Skip to main content
Top
Published in: Mechanics of Composite Materials 1/2024

26-02-2024

One-Dimensional vs. Three-Dimensional Models in Free Vibration Analysis of Axially Functionally Graded Beams with Non-Uniform Cross-Sections

Authors: V. N. Burlayenko, R. Kouhia, S. D. Dimitrova

Published in: Mechanics of Composite Materials | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A comparison of one-dimensional (1D) and three-dimensional (3D) models for simulating free vibrations of axially functionally graded material (AFGM) beams with non-uniform cross-sections was carried out. Both models were constructed using ABAQUS and the eigenvalue problem was solved to determine the natural frequencies and their corresponding mode shapes. User-defined material model subroutines (UMAT) were developed using 1D beam or 3D hexagonal graded finite elements to implement material gradients into appropriate finite element models. The performance of both models was evaluated using data for beams with non-uniform cross-sections and material gradation profiles for which natural frequencies were available in the literature. The accuracy and effectiveness of each modeling approach proposed were estimated by comparing the results obtained. Generally, distinctions between the 1D and 3D models become more pronounced as the geometric complexity and material inhomogeneity of AFGM beams increases, especially for high-frequency modes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference E. H. Atkin, “Tapered beams: suggested solutions for some typical aircraft cases,” Aircr. Eng. Aerosp. Technol., 10, No. 11, 347-351 (1938).CrossRef E. H. Atkin, “Tapered beams: suggested solutions for some typical aircraft cases,” Aircr. Eng. Aerosp. Technol., 10, No. 11, 347-351 (1938).CrossRef
2.
go back to reference J. R. Banerjee and A. Ananthapuvirajah, “Free flexural vibration of tapered beams,” Comput. Struct., 224, 1-6 (2019).CrossRef J. R. Banerjee and A. Ananthapuvirajah, “Free flexural vibration of tapered beams,” Comput. Struct., 224, 1-6 (2019).CrossRef
3.
go back to reference R. Attarnejad, A. Shahba, and M. Eslaminia, “Dynamic basic displacement functions for free vibration analysis of tapered beams,” J. Vib. Control., 17, No. 14, 2222-2238 (2011).MathSciNetCrossRef R. Attarnejad, A. Shahba, and M. Eslaminia, “Dynamic basic displacement functions for free vibration analysis of tapered beams,” J. Vib. Control., 17, No. 14, 2222-2238 (2011).MathSciNetCrossRef
4.
go back to reference G. Jaiani, “On cusped shell-like structures”, In: H. Altenbach, V. Eremeyev, (eds), Shell-Like Structures. Adv. Struct. Mater., Vol. 15, Springer, Berlin - Heidelberg (2011), pp. 63-74. G. Jaiani, “On cusped shell-like structures”, In: H. Altenbach, V. Eremeyev, (eds), Shell-Like Structures. Adv. Struct. Mater., Vol. 15, Springer, Berlin - Heidelberg (2011), pp. 63-74.
5.
go back to reference G. Jaiani, Cusped Shell-like Structures, Springer Briefs in Applied Science and Technology, Springer-Heidelberg-Dordrecht-London-New York (2011). G. Jaiani, Cusped Shell-like Structures, Springer Briefs in Applied Science and Technology, Springer-Heidelberg-Dordrecht-London-New York (2011).
6.
go back to reference M. Koizumi, “FGM activities in Japan”, Compos. Part B, 28, Nos. 1-2, 1-4 (1997).CrossRef M. Koizumi, “FGM activities in Japan”, Compos. Part B, 28, Nos. 1-2, 1-4 (1997).CrossRef
7.
go back to reference V. N. Burlayenko, H. Altenbach, and T. Sadowski, “Dynamic fracture analysis of sandwich composites with face sheet/core debond by the finite element method”, in: H. Altenbach, V. Belyaev, V. Eremeyev, V. Krivtsov, A. Porubov(eds.), Dynamical Processes in Generalized Continua and Structures. Adv. Struct. Mater., 103, Springer, Cham (2019), pp. 163-194. V. N. Burlayenko, H. Altenbach, and T. Sadowski, “Dynamic fracture analysis of sandwich composites with face sheet/core debond by the finite element method”, in: H. Altenbach, V. Belyaev, V. Eremeyev, V. Krivtsov, A. Porubov(eds.), Dynamical Processes in Generalized Continua and Structures. Adv. Struct. Mater., 103, Springer, Cham (2019), pp. 163-194.
8.
go back to reference Z. Z. Wang, J. Zhao, X. Ma et al., “Numerical simulation of progressive delamination in composite laminates under mode I and mode II loadings”, Mech. Compos. Mater., 56, 735-746 (2021).ADSCrossRef Z. Z. Wang, J. Zhao, X. Ma et al., “Numerical simulation of progressive delamination in composite laminates under mode I and mode II loadings”, Mech. Compos. Mater., 56, 735-746 (2021).ADSCrossRef
9.
go back to reference C. Frey, J. Hahn, N. Schneider, et al., “A layerwise higher-order approach for the free-edge effect in angle-ply laminates,” Mech. Compos. Mater., 59, 299-318 (2023).ADSCrossRef C. Frey, J. Hahn, N. Schneider, et al., “A layerwise higher-order approach for the free-edge effect in angle-ply laminates,” Mech. Compos. Mater., 59, 299-318 (2023).ADSCrossRef
10.
go back to reference I. M. El-Galy, B. I. Saleh, and M. H. Ahmed, “Functionally graded materials classifications and development trends from industrial point of view,” SN Appl. Sci., 1, 1-23 (2019).CrossRef I. M. El-Galy, B. I. Saleh, and M. H. Ahmed, “Functionally graded materials classifications and development trends from industrial point of view,” SN Appl. Sci., 1, 1-23 (2019).CrossRef
11.
go back to reference I. Elishakoff and Z. Guédé, “Analytical polynomial solutions for vibrating axially graded beams,” Mech. Adv. Mater. Struct., 11, 517-533 (2004).CrossRef I. Elishakoff and Z. Guédé, “Analytical polynomial solutions for vibrating axially graded beams,” Mech. Adv. Mater. Struct., 11, 517-533 (2004).CrossRef
12.
go back to reference Q. S. Li, “A new exact approach for determining natural frequencies and mode shapes of non-uniform shear beams with arbitrary distribution of mass or stiffness,” Int. J. Solids Struct., 37, 5123-5141 (2000).CrossRef Q. S. Li, “A new exact approach for determining natural frequencies and mode shapes of non-uniform shear beams with arbitrary distribution of mass or stiffness,” Int. J. Solids Struct., 37, 5123-5141 (2000).CrossRef
13.
go back to reference W. R. Chen and H. Chang, “Closed-form solutions for free vibration frequencies of functionally graded Euler-Bernoulli beams,” Mech. Compos. Mater., 53, 79-98 (2017).ADSCrossRef W. R. Chen and H. Chang, “Closed-form solutions for free vibration frequencies of functionally graded Euler-Bernoulli beams,” Mech. Compos. Mater., 53, 79-98 (2017).ADSCrossRef
14.
go back to reference A. Y. Tang, J. X. Wu, X. F. Li, and K. Y. Lee, “Exact frequency equations of free vibration of exponentially non-uniform functionally graded Timoshenko beams,” Int. J. Mech. Sci., 89, 1-11 (2014).CrossRef A. Y. Tang, J. X. Wu, X. F. Li, and K. Y. Lee, “Exact frequency equations of free vibration of exponentially non-uniform functionally graded Timoshenko beams,” Int. J. Mech. Sci., 89, 1-11 (2014).CrossRef
15.
go back to reference Y. Huang and X.-F. Li, “A new approach for free vibration of axially functionally graded beams with non-uniform cross-section,” J. Sound Vib., 329, 2291-2303 (2010).ADSCrossRef Y. Huang and X.-F. Li, “A new approach for free vibration of axially functionally graded beams with non-uniform cross-section,” J. Sound Vib., 329, 2291-2303 (2010).ADSCrossRef
16.
go back to reference H. Hein and L. Feklistova, “Free vibrations of non-uniform and axially functionally graded beams using Haar wavelets,” Eng. Struct., 33, 3696-3701 (2011).CrossRef H. Hein and L. Feklistova, “Free vibrations of non-uniform and axially functionally graded beams using Haar wavelets,” Eng. Struct., 33, 3696-3701 (2011).CrossRef
17.
go back to reference J. K. Lee and B. K. Lee, “Coupled flexural-torsional free vibration of an axially functionally graded circular curved beam,” Mech. Compos. Mater., 57, 833-846 (2022).ADSCrossRef J. K. Lee and B. K. Lee, “Coupled flexural-torsional free vibration of an axially functionally graded circular curved beam,” Mech. Compos. Mater., 57, 833-846 (2022).ADSCrossRef
18.
go back to reference S. Rajasekaran, “Differential transformation and differential quadrature methods for centrifugally stiffened axially functionally graded tapered beams,” Int. J. Mech. Sci., 74, No. 3, 15-31 (2013).CrossRef S. Rajasekaran, “Differential transformation and differential quadrature methods for centrifugally stiffened axially functionally graded tapered beams,” Int. J. Mech. Sci., 74, No. 3, 15-31 (2013).CrossRef
19.
go back to reference D. Ghazaryan, V. N. Burlayenko, A. Avetisyan, and A. Bhaskar, “Free vibration analysis of functionally graded beams with non-uniform cross-section using the differential transform method,” J. Eng. Math., 110, No.1, 97-121 (2018).MathSciNetCrossRef D. Ghazaryan, V. N. Burlayenko, A. Avetisyan, and A. Bhaskar, “Free vibration analysis of functionally graded beams with non-uniform cross-section using the differential transform method,” J. Eng. Math., 110, No.1, 97-121 (2018).MathSciNetCrossRef
20.
go back to reference P. Liu, K. Lin, H. Liu, and R. Qin, “Free transverse vibration analysis of axially functionally graded tapered Euler-Bernoulli beams through spline finite point method,” Shock Vib., 2016, 1-23 (2016).CrossRef P. Liu, K. Lin, H. Liu, and R. Qin, “Free transverse vibration analysis of axially functionally graded tapered Euler-Bernoulli beams through spline finite point method,” Shock Vib., 2016, 1-23 (2016).CrossRef
21.
go back to reference Y. Chen, S. Dong, Z. Zang, et al. “Free transverse vibrational analysis of axially functionally graded tapered beams via the variational iteration approach,” J. Vib. Control., 27, No. 11-12, 1265-1280 (2021).MathSciNetCrossRef Y. Chen, S. Dong, Z. Zang, et al. “Free transverse vibrational analysis of axially functionally graded tapered beams via the variational iteration approach,” J. Vib. Control., 27, No. 11-12, 1265-1280 (2021).MathSciNetCrossRef
22.
go back to reference M. S. Sari and S. Al-Dahidi, “Vibration characteristics of multiple functionally graded nonuniform beams,” J. Vib. Control., 27, No. 19-20, 2205-2218 (2021).MathSciNetCrossRef M. S. Sari and S. Al-Dahidi, “Vibration characteristics of multiple functionally graded nonuniform beams,” J. Vib. Control., 27, No. 19-20, 2205-2218 (2021).MathSciNetCrossRef
23.
go back to reference J. Fang, D. Zhou, and Y. Dong, “Three-dimensional vibration of rotating functionally graded beams,” J. Vib. Control, 24, No. 15, 3292-3306 (2018).MathSciNetCrossRef J. Fang, D. Zhou, and Y. Dong, “Three-dimensional vibration of rotating functionally graded beams,” J. Vib. Control, 24, No. 15, 3292-3306 (2018).MathSciNetCrossRef
24.
go back to reference M. Chen, G. Jin, Y. Zhang, F. Niu, and Z. Liu, “Three-dimensional vibration analysis of beams with axial functionally graded materials and variable thickness,” Compos. Struct., 207, 304-322 (2019).CrossRef M. Chen, G. Jin, Y. Zhang, F. Niu, and Z. Liu, “Three-dimensional vibration analysis of beams with axial functionally graded materials and variable thickness,” Compos. Struct., 207, 304-322 (2019).CrossRef
25.
go back to reference M. Soltani and B. Asgarian, “Lateral-torsional stability analysis of a simply supported axially functionally graded beam with a tapered I-section,” Mech. Compos. Mater., 56, 39-54 (2020).ADSCrossRef M. Soltani and B. Asgarian, “Lateral-torsional stability analysis of a simply supported axially functionally graded beam with a tapered I-section,” Mech. Compos. Mater., 56, 39-54 (2020).ADSCrossRef
26.
go back to reference J.-H. Kim and G. H. Paulino, “Isoparametric graded finite elements for nonhomogeneous isotropic and orthotropic materials,” J. Appl. Mech., 69, No. 4, 502-514 (2002).ADSCrossRef J.-H. Kim and G. H. Paulino, “Isoparametric graded finite elements for nonhomogeneous isotropic and orthotropic materials,” J. Appl. Mech., 69, No. 4, 502-514 (2002).ADSCrossRef
27.
go back to reference M. H. Santare and J. Lambros, “Use of graded finite elements to model the behavior of nonhomogeneous materials”, J. Appl. Mech., 67, No. 4, 819-822 (2000).ADSCrossRef M. H. Santare and J. Lambros, “Use of graded finite elements to model the behavior of nonhomogeneous materials”, J. Appl. Mech., 67, No. 4, 819-822 (2000).ADSCrossRef
28.
go back to reference C.-E. Rousseau and H. V. Tippur, “Compositionally graded materials with cracks normal to the elastic gradient,” Acta Mater., 48, 4021-4033 (2000).ADSCrossRef C.-E. Rousseau and H. V. Tippur, “Compositionally graded materials with cracks normal to the elastic gradient,” Acta Mater., 48, 4021-4033 (2000).ADSCrossRef
29.
go back to reference A. Hajlaoui, E. Chebbi, M. Wali, and F. Dammak, “Static analysis of carbon nanotube-reinforced FG shells using an efficient solid-shell element with parabolic transverse shear strain,” Eng. Comput., 37, No. 3, 823-849 (2020).CrossRef A. Hajlaoui, E. Chebbi, M. Wali, and F. Dammak, “Static analysis of carbon nanotube-reinforced FG shells using an efficient solid-shell element with parabolic transverse shear strain,” Eng. Comput., 37, No. 3, 823-849 (2020).CrossRef
30.
go back to reference A. Chaker, S. Koubaa, J. Mars et al. “An efficient ABAQUS solid shell element implementation for low velocity impact analysis of FGM plates,” Eng. Comput., 37, 2145-2157 (2021).CrossRef A. Chaker, S. Koubaa, J. Mars et al. “An efficient ABAQUS solid shell element implementation for low velocity impact analysis of FGM plates,” Eng. Comput., 37, 2145-2157 (2021).CrossRef
31.
go back to reference V. N. Burlayenko, H. Altenbach, and S. D. Dimitrova, “A material model-based finite element free vibration analysis of one-, two- and three-dimensional axially FGM beams,” Proc. IEEE 2nd KhPI Week on Advanced Technology (KhPIWeek), Kharkiv, Ukraine (2021), pp. 628-633. V. N. Burlayenko, H. Altenbach, and S. D. Dimitrova, “A material model-based finite element free vibration analysis of one-, two- and three-dimensional axially FGM beams,” Proc. IEEE 2nd KhPI Week on Advanced Technology (KhPIWeek), Kharkiv, Ukraine (2021), pp. 628-633.
32.
go back to reference V. N. Burlayenko, “Modelling thermal shock in functionally graded plates with finite element method,” Adv. Mater. Sci. Eng., 2016, 1-16 (2016).CrossRef V. N. Burlayenko, “Modelling thermal shock in functionally graded plates with finite element method,” Adv. Mater. Sci. Eng., 2016, 1-16 (2016).CrossRef
33.
go back to reference V. N. Burlayenko, T. Sadowski, H. Altenbach, and S. Dimitrova, “Three-dimensional finite element modelling of free vibrations of functionally graded sandwich panels”, In: H. Altenbach, J. Chróścielewski, V. Eremeyev, K. Wiśniewski (eds.), Recent Developments in the Theory of Shells. Adv. Struct. Mater., 110, Springer, Cham (2019), pp. 157-177. V. N. Burlayenko, T. Sadowski, H. Altenbach, and S. Dimitrova, “Three-dimensional finite element modelling of free vibrations of functionally graded sandwich panels”, In: H. Altenbach, J. Chróścielewski, V. Eremeyev, K. Wiśniewski (eds.), Recent Developments in the Theory of Shells. Adv. Struct. Mater., 110, Springer, Cham (2019), pp. 157-177.
34.
go back to reference V.N. Burlayenko, “A continuum shell element in layerwise models for free vibration analysis of FGM sandwich panels”, Continuum Mech. Thermodyn., 33, 1385-1407 (2021).ADSMathSciNetCrossRef V.N. Burlayenko, “A continuum shell element in layerwise models for free vibration analysis of FGM sandwich panels”, Continuum Mech. Thermodyn., 33, 1385-1407 (2021).ADSMathSciNetCrossRef
35.
go back to reference E. J. Barbero, Finite Element Analysis of Composite Materials using Abaqus, (1st ed.), CRC Press, Boca Raton-London-New York (2013).CrossRef E. J. Barbero, Finite Element Analysis of Composite Materials using Abaqus, (1st ed.), CRC Press, Boca Raton-London-New York (2013).CrossRef
36.
go back to reference ABAQUS User’s Manual, Version 2016. Dassault Systèmes Simulia Corp., Providence, RI, USA (2016). ABAQUS User’s Manual, Version 2016. Dassault Systèmes Simulia Corp., Providence, RI, USA (2016).
Metadata
Title
One-Dimensional vs. Three-Dimensional Models in Free Vibration Analysis of Axially Functionally Graded Beams with Non-Uniform Cross-Sections
Authors
V. N. Burlayenko
R. Kouhia
S. D. Dimitrova
Publication date
26-02-2024
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 1/2024
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-024-10176-4

Other articles of this Issue 1/2024

Mechanics of Composite Materials 1/2024 Go to the issue

Premium Partners