Skip to main content
Top
Published in: Physics of Metals and Metallography 6/2022

01-06-2022 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

On the Stabilization of the Icosahedral Structure of Small Silver Nanoclusters under Thermal Action

Authors: D. A. Ryzhkova, S. L. Gafner, Yu. Ya. Gafner

Published in: Physics of Metals and Metallography | Issue 6/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

One of the possible ways to improve the technical characteristics of QLEDs and OLEDs can be the use of the surface plasmon resonance that occurs in silver nanoparticles embedded in them. In the course of the experiments, it became clear that the frequency and intensity of the plasmon resonance strongly depend on the shape and size of the Ag nanoparticles that are used. Therefore, by adjusting these parameters of the plasmonic nanostructure and its internal structure it is possible to achieve significant progress in the formation of technical solutions for the creation of newest LEDs. For this, the thermal stability of the structure of small silver nanoclusters was studied by molecular dynamics in order to find the conditions for creating stable icosahedral structures. It was found that the use of Ag nanoclusters with a disordered initial structure in most cases led to the formation of the required five-particle symmetry in the operating temperature range of the LED, which is unattainable with currently available synthesis methods. The ideas proposed in the article can be used to create a more stable surface plasmon resonance effect in the next generation of OLEDs and QLEDs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference F. D. Kiss, R. Miotto, and A. Ferraz, “Size effects on silver nanoparticles' properties,” Nanotechnology 22, 275708 (2011).CrossRef F. D. Kiss, R. Miotto, and A. Ferraz, “Size effects on silver nanoparticles' properties,” Nanotechnology 22, 275708 (2011).CrossRef
2.
go back to reference W. Luo, W. Hu, and S. Xiao, “Size effect on the thermodynamic properties of silver nanoparticles,” J. Phys. Chem. C 112, 2359–2369 (2008).CrossRef W. Luo, W. Hu, and S. Xiao, “Size effect on the thermodynamic properties of silver nanoparticles,” J. Phys. Chem. C 112, 2359–2369 (2008).CrossRef
3.
go back to reference K. Nagpal, E. Rauwel, F. Ducroquet, and P. Rauwel, “Assessment of the optical and electrical properties of light-emitting diodes containing carbon-based nanostructures and plasmonic nanoparticles: a review,” Beilstein J. Nanotechnol. 12, 1078–1092 (2021).CrossRef K. Nagpal, E. Rauwel, F. Ducroquet, and P. Rauwel, “Assessment of the optical and electrical properties of light-emitting diodes containing carbon-based nanostructures and plasmonic nanoparticles: a review,” Beilstein J. Nanotechnol. 12, 1078–1092 (2021).CrossRef
4.
go back to reference Q. Lin, B. Song, H. Wang, F. Zhang, F. Chen, L. Wang, L. S. Li, F. Guo, and H. Shen, “High-efficiency deep-red quantum-dot light-emitting diodes with type-II CdSe/CdTe core/shell quantum dots as emissive layers,” J. Mater. Chem. C 4, 7223–7229 (2016).CrossRef Q. Lin, B. Song, H. Wang, F. Zhang, F. Chen, L. Wang, L. S. Li, F. Guo, and H. Shen, “High-efficiency deep-red quantum-dot light-emitting diodes with type-II CdSe/CdTe core/shell quantum dots as emissive layers,” J. Mater. Chem. C 4, 7223–7229 (2016).CrossRef
5.
go back to reference E.-P. Jang, C.-Y. Han, S.-W. Lim, J.-H. Jo, D.-Y. Jo, S.-H. Lee, S.-Y. Yoon, and H. Yang, “Synthesis of alloyed ZnSeTe quantum dots as bright, color-pure blue emitters,” ACS Appl. Mater. Interfaces 11, 46062–46069 (2019).CrossRef E.-P. Jang, C.-Y. Han, S.-W. Lim, J.-H. Jo, D.-Y. Jo, S.-H. Lee, S.-Y. Yoon, and H. Yang, “Synthesis of alloyed ZnSeTe quantum dots as bright, color-pure blue emitters,” ACS Appl. Mater. Interfaces 11, 46062–46069 (2019).CrossRef
6.
go back to reference M. C. Neves, M. A. Martins, P. C. R. Soares-Santos, P. Rauwel, R. A. S. Ferreira, T. Monteiro, L. D. Carlos, and T. Trindade, “Photoluminescent, transparent and flexible di-ureasil hybrids containing CdSe/ZnS quantum dots,” Nanotechnology 19, 155601 (2008).CrossRef M. C. Neves, M. A. Martins, P. C. R. Soares-Santos, P. Rauwel, R. A. S. Ferreira, T. Monteiro, L. D. Carlos, and T. Trindade, “Photoluminescent, transparent and flexible di-ureasil hybrids containing CdSe/ZnS quantum dots,” Nanotechnology 19, 155601 (2008).CrossRef
7.
go back to reference T. HoonSeo, B. Kyoung Kim, G. Shin, C. Lee, M. Jong Kim, H. Kim, and E.-K. Suh, “Graphene-silver nanowire hybrid structure as a transparent and current spreading electrode in ultraviolet light emitting diodes,” Appl. Phys. Lett. 103, 051105 (2013).CrossRef T. HoonSeo, B. Kyoung Kim, G. Shin, C. Lee, M. Jong Kim, H. Kim, and E.-K. Suh, “Graphene-silver nanowire hybrid structure as a transparent and current spreading electrode in ultraviolet light emitting diodes,” Appl. Phys. Lett. 103, 051105 (2013).CrossRef
8.
go back to reference T. Tanaka, Y. Totoki, A. Fujiki, N. Zettsu, Y. Miyake, M. Akai-Kasaya, A. Saito, T. Ogawa, and Y. Kuwahara, “Enhanced red-light emission by local plasmon coupling of Au nanorods in an organic light-emitting diode,” Appl. Phys. Express 4, 032105 (2011).CrossRef T. Tanaka, Y. Totoki, A. Fujiki, N. Zettsu, Y. Miyake, M. Akai-Kasaya, A. Saito, T. Ogawa, and Y. Kuwahara, “Enhanced red-light emission by local plasmon coupling of Au nanorods in an organic light-emitting diode,” Appl. Phys. Express 4, 032105 (2011).CrossRef
9.
go back to reference Y. Jin, Q. Li, G. Li, M. Chen, J. Liu, Y. Zou, K. Jiang, and S. Fan, “Enhanced optical output power of blue light-emitting diodes with quasi-aligned gold nanoparticles,” Nanoscale Res. Lett. 9, 7 (2014).CrossRef Y. Jin, Q. Li, G. Li, M. Chen, J. Liu, Y. Zou, K. Jiang, and S. Fan, “Enhanced optical output power of blue light-emitting diodes with quasi-aligned gold nanoparticles,” Nanoscale Res. Lett. 9, 7 (2014).CrossRef
10.
go back to reference J. B. Shin, S.-W. Baek, S. M. Lee, M. Kim, J.-Y. Lee, and K. C. Choi, “Efficient green organic light-emitting diodes by plasmonic silver nanoparticles,” IEEE Photonics Technol. Lett. 28, 371–374 (2016).CrossRef J. B. Shin, S.-W. Baek, S. M. Lee, M. Kim, J.-Y. Lee, and K. C. Choi, “Efficient green organic light-emitting diodes by plasmonic silver nanoparticles,” IEEE Photonics Technol. Lett. 28, 371–374 (2016).CrossRef
11.
go back to reference J. Choi, S. Kim, C. H. Park, J. H. Kwack, C. H. Park, H. Hwang, H.-S. Im, Y. W. Park, and B.-K. Ju, “Light extraction enhancement in flexible organic light-emitting diodes by a light-scattering layer of dewetted Ag nanoparticles at low temperatures,” ACS Appl. Mater. Interfaces 10, 32373–32379 (2018).CrossRef J. Choi, S. Kim, C. H. Park, J. H. Kwack, C. H. Park, H. Hwang, H.-S. Im, Y. W. Park, and B.-K. Ju, “Light extraction enhancement in flexible organic light-emitting diodes by a light-scattering layer of dewetted Ag nanoparticles at low temperatures,” ACS Appl. Mater. Interfaces 10, 32373–32379 (2018).CrossRef
12.
go back to reference P. J. Jesuraj, K. Jeganathan, M. Navaneethan, and Y. Hayakawa, “Far-field and hole injection enhancement by noble metal nanoparticles in organic light emitting devices,” Synth. Met. 211, 155–160 (2016).CrossRef P. J. Jesuraj, K. Jeganathan, M. Navaneethan, and Y. Hayakawa, “Far-field and hole injection enhancement by noble metal nanoparticles in organic light emitting devices,” Synth. Met. 211, 155–160 (2016).CrossRef
13.
go back to reference J. Feng, D. Sun, S. Mei, W. Shi, F. Mei, Y. Zhou, J. Xu, Y. Jiang, and L. Wu, “Plasmonic-enhanced organic light-emitting diodes based on a graphene oxide/Au nanoparticles composite hole injection layer,” Front. Mater. 5, 75 (2018). J. Feng, D. Sun, S. Mei, W. Shi, F. Mei, Y. Zhou, J. Xu, Y. Jiang, and L. Wu, “Plasmonic-enhanced organic light-emitting diodes based on a graphene oxide/Au nanoparticles composite hole injection layer,” Front. Mater. 5, 75 (2018).
14.
go back to reference M. Jung, D. Yoon Mo, M. Kim, C. Kim, T. Lee, J. Kim Hun, S. Lee, S. -H. Lim, and D. Woo, “Enhancement of hole injection and electroluminescence by ordered Ag nanodot array on indium tin oxide anode in organic light emitting diode,” Appl. Phys. Lett. 105, 013306 (2014).CrossRef M. Jung, D. Yoon Mo, M. Kim, C. Kim, T. Lee, J. Kim Hun, S. Lee, S. -H. Lim, and D. Woo, “Enhancement of hole injection and electroluminescence by ordered Ag nanodot array on indium tin oxide anode in organic light emitting diode,” Appl. Phys. Lett. 105, 013306 (2014).CrossRef
15.
go back to reference J. Jayabharathi, A. Prabhakaran, V. Thanikachalam, and M. J. Sundharesan, “Hybrid organic-inorganic light emitting diodes: effect of Ag-doped ZnO,” Photochem. Photobiol. A 325, 88–96 (2016).CrossRef J. Jayabharathi, A. Prabhakaran, V. Thanikachalam, and M. J. Sundharesan, “Hybrid organic-inorganic light emitting diodes: effect of Ag-doped ZnO,” Photochem. Photobiol. A 325, 88–96 (2016).CrossRef
16.
go back to reference K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).CrossRef K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).CrossRef
17.
go back to reference M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.‑Y. Cho, C. C. Byeon, and S. -J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20, 1253–1257 (2008).CrossRef M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.‑Y. Cho, C. C. Byeon, and S. -J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20, 1253–1257 (2008).CrossRef
18.
go back to reference S.-H. Chen, C.-L. Huang, C.-F. Yu, G.-F. Wu, Y.‑C. Kuan, B.-H. Cheng, and Y.-R. Li, “Efficacy improvement in polymer LEDs via silver-nanoparticle doping in the emissive layer,” Opt. Lett. 42, 3411–3414 (2017).CrossRef S.-H. Chen, C.-L. Huang, C.-F. Yu, G.-F. Wu, Y.‑C. Kuan, B.-H. Cheng, and Y.-R. Li, “Efficacy improvement in polymer LEDs via silver-nanoparticle doping in the emissive layer,” Opt. Lett. 42, 3411–3414 (2017).CrossRef
19.
go back to reference J. B. You, X. W. Zhang, J. J. Dong, X. M. Song, Z. G. Yin, N. F. Chen, and H. Yan, “Localized-surface-plasmon enhanced the 357 nm forward emission from ZnMgO films capped by Pt nanoparticles,” Nanoscale Res. Lett. 4, 1121–1125 (2009).CrossRef J. B. You, X. W. Zhang, J. J. Dong, X. M. Song, Z. G. Yin, N. F. Chen, and H. Yan, “Localized-surface-plasmon enhanced the 357 nm forward emission from ZnMgO films capped by Pt nanoparticles,” Nanoscale Res. Lett. 4, 1121–1125 (2009).CrossRef
20.
go back to reference F. Cleri and V. Rosato, “Tight binding potentials for transition metal alloys,” Phys. Rev. B 48, 22–33 (1993).CrossRef F. Cleri and V. Rosato, “Tight binding potentials for transition metal alloys,” Phys. Rev. B 48, 22–33 (1993).CrossRef
21.
go back to reference T. Pang, An Introduction to Computational Physics (University Press, Cambridge, 2006).CrossRef T. Pang, An Introduction to Computational Physics (University Press, Cambridge, 2006).CrossRef
22.
go back to reference H. Akbarzadeh and H. Yaghoubi, “Molecular dynamics simulations of silver nanocluster supported on carbon nanotube,” J. Colloid Interface Sci. 418, 178–184 (2014).CrossRef H. Akbarzadeh and H. Yaghoubi, “Molecular dynamics simulations of silver nanocluster supported on carbon nanotube,” J. Colloid Interface Sci. 418, 178–184 (2014).CrossRef
23.
go back to reference D. Hua and Y. Hongtao, “A mini review on controlling the size of Ag nanoclusters by changing the stabilizer to Ag ratio and by changing DNA sequence,” Adv. Nat. Sci. 8, 1–8 (2015). D. Hua and Y. Hongtao, “A mini review on controlling the size of Ag nanoclusters by changing the stabilizer to Ag ratio and by changing DNA sequence,” Adv. Nat. Sci. 8, 1–8 (2015).
24.
go back to reference L. Deng, J. Yang, N. Zhan, T. Yu, H. Yu, and S. Chen, “High-performance solution-processed white organic light-emitting diodes based on silica-coated silver nanocubes,” Opt. Lett. 44, 983–986 (2019).CrossRef L. Deng, J. Yang, N. Zhan, T. Yu, H. Yu, and S. Chen, “High-performance solution-processed white organic light-emitting diodes based on silica-coated silver nanocubes,” Opt. Lett. 44, 983–986 (2019).CrossRef
25.
go back to reference B. Munkhbat, H. Pohl, P. Denk, T. A. Klar, M. C. Scharber, and C. Hrelescu, “Performance boost of organic light-emitting diodes with plasmonicnanostars,” Adv. Opt. Mater. 4, 772–781 (2016).CrossRef B. Munkhbat, H. Pohl, P. Denk, T. A. Klar, M. C. Scharber, and C. Hrelescu, “Performance boost of organic light-emitting diodes with plasmonicnanostars,” Adv. Opt. Mater. 4, 772–781 (2016).CrossRef
26.
go back to reference T. Yu, L. Deng, P. Xia, Y. Lu, N. Zhan, and S. Chen, “Ultrahigh-performance blue organic light-emitting diodes based on SiO2 coated Ag nanocubes and its working mechanism,” Org. Electron. 75, 105388 (2019).CrossRef T. Yu, L. Deng, P. Xia, Y. Lu, N. Zhan, and S. Chen, “Ultrahigh-performance blue organic light-emitting diodes based on SiO2 coated Ag nanocubes and its working mechanism,” Org. Electron. 75, 105388 (2019).CrossRef
27.
go back to reference L. V. Redel’, Yu. Ya. Gafner, and S. L. Gafner, “Role of “magic” numbers in structure formation in small silver nanoclusters,” Phys. Solid State 57, 2117–2125 (2015).CrossRef L. V. Redel’, Yu. Ya. Gafner, and S. L. Gafner, “Role of “magic” numbers in structure formation in small silver nanoclusters,” Phys. Solid State 57, 2117–2125 (2015).CrossRef
28.
go back to reference Y. Gafner, S. Gafner, and D. Bashkova, “On measuring the structure stability for small silver clusters to use them in plasmonics,” J. Nanopart. Res. 21, 243 (2019).CrossRef Y. Gafner, S. Gafner, and D. Bashkova, “On measuring the structure stability for small silver clusters to use them in plasmonics,” J. Nanopart. Res. 21, 243 (2019).CrossRef
29.
go back to reference D. A. Ryzhkova, S. L. Gafner, and Yu. Ya. Gafner, “Effect of “magic” fcc numbers on the stability of the structure of small silver nanoclusters,” JETP Lett. 113, 638–645 (2021).CrossRef D. A. Ryzhkova, S. L. Gafner, and Yu. Ya. Gafner, “Effect of “magic” fcc numbers on the stability of the structure of small silver nanoclusters,” JETP Lett. 113, 638–645 (2021).CrossRef
30.
go back to reference I. L. Garzon, K. Michaelian, M. R. Beltran, A. Posada-Amarillas, P. Ordejon, E. Artacho, D. Sanchez-Portal, and J. M. Soler, “Lowest energy structures of gold nanoclusters,” Phys. Rev. Lett. 81, 1600–1603 (1998).CrossRef I. L. Garzon, K. Michaelian, M. R. Beltran, A. Posada-Amarillas, P. Ordejon, E. Artacho, D. Sanchez-Portal, and J. M. Soler, “Lowest energy structures of gold nanoclusters,” Phys. Rev. Lett. 81, 1600–1603 (1998).CrossRef
31.
go back to reference F. Baletto and R. Ferrando, “Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects,” Rev. Mod. Phys. 77, 371–423 (2005).CrossRef F. Baletto and R. Ferrando, “Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects,” Rev. Mod. Phys. 77, 371–423 (2005).CrossRef
32.
go back to reference K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced spontaneous emission rate in an organic light-emitting device structure: Cathode structure for plasmonic application,” Appl. Phys. Lett. 94, 173301 (2009).CrossRef K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced spontaneous emission rate in an organic light-emitting device structure: Cathode structure for plasmonic application,” Appl. Phys. Lett. 94, 173301 (2009).CrossRef
Metadata
Title
On the Stabilization of the Icosahedral Structure of Small Silver Nanoclusters under Thermal Action
Authors
D. A. Ryzhkova
S. L. Gafner
Yu. Ya. Gafner
Publication date
01-06-2022
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 6/2022
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22060138

Other articles of this Issue 6/2022

Physics of Metals and Metallography 6/2022 Go to the issue