
8.
go back to reference N. Yamazoe and N. Miura, Potentiometric Gas Sensors for Oxidic Gases, J. Electroceram., 1998, 2(4), p 243–255CrossRef N. Yamazoe and N. Miura, Potentiometric Gas Sensors for Oxidic Gases, J. Electroceram., 1998, 2(4), p 243–255CrossRef
9.
go back to reference N. Miura, K. Akisada, J. Wang, S. Zhuiykov, and T. Ono, Mixed-Potential-Type NO x Sensor Based on YSZ and Zinc Oxide Sensing Electrode, Ionics, 2004, 10(1-2), p 1–9CrossRef N. Miura, K. Akisada, J. Wang, S. Zhuiykov, and T. Ono, Mixed-Potential-Type NO x Sensor Based on YSZ and Zinc Oxide Sensing Electrode, Ionics, 2004, 10(1-2), p 1–9CrossRef
10.
go back to reference J.W. Fergus, Materials for High Temperature Electrochemical NO x Gas Sensors, Sens. Actuators B, 2007, 121(2), p 652–663CrossRef J.W. Fergus, Materials for High Temperature Electrochemical NO x Gas Sensors, Sens. Actuators B, 2007, 121(2), p 652–663CrossRef
11.
go back to reference J.-C. Yang and P.K. Dutta, Solution-Based Synthesis of Efficient WO3 Sensing Electrodes for High Temperature Potentiometric NO x Sensors, Sens. Actuators B, 2009, 136(2), p 523–529CrossRef J.-C. Yang and P.K. Dutta, Solution-Based Synthesis of Efficient WO3 Sensing Electrodes for High Temperature Potentiometric NO x Sensors, Sens. Actuators B, 2009, 136(2), p 523–529CrossRef
12.
go back to reference J. Yoo, D. Oh, and E.D. Wachsman, Investigation of WO3-Based Potentiometric Sensor Performance (M/YSZ/WO3, M = Au, Pd, and TiO2) with Varying Counter Electrode, Solid State Ionics, 2008, 179(37), p 2090–2100CrossRef J. Yoo, D. Oh, and E.D. Wachsman, Investigation of WO3-Based Potentiometric Sensor Performance (M/YSZ/WO3, M = Au, Pd, and TiO2) with Varying Counter Electrode, Solid State Ionics, 2008, 179(37), p 2090–2100CrossRef
13.
go back to reference J. Yoo, S. Chatterjee, and E.D. Wachsman, Sensing Properties and Selectivities of a WO3/YSZ/Pt Potentiometric NO x Sensor, Sens. Actuators B, 2007, 122(2), p 644–652CrossRef J. Yoo, S. Chatterjee, and E.D. Wachsman, Sensing Properties and Selectivities of a WO3/YSZ/Pt Potentiometric NO x Sensor, Sens. Actuators B, 2007, 122(2), p 644–652CrossRef
14.
go back to reference J. Tamaki, A. Miyaji, J. Makinodan, S. Ogura, and S. Konishi, Effect of Micro-Gap Electrode on Detection of Dilute NO2 Using WO3 Thin Film Microsensors, Sens. Actuators B, 2005, 108(1-2), p 202–206CrossRef J. Tamaki, A. Miyaji, J. Makinodan, S. Ogura, and S. Konishi, Effect of Micro-Gap Electrode on Detection of Dilute NO2 Using WO3 Thin Film Microsensors, Sens. Actuators B, 2005, 108(1-2), p 202–206CrossRef
15.
go back to reference G. Lu, N. Miura, and N. Yamazoe, Stabilized Zirconia-Based Sensors Using WO3 Electrode for Detection of NO or NO2, Sens. Actuators B, 2000, 65(1-3), p 125–127CrossRef G. Lu, N. Miura, and N. Yamazoe, Stabilized Zirconia-Based Sensors Using WO3 Electrode for Detection of NO or NO2, Sens. Actuators B, 2000, 65(1-3), p 125–127CrossRef
16.
go back to reference J.-C. Yang and P.K. Dutta, Influence of Solid-State Reactions at the Electrode-Electrolyte Interface on High-Temperature Potentiometric NO x -Gas Sensors, J. Phys. Chem. C, 2007, 111(23), p 8307–8313CrossRef J.-C. Yang and P.K. Dutta, Influence of Solid-State Reactions at the Electrode-Electrolyte Interface on High-Temperature Potentiometric NO x -Gas Sensors, J. Phys. Chem. C, 2007, 111(23), p 8307–8313CrossRef
17.
go back to reference S. Bai, K. Zhang, R. Luo, D. Li, A. Chen, and C.C. Liu, Low-Temperature Hydrothermal Synthesis of WO3 Nanorods and Their Sensing Properties for NO2, J. Mater. Chem., 2012, 22, p 12643–12650CrossRef S. Bai, K. Zhang, R. Luo, D. Li, A. Chen, and C.C. Liu, Low-Temperature Hydrothermal Synthesis of WO3 Nanorods and Their Sensing Properties for NO2, J. Mater. Chem., 2012, 22, p 12643–12650CrossRef
18.
go back to reference S. Fardindoost, A.I. Zad, F. Rahimi, and R. Ghasempour, Pd Doped WO3 Films Prepared by Sol-Gel Process for Hydrogen Sensing, Int. J. Hydrog. Energy, 2010, 35(2), p 854–860CrossRef S. Fardindoost, A.I. Zad, F. Rahimi, and R. Ghasempour, Pd Doped WO3 Films Prepared by Sol-Gel Process for Hydrogen Sensing, Int. J. Hydrog. Energy, 2010, 35(2), p 854–860CrossRef
19.
go back to reference W.-C. Hsu, C.-C. Chan, C.-H. Peng, and C.-C. Chang, Hydrogen Sensing Characteristics of an Electrodeposited WO3 Thin Film Gasochromic Sensor Activated by Pt Catalyst, Thin Solid Films, 2007, 516(2-4), p 407–411CrossRef W.-C. Hsu, C.-C. Chan, C.-H. Peng, and C.-C. Chang, Hydrogen Sensing Characteristics of an Electrodeposited WO3 Thin Film Gasochromic Sensor Activated by Pt Catalyst, Thin Solid Films, 2007, 516(2-4), p 407–411CrossRef
20.
go back to reference C. Wongchoosuk, A. Wisitsoraat, D. Phokharatkul, A. Tuantranont, and T. Kerdcharoen, Multi-Walled Carbon Nanotube-Doped Tungsten Oxide Thin Films for Hydrogen Gas Sensing, Sensors, 2010, 10(8), p 7705–7715CrossRef C. Wongchoosuk, A. Wisitsoraat, D. Phokharatkul, A. Tuantranont, and T. Kerdcharoen, Multi-Walled Carbon Nanotube-Doped Tungsten Oxide Thin Films for Hydrogen Gas Sensing, Sensors, 2010, 10(8), p 7705–7715CrossRef
21.
go back to reference M.H. Yaacob, M. Breedon, K. Kalantar-zadeh, and W. Wlodarski, Absorption Spectral Response of Nanotextured WO3 Thin Films with Pt Catalyst Towards H2, Sens. Actuators B, 2009, 137(1), p 115–120CrossRef M.H. Yaacob, M. Breedon, K. Kalantar-zadeh, and W. Wlodarski, Absorption Spectral Response of Nanotextured WO3 Thin Films with Pt Catalyst Towards H2, Sens. Actuators B, 2009, 137(1), p 115–120CrossRef
22.
go back to reference D. Chen, L. Gao, A. Yasumori, K. Kuroda, and Y. Sugahara, Size- and Shape-Controlled Conversion of Tungstate-Based Inorganic-Organic Hybrid Belts to WO3 Nanoplates with High Specific Surface Areas, Small, 2008, 4(10), p 1813–1822CrossRef D. Chen, L. Gao, A. Yasumori, K. Kuroda, and Y. Sugahara, Size- and Shape-Controlled Conversion of Tungstate-Based Inorganic-Organic Hybrid Belts to WO3 Nanoplates with High Specific Surface Areas, Small, 2008, 4(10), p 1813–1822CrossRef
23.
go back to reference D.-L. Chen, H.-L. Wang, R. Zhang, S.-K. Guan, H.-X. Lu, H.-L. Xu, D.-Y. Yang, Y. Sugahara, and L. Gao, Synthesis, Characterization and Formation Mechanism of Single-Crystal WO3 Nanosheets Via an Intercalation-Chemistry-Based Route, Chem. J. Chin. Univ., 2008, 29(7), p 1325–1330 [in Chinese] D.-L. Chen, H.-L. Wang, R. Zhang, S.-K. Guan, H.-X. Lu, H.-L. Xu, D.-Y. Yang, Y. Sugahara, and L. Gao, Synthesis, Characterization and Formation Mechanism of Single-Crystal WO3 Nanosheets Via an Intercalation-Chemistry-Based Route, Chem. J. Chin. Univ., 2008, 29(7), p 1325–1330 [in Chinese]
24.
go back to reference D. Chen and Y. Sugahara, Tungstate-Based Inorganic-Organic Hybrid Nanobelts/Nanotubes with Lamellar Mesostructures: Synthesis, Characterization, and Formation Mechanism, Chem. Mater., 2007, 19(7), p 1808–1815CrossRef D. Chen and Y. Sugahara, Tungstate-Based Inorganic-Organic Hybrid Nanobelts/Nanotubes with Lamellar Mesostructures: Synthesis, Characterization, and Formation Mechanism, Chem. Mater., 2007, 19(7), p 1808–1815CrossRef
25.
go back to reference D. Chen, M. Liu, L. Yin, T. Li, Z. Yang, X. Li, B. Fan, H. Wang, R. Zhang, Z. Li, H. Xu, H. Lu, D. Yang, J. Sune, and L. Gao, Single-Crystalline MoO3 Nanoplates: Topochemical Synthesis and Enhanced Ethanol-Sensing Performance, J. Mater. Chem., 2011, 21(25), p 9332–9342CrossRef D. Chen, M. Liu, L. Yin, T. Li, Z. Yang, X. Li, B. Fan, H. Wang, R. Zhang, Z. Li, H. Xu, H. Lu, D. Yang, J. Sune, and L. Gao, Single-Crystalline MoO3 Nanoplates: Topochemical Synthesis and Enhanced Ethanol-Sensing Performance, J. Mater. Chem., 2011, 21(25), p 9332–9342CrossRef
26.
go back to reference M. Waller, T. Townsend, J. Zhao, E. Sabio, R.L. Chamousis, N.D. Browning, and F.E. Osterloh, Single-Crystal Tungsten Oxide Nanosheets: Photochemical Water Oxidation in the Quantum Confinement Regime, Chem. Mater., 2012, 24(4), p 698–704CrossRef M. Waller, T. Townsend, J. Zhao, E. Sabio, R.L. Chamousis, N.D. Browning, and F.E. Osterloh, Single-Crystal Tungsten Oxide Nanosheets: Photochemical Water Oxidation in the Quantum Confinement Regime, Chem. Mater., 2012, 24(4), p 698–704CrossRef
27.
go back to reference M. Kudo, H. Ohkawa, W. Sugimoto, N. Kumada, Z. Liu, O. Terasaki, and Y. Sugahara, A Layered Tungstic Acid H2W2O7·nH2O with a Double-Octahedral Sheet Structure: Conversion Process From an Aurivillius Phase Bi2W2O9 and Structural Characterization, Inorg. Chem., 2003, 42(14), p 4479–4484CrossRef M. Kudo, H. Ohkawa, W. Sugimoto, N. Kumada, Z. Liu, O. Terasaki, and Y. Sugahara, A Layered Tungstic Acid H2W2O7·nH2O with a Double-Octahedral Sheet Structure: Conversion Process From an Aurivillius Phase Bi2W2O9 and Structural Characterization, Inorg. Chem., 2003, 42(14), p 4479–4484CrossRef
28.
go back to reference D. Chen, X. Hou, T. Li, L. Yin, B. Fan, H. Wang, X. Li, H. Xu, H. Lu, R. Zhang, and J. Sun, Effects of Morphologies on Acetone-Sensing Properties of Tungsten Trioxide Nanocrystals, Sens Actuators B, 2011, 153(2), p 373–381CrossRef D. Chen, X. Hou, T. Li, L. Yin, B. Fan, H. Wang, X. Li, H. Xu, H. Lu, R. Zhang, and J. Sun, Effects of Morphologies on Acetone-Sensing Properties of Tungsten Trioxide Nanocrystals, Sens Actuators B, 2011, 153(2), p 373–381CrossRef
29.
go back to reference D. Chen, X. Hou, H. Wen, Y. Wang, H. Wang, X. Li, R. Zhang, H. Lu, H. Xu, S. Guan, J. Sun, and L. Gao, The Enhanced Alcohol-Sensing Response of Ultrathin WO3 Nanoplates, Nanotechnology, 2010, 21(3), p 035501–035512CrossRef D. Chen, X. Hou, H. Wen, Y. Wang, H. Wang, X. Li, R. Zhang, H. Lu, H. Xu, S. Guan, J. Sun, and L. Gao, The Enhanced Alcohol-Sensing Response of Ultrathin WO3 Nanoplates, Nanotechnology, 2010, 21(3), p 035501–035512CrossRef
30.
go back to reference D. Chen, L. Yin, L. Ge, B. Fan, R. Zhang, J. Sun, and Guosheng Shao, Low-Temperature and Highly Selective NO-Sensing Performance of WO3 Nanoplates Decorated with Silver Nanoparticles, Sens. Actuators B, 2013, 185, p 445–455CrossRef D. Chen, L. Yin, L. Ge, B. Fan, R. Zhang, J. Sun, and Guosheng Shao, Low-Temperature and Highly Selective NO-Sensing Performance of WO3 Nanoplates Decorated with Silver Nanoparticles, Sens. Actuators B, 2013, 185, p 445–455CrossRef
Metadata
Title
Microwave Intercalation Synthesis of WO3 Nanoplates and Their NO-Sensing Properties
Authors
Yue Tu
Qiang Li
Danyu Jiang
Qi Wang
Tao Feng
Publication date
01-01-2015
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 1/2015
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-014-1250-y

Other articles of this Issue 1/2015

Journal of Materials Engineering and Performance 1/2015 Go to the issue

Premium Partners