Skip to main content
Top
Published in: Advances in Manufacturing 3/2013

01-09-2013

Molecular and crystal assembly inside the carbon nanotube: encapsulation and manufacturing approaches

Author: Sergio Manzetti

Published in: Advances in Manufacturing | Issue 3/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Encapsulation of different guest-species such as molecules and ions inside carbon nanotubes (CNTs) has been reported in the literatures during the last 15 years and represents an exciting development of nanoengineering of novel materials and composites. The reported nanocomposite materials show the semi-conducting properties with potential applications in nanosensors, nanounits and nanocircuits as well as advanced energy transfer and storage properties, and encompass manufacturing for novel nanowires, nanoelectronic devices with properties designed with optoelectronic, spintronic and nanomagnetic qualities. This review reports on a wide range of encapsulation references with particular focus on single molecules, atomic chains, metal halides and polymers encapsulated inside CNTs. The encapsulation methods and the chemical and physical qualities of these novel materials are crucial for the future manufacturing of novel innovations in nanotechnology, and represent therefore the current state-of-the-art of encapsulation methods in advanced manufacturing.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Guan L, Shi Z, Li M et al (2005) Ferrocene-filled single-walled carbon nanotubes. Carbon 43:2780–2785CrossRef Guan L, Shi Z, Li M et al (2005) Ferrocene-filled single-walled carbon nanotubes. Carbon 43:2780–2785CrossRef
2.
go back to reference Obergfell D, Meyer JC, Haluska M et al (2006) Transport and TEM on dysprosium metallofullerene peapods. Phys Status Solidif B 243:3430–3434CrossRef Obergfell D, Meyer JC, Haluska M et al (2006) Transport and TEM on dysprosium metallofullerene peapods. Phys Status Solidif B 243:3430–3434CrossRef
3.
go back to reference Del Carmen Gimenez-Lopez M, Chuvilin A, Kaiser U et al (2011) Functionalised endohedral fullerenes in single-walled carbon nanotubes. Chem Commun (Camb) 47:2116–2118 Del Carmen Gimenez-Lopez M, Chuvilin A, Kaiser U et al (2011) Functionalised endohedral fullerenes in single-walled carbon nanotubes. Chem Commun (Camb) 47:2116–2118
4.
go back to reference Del Carmen Gimenez-Lopez M, La Torre A, Fay MW et al (2013) Assembly and magnetic bistability of Mn3O4 nanoparticles encapsulated in hollow carbon nanofibers. Angew Chem Int Ed Engl 52:2051–2054 Del Carmen Gimenez-Lopez M, La Torre A, Fay MW et al (2013) Assembly and magnetic bistability of Mn3O4 nanoparticles encapsulated in hollow carbon nanofibers. Angew Chem Int Ed Engl 52:2051–2054
5.
go back to reference Faist J, Capasso F, Sirtori C et al (1995) Continuous wave operation of a vertical transition quantum cascade laser above T = 80 K. Appl Phys Lett 67:3057–3059CrossRef Faist J, Capasso F, Sirtori C et al (1995) Continuous wave operation of a vertical transition quantum cascade laser above T = 80 K. Appl Phys Lett 67:3057–3059CrossRef
6.
go back to reference Tóth G, Lent CS (2001) Quantum computing with quantum-dot cellular automata. Phys Rev A 63:052315CrossRef Tóth G, Lent CS (2001) Quantum computing with quantum-dot cellular automata. Phys Rev A 63:052315CrossRef
7.
go back to reference Lindner NH, Refael G, Galitski V (2011) Floquet topological insulator in semiconductor quantum wells. Nat Phys 7:490–495CrossRef Lindner NH, Refael G, Galitski V (2011) Floquet topological insulator in semiconductor quantum wells. Nat Phys 7:490–495CrossRef
8.
go back to reference Meunier V, Sumpter BG (2005) Amphoteric doping of carbon nanotubes by encapsulation of organic molecules: electronic properties and quantum conductance. J Chem Phys 123:24705CrossRef Meunier V, Sumpter BG (2005) Amphoteric doping of carbon nanotubes by encapsulation of organic molecules: electronic properties and quantum conductance. J Chem Phys 123:24705CrossRef
9.
go back to reference Dinadayalane TC, Gorb L, Simeon T et al (2007) Cumulative-interaction triggers unusually high stabilization of linear hydrocarbon inside the single-walled carbon nanotube. Int J Quantum Chem 107:2204–2210CrossRef Dinadayalane TC, Gorb L, Simeon T et al (2007) Cumulative-interaction triggers unusually high stabilization of linear hydrocarbon inside the single-walled carbon nanotube. Int J Quantum Chem 107:2204–2210CrossRef
10.
go back to reference Smith BW, Monthoux M, Luzzi DE (1998) Encapsulated C60 in carbon nanotubes. Nature 396:323–324CrossRef Smith BW, Monthoux M, Luzzi DE (1998) Encapsulated C60 in carbon nanotubes. Nature 396:323–324CrossRef
11.
go back to reference Maniwa Y, Kumazawa Y, Saito Y et al (1999) Anomaly of X-ray diffraction profile in single-walled carbon nanotubes. Jpn J Appl Phys Lett 38:L668–L670CrossRef Maniwa Y, Kumazawa Y, Saito Y et al (1999) Anomaly of X-ray diffraction profile in single-walled carbon nanotubes. Jpn J Appl Phys Lett 38:L668–L670CrossRef
12.
go back to reference Takenobu T, Takano T, Shiraishi M et al (2003) Stable and controlled amphoteric doping by encapsulation of organic molecules inside carbon nanotubes. Nat Mater 2:683–688CrossRef Takenobu T, Takano T, Shiraishi M et al (2003) Stable and controlled amphoteric doping by encapsulation of organic molecules inside carbon nanotubes. Nat Mater 2:683–688CrossRef
13.
go back to reference Morgan DA, Sloan J, Green ML (2002) Direct imaging of o-carborane molecules within single walled carbon nanotubes. Chem Commun 20:2442–2443CrossRef Morgan DA, Sloan J, Green ML (2002) Direct imaging of o-carborane molecules within single walled carbon nanotubes. Chem Commun 20:2442–2443CrossRef
14.
go back to reference Smith BW, Luzzi DE (2000) Formation mechanism of fullerene peapods and coaxial tubes: a path to large scale synthesis. Chem Phys Lett 321:169–174CrossRef Smith BW, Luzzi DE (2000) Formation mechanism of fullerene peapods and coaxial tubes: a path to large scale synthesis. Chem Phys Lett 321:169–174CrossRef
15.
go back to reference Kiang CH, Choi JS, Tran TT et al (1999) Molecular nanowires of 1 nm diameter from capillary filling of single-walled carbon nanotubes. J Phys Chem B 103:7449–7451CrossRef Kiang CH, Choi JS, Tran TT et al (1999) Molecular nanowires of 1 nm diameter from capillary filling of single-walled carbon nanotubes. J Phys Chem B 103:7449–7451CrossRef
16.
go back to reference Sloan J, Hammer J, Zwiefka-Sibley M et al (1998) The opening and filling of single walled carbon nanotubes (SWTs). Chem Commun 3:347–348CrossRef Sloan J, Hammer J, Zwiefka-Sibley M et al (1998) The opening and filling of single walled carbon nanotubes (SWTs). Chem Commun 3:347–348CrossRef
17.
go back to reference Sloan J, Dunin-Borkowski RE, Hutchison JL et al (2000) The size distribution, imaging and obstructing properties of C60 and higher fullerenes formed within arc-grown single walled carbon nanotubes. Chem Phys Lett 316:191–198CrossRef Sloan J, Dunin-Borkowski RE, Hutchison JL et al (2000) The size distribution, imaging and obstructing properties of C60 and higher fullerenes formed within arc-grown single walled carbon nanotubes. Chem Phys Lett 316:191–198CrossRef
18.
go back to reference Zhang Y, Iijima S, Shi Z et al (1999) Defects in arc-discharge-produced single-walled carbon nanotubes. Philos Mag Lett 79:473–479CrossRef Zhang Y, Iijima S, Shi Z et al (1999) Defects in arc-discharge-produced single-walled carbon nanotubes. Philos Mag Lett 79:473–479CrossRef
19.
go back to reference Wang ZX, Ke XZ, Zhu ZY et al (2000) Carbon-atom chain formation in the core of nanotubes. Phys Rev B 61:R2472–R2474CrossRef Wang ZX, Ke XZ, Zhu ZY et al (2000) Carbon-atom chain formation in the core of nanotubes. Phys Rev B 61:R2472–R2474CrossRef
20.
go back to reference Warner J, Rümmeli MH, Bachmatiuk A et al (2010) Structural transformations of carbon chains inside nanotubes. Phys Rev B 81:155419CrossRef Warner J, Rümmeli MH, Bachmatiuk A et al (2010) Structural transformations of carbon chains inside nanotubes. Phys Rev B 81:155419CrossRef
21.
go back to reference Nishide D, Dohi H, Wakabayashi T et al (2006) Single-wall carbon nanotubes encaging linear chain C10H2 polyyne molecules inside. Chem Phys Lett 428:356–360CrossRef Nishide D, Dohi H, Wakabayashi T et al (2006) Single-wall carbon nanotubes encaging linear chain C10H2 polyyne molecules inside. Chem Phys Lett 428:356–360CrossRef
22.
go back to reference Zhao X, Ando Y, Liu Y et al (2003) Carbon nanowire made of a long linear carbon chain inserted inside a multiwalled carbon nanotube. Phys Rev Lett 90:187401–187404CrossRef Zhao X, Ando Y, Liu Y et al (2003) Carbon nanowire made of a long linear carbon chain inserted inside a multiwalled carbon nanotube. Phys Rev Lett 90:187401–187404CrossRef
23.
go back to reference Sheng L, Jin A, Yu L et al (2012) A simple and universal method for fabricating linear carbon chains in multiwalled carbon nanotubes. Mater Lett 81:222–224CrossRef Sheng L, Jin A, Yu L et al (2012) A simple and universal method for fabricating linear carbon chains in multiwalled carbon nanotubes. Mater Lett 81:222–224CrossRef
24.
go back to reference Koshino M, Tanaka T, Solin N et al (2007) Imaging of single organic molecules in motion. Science 316:853CrossRef Koshino M, Tanaka T, Solin N et al (2007) Imaging of single organic molecules in motion. Science 316:853CrossRef
25.
go back to reference Chamberlain TW, Biskupek J, Rance GA et al (2012) Size, structure, and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes. ACS Nano 6:3943–3953CrossRef Chamberlain TW, Biskupek J, Rance GA et al (2012) Size, structure, and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes. ACS Nano 6:3943–3953CrossRef
26.
go back to reference Chuvilin A, Bichoutskaia E, Gimenez-Lopez MC et al (2011) Self-assembly of a sulfur-terminated graphene nanoribbon within a single-walled carbon nanotube. Nat Mater 10:687–692CrossRef Chuvilin A, Bichoutskaia E, Gimenez-Lopez MC et al (2011) Self-assembly of a sulfur-terminated graphene nanoribbon within a single-walled carbon nanotube. Nat Mater 10:687–692CrossRef
27.
go back to reference Tang J, Huo Z, Brittman S et al (2011) Solution-processed core-shell nanowires for efficient photovoltaic cells. Nat Nanotechnol 6:568–572CrossRef Tang J, Huo Z, Brittman S et al (2011) Solution-processed core-shell nanowires for efficient photovoltaic cells. Nat Nanotechnol 6:568–572CrossRef
28.
go back to reference Meyer RR, Sloan J, Dunin-Borkowski RE et al (2000) Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes. Science 289:1324–1327CrossRef Meyer RR, Sloan J, Dunin-Borkowski RE et al (2000) Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes. Science 289:1324–1327CrossRef
29.
go back to reference Lee J, Kim H, Kahng SJ et al (2002) Bandgap modulation of carbon nanotubes by encapsulated metallofullerenes. Nature 415:1005–1008CrossRef Lee J, Kim H, Kahng SJ et al (2002) Bandgap modulation of carbon nanotubes by encapsulated metallofullerenes. Nature 415:1005–1008CrossRef
30.
go back to reference Sloan J, Kirkland AI, Hutchison JL et al (2002) Integral atomic layer architectures of 1D crystals inserted into single walled carbon nanotubes. Chem Commun: 1319–1332. doi:10.1039/B200537A Sloan J, Kirkland AI, Hutchison JL et al (2002) Integral atomic layer architectures of 1D crystals inserted into single walled carbon nanotubes. Chem Commun: 1319–1332. doi:10.​1039/​B200537A
31.
go back to reference Bendall JS, Ilie A, Welland ME et al (2006) Thermal stability and reactivity of metal halide filled single-walled carbon nanotubes. J Phys Chem B 110:6569–6573CrossRef Bendall JS, Ilie A, Welland ME et al (2006) Thermal stability and reactivity of metal halide filled single-walled carbon nanotubes. J Phys Chem B 110:6569–6573CrossRef
32.
go back to reference Zhou J, Song H, Chen X et al (2010) Diffusion of metal in a confined nanospace of carbon nanotubes induced by air oxidation. J Am Chem Soc 132:11402–11405CrossRef Zhou J, Song H, Chen X et al (2010) Diffusion of metal in a confined nanospace of carbon nanotubes induced by air oxidation. J Am Chem Soc 132:11402–11405CrossRef
33.
go back to reference La Torre A, Del Carmen Gimenez-Lopez M, Fay MW et al (2012) Assembly, growth, and catalytic activity of gold nanoparticles in hollow carbon nanofibers. ACS Nano 6:2000–2007 La Torre A, Del Carmen Gimenez-Lopez M, Fay MW et al (2012) Assembly, growth, and catalytic activity of gold nanoparticles in hollow carbon nanofibers. ACS Nano 6:2000–2007
34.
go back to reference Sloan JM, Wright D, Bailey S et al (1999) Capillarity and silver nanowire formation observed in single walled carbon nanotubes. Chem Commun: 699–700. doi:10.1039/A901572H Sloan JM, Wright D, Bailey S et al (1999) Capillarity and silver nanowire formation observed in single walled carbon nanotubes. Chem Commun: 699–700. doi:10.​1039/​A901572H
35.
go back to reference Rothschild A, Sloan J, Tenne R (2000) Growth of WS2 nanotubes phases. J Am Chem Soc 122:5169–5179CrossRef Rothschild A, Sloan J, Tenne R (2000) Growth of WS2 nanotubes phases. J Am Chem Soc 122:5169–5179CrossRef
36.
go back to reference Xu C, Sloan J, Brown G et al (2000) 1D lanthanide halide crystals inserted into single-walled carbon nanotubes. Chem Commun 24:2427–2428CrossRef Xu C, Sloan J, Brown G et al (2000) 1D lanthanide halide crystals inserted into single-walled carbon nanotubes. Chem Commun 24:2427–2428CrossRef
37.
go back to reference Del Carmen Gimenez-Lopez M, Moro F, La Torre A et al (2011) Encapsulation of single-molecule magnets in carbon nanotubes. Nat Commun 2:407 Del Carmen Gimenez-Lopez M, Moro F, La Torre A et al (2011) Encapsulation of single-molecule magnets in carbon nanotubes. Nat Commun 2:407
38.
go back to reference Guan L, Suenaga K, Shi Z et al (2007) Polymorphic structures of iodine and their phase transition in confined nanospace. Nano Lett 7:1532–1535CrossRef Guan L, Suenaga K, Shi Z et al (2007) Polymorphic structures of iodine and their phase transition in confined nanospace. Nano Lett 7:1532–1535CrossRef
39.
go back to reference Philip E, Sloan J, Kirkland AI et al (2003) An encapsulated helical one-dimensional cobalt iodide nanostructure. Nat Mater 2:788–791CrossRef Philip E, Sloan J, Kirkland AI et al (2003) An encapsulated helical one-dimensional cobalt iodide nanostructure. Nat Mater 2:788–791CrossRef
40.
go back to reference Ugarte D, Chatelain A, de Heer WA (1996) Nanocapillarity and chemistry in carbon. Science 274:1897–1899CrossRef Ugarte D, Chatelain A, de Heer WA (1996) Nanocapillarity and chemistry in carbon. Science 274:1897–1899CrossRef
41.
go back to reference Gubin SP, Koksharov YA (2002) Preparation, structure, and properties of magnetic materials based on co-containing nanoparticles. Inorg Mater 38:1085–1099CrossRef Gubin SP, Koksharov YA (2002) Preparation, structure, and properties of magnetic materials based on co-containing nanoparticles. Inorg Mater 38:1085–1099CrossRef
42.
go back to reference Liu Z, Dai X, Xu J et al (2004) Encapsulation of polystyrene within carbon nanotubes with the aid of supercritical CO2. Carbon 42:458–460CrossRef Liu Z, Dai X, Xu J et al (2004) Encapsulation of polystyrene within carbon nanotubes with the aid of supercritical CO2. Carbon 42:458–460CrossRef
43.
go back to reference Steinmetz J, Kwon S, Lee HJ et al (2006) Polymerization of conducting polymers inside carbon nanotubes. Chem Phys Lett 431:139–144 Steinmetz J, Kwon S, Lee HJ et al (2006) Polymerization of conducting polymers inside carbon nanotubes. Chem Phys Lett 431:139–144
44.
go back to reference Bazilevsky AV, Sun K, Yarin AL et al (2007) Selective intercalation of polymers in carbon nanotubes. Langmuir 23:7451–7455CrossRef Bazilevsky AV, Sun K, Yarin AL et al (2007) Selective intercalation of polymers in carbon nanotubes. Langmuir 23:7451–7455CrossRef
45.
go back to reference Britz DA, Khlobystov AN, Porfyrakis K et al (2005) Chemical reactions inside single-walled carbon nano test-tubes. Chem Commun 107:37–39CrossRef Britz DA, Khlobystov AN, Porfyrakis K et al (2005) Chemical reactions inside single-walled carbon nano test-tubes. Chem Commun 107:37–39CrossRef
46.
go back to reference Ito T, Shirakawa H, Ikeda S (1975) Thermal cis–trans isomerization and decomposition of polyacetylene. J Polym Sci 12:1943–1950 Ito T, Shirakawa H, Ikeda S (1975) Thermal cis–trans isomerization and decomposition of polyacetylene. J Polym Sci 12:1943–1950
47.
go back to reference Chiang CK, Fincher CB, Park YW et al (1977) Electrical conductivity in doped polyacetylene. Phys Rev Lett 39:1098–1101CrossRef Chiang CK, Fincher CB, Park YW et al (1977) Electrical conductivity in doped polyacetylene. Phys Rev Lett 39:1098–1101CrossRef
48.
go back to reference Chiang CK, Druy MA, Gau SC et al (1978) Synthesis of highly conducting films of derivatives of polyacetylene, (CH) x . J Am Chem Soc 100:1013–1015CrossRef Chiang CK, Druy MA, Gau SC et al (1978) Synthesis of highly conducting films of derivatives of polyacetylene, (CH) x . J Am Chem Soc 100:1013–1015CrossRef
49.
go back to reference Shirakawa H, Louis EJ, MacDiarmid AG et al (1977) Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH) x . J Am Chem Soc: 578 Shirakawa H, Louis EJ, MacDiarmid AG et al (1977) Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH) x . J Am Chem Soc: 578
50.
51.
go back to reference McCormick CL, Kirkland SE, York AW (2006) Synthetic routes to stimuli–responsive micelles, vesicles, and surfaces via controlled/living radical polymerization. J Macromol Sci C 46:421–443CrossRef McCormick CL, Kirkland SE, York AW (2006) Synthetic routes to stimuli–responsive micelles, vesicles, and surfaces via controlled/living radical polymerization. J Macromol Sci C 46:421–443CrossRef
52.
go back to reference Oh JK, Drumright R, Siegwart DJ et al (2008) The development of microgels/nanogels for drug delivery applications. Prog Polym Sci 33:448–477CrossRef Oh JK, Drumright R, Siegwart DJ et al (2008) The development of microgels/nanogels for drug delivery applications. Prog Polym Sci 33:448–477CrossRef
53.
go back to reference Matyjaszewski K, Tsarevsky NV (2009) Nanostructured functional materials prepared by atom transfer radical polymerization. Nat Chem 1:276–288CrossRef Matyjaszewski K, Tsarevsky NV (2009) Nanostructured functional materials prepared by atom transfer radical polymerization. Nat Chem 1:276–288CrossRef
54.
go back to reference Khlobystov AN (2011) Carbon nanotubes: from nano test tube to nano-reactor. ACS Nano 5:9306–9312CrossRef Khlobystov AN (2011) Carbon nanotubes: from nano test tube to nano-reactor. ACS Nano 5:9306–9312CrossRef
55.
go back to reference Chamberlain TW, Gimenez-Lopez MdC, Khlobystov AN (2010) Carbon nanotubes as containers. In: Carbon nanotubes and related structures. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 349–384 Chamberlain TW, Gimenez-Lopez MdC, Khlobystov AN (2010) Carbon nanotubes as containers. In: Carbon nanotubes and related structures. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 349–384
56.
go back to reference Shi XQ, Dai ZX, Zhong GH et al (2007) Spin-polarized transport in carbon nanowires inside semiconducting carbon nanotubes. J Phys Chem C 111:10130–10134CrossRef Shi XQ, Dai ZX, Zhong GH et al (2007) Spin-polarized transport in carbon nanowires inside semiconducting carbon nanotubes. J Phys Chem C 111:10130–10134CrossRef
57.
go back to reference Tran-Duc T, Thamwattana N (2011) Modeling encapsulation of acetylene molecules into carbon nanotubes. J Phys 23:225302 Tran-Duc T, Thamwattana N (2011) Modeling encapsulation of acetylene molecules into carbon nanotubes. J Phys 23:225302
58.
go back to reference Lee SU, Belosludov RV, Mizuseki H et al (2011) Electron transport characteristics of organic molecule encapsulated carbon nanotubes. Nanoscale 3:1773–1779CrossRef Lee SU, Belosludov RV, Mizuseki H et al (2011) Electron transport characteristics of organic molecule encapsulated carbon nanotubes. Nanoscale 3:1773–1779CrossRef
59.
go back to reference Ilie A, Bendall JS, Nagaoka K et al (2011) Encapsulated inorganic nanostructures: a route to sizable modulated, noncovalent, on-tube potentials in carbon nanotubes. ACS Nano 5:2559–2569CrossRef Ilie A, Bendall JS, Nagaoka K et al (2011) Encapsulated inorganic nanostructures: a route to sizable modulated, noncovalent, on-tube potentials in carbon nanotubes. ACS Nano 5:2559–2569CrossRef
60.
go back to reference Kuwahara R, Kudo Y, Morisato T et al (2011) Encapsulation of carbon chain molecules in single-walled carbon nanotubes. J Phys Chem A 115:5147–5156CrossRef Kuwahara R, Kudo Y, Morisato T et al (2011) Encapsulation of carbon chain molecules in single-walled carbon nanotubes. J Phys Chem A 115:5147–5156CrossRef
61.
go back to reference McIntosh GC, Tomanek D, Park YW (2003) Energetics and electronic structure of a polyacetylene chain contained in a carbon nanotube. Phys Rev B 67:125419CrossRef McIntosh GC, Tomanek D, Park YW (2003) Energetics and electronic structure of a polyacetylene chain contained in a carbon nanotube. Phys Rev B 67:125419CrossRef
62.
go back to reference Kim G, Kim Y, Ihm J (2005) Encapsulation and polymerization of acetylene molecules inside a carbon nanotube. Chem Phys Lett 415:279CrossRef Kim G, Kim Y, Ihm J (2005) Encapsulation and polymerization of acetylene molecules inside a carbon nanotube. Chem Phys Lett 415:279CrossRef
63.
go back to reference Becke A (1998) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100CrossRef Becke A (1998) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100CrossRef
Metadata
Title
Molecular and crystal assembly inside the carbon nanotube: encapsulation and manufacturing approaches
Author
Sergio Manzetti
Publication date
01-09-2013
Publisher
Springer Berlin Heidelberg
Published in
Advances in Manufacturing / Issue 3/2013
Print ISSN: 2095-3127
Electronic ISSN: 2195-3597
DOI
https://doi.org/10.1007/s40436-013-0030-5

Other articles of this Issue 3/2013

Advances in Manufacturing 3/2013 Go to the issue

EditorialNotes

Guest editorial

Premium Partners