Skip to main content
Top
Published in: Journal of Electronic Materials 1/2023

05-11-2022 | Original Research Article

Optimization of GLAD Angle for E-Beam-Fabricated Tungsten Oxide (WO3) Thin Films Towards Novel Electrochromic Behavior

Authors: Jyothi Gutpa, Habibuddin Shaik, K. Naveen Kumar, Sheik Abdul Sattar

Published in: Journal of Electronic Materials | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

It is hypothesized that increasing the glancing angle deposition (GLAD) will increase the porosity of WO3 thin film, thus allowing for better ion diffusion. However, beyond a certain GLAD angle, the film follows a reverse trend and grows quite dense, which is attributable to the highly inclined columnar structure. Consequently, finding an optimal GLAD angle that can produce a perfect porous WO3 film under the given experimental conditions is critical. In this context, WO3 thin films, each 400 nm thick, are fabricated using e-beam evaporation at GLAD angle α = 0° (planar), 30°, 55°, 65°, 70° and 80° on fluorine-doped tin oxide (FTO)-coated substrates and Corning glass substrates. The crystalline structure, surface morphology, optical, electrochemical and electrochromic characteristics of the WO3 thin films are all investigated in detail. Film fabricated at a GLAD angle of 65° showed optimal optical transmittance of 75%, band gap of 3.25 eV, highest coloration efficiency (CE) of 31.06 cm2/C and highest diffusion coefficient (D) of 7.215 × 10–4 cm2/s. In conclusion, it may be inferred that the optimal GLAD angle under the current experimental conditions is 65°, which could give an ideally porous WO3 film with novel electrochromic behavior.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference D.R. Rosseinsky and R.J. Mortimer, Electrochromic systems and the prospects for devices. Adv. Mater. 13, 783 (2001).CrossRef D.R. Rosseinsky and R.J. Mortimer, Electrochromic systems and the prospects for devices. Adv. Mater. 13, 783 (2001).CrossRef
2.
go back to reference M. Buyan, P.A. Brühwiler, A. Azens, G. Gustavsson, R. Karmhag, and C.G. Granqvist, Facial warming and tinted helmet visors. Int. J. Ind. Ergon. 36, 11 (2006).CrossRef M. Buyan, P.A. Brühwiler, A. Azens, G. Gustavsson, R. Karmhag, and C.G. Granqvist, Facial warming and tinted helmet visors. Int. J. Ind. Ergon. 36, 11 (2006).CrossRef
3.
go back to reference H. Demiryont and D. Moorehead, Electrochromic emissivity modulator for spacecraft thermal management. Sol. Energy Mater. Sol. Cells 93, 2075 (2009).CrossRef H. Demiryont and D. Moorehead, Electrochromic emissivity modulator for spacecraft thermal management. Sol. Energy Mater. Sol. Cells 93, 2075 (2009).CrossRef
4.
go back to reference L. Pan, Q. Han, Z. Dong, M. Wan, H. Zhu, Y. Li, and Y. Mai, Reactively sputtered WO3 thin films for the application in all thin film electrochromic devices. Electrochim. Acta 328, 135107 (2019).CrossRef L. Pan, Q. Han, Z. Dong, M. Wan, H. Zhu, Y. Li, and Y. Mai, Reactively sputtered WO3 thin films for the application in all thin film electrochromic devices. Electrochim. Acta 328, 135107 (2019).CrossRef
5.
go back to reference M. Penza, G. Cassano, and F. Tortorella, Gas recognition by activated WO3 thin-film sensors array. Sens. Actuators B Chem. 81, 115 (2001).CrossRef M. Penza, G. Cassano, and F. Tortorella, Gas recognition by activated WO3 thin-film sensors array. Sens. Actuators B Chem. 81, 115 (2001).CrossRef
6.
go back to reference P.V. Karthik Yadav, B. Ajitha, Y.A.K. Reddy, V.R. Minnam Reddy, M. Reddeppa, and M.D. Kim, Effect of sputter pressure on UV photodetector performance of WO3 thin films. Appl. Surf. Sci. 536, 147947 (2021).CrossRef P.V. Karthik Yadav, B. Ajitha, Y.A.K. Reddy, V.R. Minnam Reddy, M. Reddeppa, and M.D. Kim, Effect of sputter pressure on UV photodetector performance of WO3 thin films. Appl. Surf. Sci. 536, 147947 (2021).CrossRef
7.
go back to reference H. Zheng, Y. Tachibana, and K. Kalantar-Zadeh, Dye-sensitized solar cells based on WO3. Langmuir 26, 19148 (2010).CrossRef H. Zheng, Y. Tachibana, and K. Kalantar-Zadeh, Dye-sensitized solar cells based on WO3. Langmuir 26, 19148 (2010).CrossRef
8.
go back to reference V. Hariharan, B. Gnanavel, R. Sathiyapriya, and V. Aroulmoji, A review on tungsten oxide (WO3) and their derivatives for sensor applications. Int. J. Adv. Sci. Eng. 5, 1163 (2019).CrossRef V. Hariharan, B. Gnanavel, R. Sathiyapriya, and V. Aroulmoji, A review on tungsten oxide (WO3) and their derivatives for sensor applications. Int. J. Adv. Sci. Eng. 5, 1163 (2019).CrossRef
9.
go back to reference Y. Yang, D. Kim, and P. Schmuki, Lithium-ion intercalation and electrochromism in ordered V2O5 nanoporous layers. Electrochem. Commun. 13, 1198 (2011).CrossRef Y. Yang, D. Kim, and P. Schmuki, Lithium-ion intercalation and electrochromism in ordered V2O5 nanoporous layers. Electrochem. Commun. 13, 1198 (2011).CrossRef
10.
go back to reference P. Ashrit, Transition metal oxide thin film based chromogenics and devices, 1st ed., (Amsterdam: Elsvier Ltd., 2017). P. Ashrit, Transition metal oxide thin film based chromogenics and devices, 1st ed., (Amsterdam: Elsvier Ltd., 2017).
11.
go back to reference Y. Liu, Y. Lv, Z. Tang, L. He, and X. Liu, Highly stable and flexible ITO-free electrochromic films with Bi-functional stacked MoO3/Ag/MoO3 structures. Electrochim. Acta 189, 184 (2016).CrossRef Y. Liu, Y. Lv, Z. Tang, L. He, and X. Liu, Highly stable and flexible ITO-free electrochromic films with Bi-functional stacked MoO3/Ag/MoO3 structures. Electrochim. Acta 189, 184 (2016).CrossRef
12.
go back to reference J. Gutpa, H. Shaik, K.N. Kumar, and S. Abdul, PVD techniques proffering avenues for fabrication of porous tungsten oxide (WO3) thin films: a review. Mater. Sci. Semicond. Process. 143, 106534 (2022).CrossRef J. Gutpa, H. Shaik, K.N. Kumar, and S. Abdul, PVD techniques proffering avenues for fabrication of porous tungsten oxide (WO3) thin films: a review. Mater. Sci. Semicond. Process. 143, 106534 (2022).CrossRef
13.
go back to reference T. Motohiro and Y. Taga, Thin film retardation plate by oblique deposition. Appl. Opt. 28, 2466 (1989).CrossRef T. Motohiro and Y. Taga, Thin film retardation plate by oblique deposition. Appl. Opt. 28, 2466 (1989).CrossRef
14.
go back to reference M.Z. Ahmad, A. Wisitsoraat, A.S. Zoolfakar, R.A. Kadir, and W. Wlodarski, Investigation of RF sputtered tungsten trioxide nanorod thin film gas sensors prepared with a glancing angle deposition method toward reductive and oxidative analytes. Sens. Actuators B Chem. 183, 364 (2013).CrossRef M.Z. Ahmad, A. Wisitsoraat, A.S. Zoolfakar, R.A. Kadir, and W. Wlodarski, Investigation of RF sputtered tungsten trioxide nanorod thin film gas sensors prepared with a glancing angle deposition method toward reductive and oxidative analytes. Sens. Actuators B Chem. 183, 364 (2013).CrossRef
15.
go back to reference M.M. Hawkeye and M.J. Brett, Glancing angle deposition: fabrication, properties, and applications of micro—and nanostructured thin films. J. Vac. Sci. Technol. A Vac. Surf. Films 25, 1317 (2007).CrossRef M.M. Hawkeye and M.J. Brett, Glancing angle deposition: fabrication, properties, and applications of micro—and nanostructured thin films. J. Vac. Sci. Technol. A Vac. Surf. Films 25, 1317 (2007).CrossRef
16.
go back to reference M.T. Taschuk, M.M. Hawkeye, and M.J. Brett, Glancing angle deposition, 3rd ed., (Amsterdam: Elsevier Ltd., 2010). M.T. Taschuk, M.M. Hawkeye, and M.J. Brett, Glancing angle deposition, 3rd ed., (Amsterdam: Elsevier Ltd., 2010).
17.
go back to reference M.M. Hawkeye, M.T. Taschuk, and M.J. Brett, Glancing angle deposition of thin films: engineering the nanoscale, 1st ed., (New York: Wiley, 2014). M.M. Hawkeye, M.T. Taschuk, and M.J. Brett, Glancing angle deposition of thin films: engineering the nanoscale, 1st ed., (New York: Wiley, 2014).
18.
go back to reference C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, and J.S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710 (1992).CrossRef C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, and J.S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710 (1992).CrossRef
19.
go back to reference J. Gupta, H. Shaik, and K.N. Kumar, A review on the prominence of porosity in tungsten oxide thin films for electrochromism. Ionics 27, 2307 (2021).CrossRef J. Gupta, H. Shaik, and K.N. Kumar, A review on the prominence of porosity in tungsten oxide thin films for electrochromism. Ionics 27, 2307 (2021).CrossRef
20.
go back to reference K. Robbie and M.J. Brett, Sculptured thin films and glancing angle deposition: growth mechanics and applications. J. Vac. Sci. Technol. A Vac. Surf. Films 15, 1460 (1997).CrossRef K. Robbie and M.J. Brett, Sculptured thin films and glancing angle deposition: growth mechanics and applications. J. Vac. Sci. Technol. A Vac. Surf. Films 15, 1460 (1997).CrossRef
21.
go back to reference C. Charles, N. Martin, and M. Devel, Optical properties of nanostructured WO3 thin films by glancing angle deposition: comparison between experiment and simulation. Surf. Coat. Technol. 276, 136 (2015).CrossRef C. Charles, N. Martin, and M. Devel, Optical properties of nanostructured WO3 thin films by glancing angle deposition: comparison between experiment and simulation. Surf. Coat. Technol. 276, 136 (2015).CrossRef
22.
go back to reference G. Beydaghyan, G. Bader, and P.V. Ashrit, Electrochromic and morphological investigation of dry-lithiated nanostructured tungsten trioxide thin films. Thin Solid Films 516, 1646 (2008).CrossRef G. Beydaghyan, G. Bader, and P.V. Ashrit, Electrochromic and morphological investigation of dry-lithiated nanostructured tungsten trioxide thin films. Thin Solid Films 516, 1646 (2008).CrossRef
23.
go back to reference J. Ollitrault, N. Martin, J.Y. Rauch, J.B. Sanchez, and F. Berger, Improvement of ozone detection with GLAD WO3 films. Mater. Lett. 155, 1 (2015).CrossRef J. Ollitrault, N. Martin, J.Y. Rauch, J.B. Sanchez, and F. Berger, Improvement of ozone detection with GLAD WO3 films. Mater. Lett. 155, 1 (2015).CrossRef
24.
go back to reference Y. Pihosh et al., Nanostructured WO3/BiVO4 photoanodes for efficient photoelectrochemical water splitting. Small 10, 3692 (2014).CrossRef Y. Pihosh et al., Nanostructured WO3/BiVO4 photoanodes for efficient photoelectrochemical water splitting. Small 10, 3692 (2014).CrossRef
25.
go back to reference M. Horprathum, P. Eiamchai, J. Kaewkhao, C. Chananonnawathorn, V. Patthanasettakul, S. Limwichean, N. Nuntawong, and P. Chindaudom, in AIP Conference Proceedings (2014), p. 7 M. Horprathum, P. Eiamchai, J. Kaewkhao, C. Chananonnawathorn, V. Patthanasettakul, S. Limwichean, N. Nuntawong, and P. Chindaudom, in AIP Conference Proceedings (2014), p. 7
26.
go back to reference S. Li, Z. Yao, J. Zhou, R. Zhang, and H. Shen, Fabrication and characterization of WO3 thin films on silicon surface by thermal evaporation. Mater. Lett. 195, 213 (2017).CrossRef S. Li, Z. Yao, J. Zhou, R. Zhang, and H. Shen, Fabrication and characterization of WO3 thin films on silicon surface by thermal evaporation. Mater. Lett. 195, 213 (2017).CrossRef
27.
go back to reference D. Evecan and E. Zayim, Highly uniform electrochromic tungsten oxide thin films deposited by e-beam evaporation for energy saving systems. Curr. Appl. Phys. 19, 198 (2019).CrossRef D. Evecan and E. Zayim, Highly uniform electrochromic tungsten oxide thin films deposited by e-beam evaporation for energy saving systems. Curr. Appl. Phys. 19, 198 (2019).CrossRef
28.
go back to reference S.I. Boyadjiev, V. Georgieva, N. Stefan, G.E. Stan, N. Mihailescu, A. Visan, I.N. Mihailescu, C. Besleaga, and I.M. Szilágyi, Characterization of PLD grown WO3 thin films for gas sensing. Appl. Surf. Sci. 417, 218 (2017).CrossRef S.I. Boyadjiev, V. Georgieva, N. Stefan, G.E. Stan, N. Mihailescu, A. Visan, I.N. Mihailescu, C. Besleaga, and I.M. Szilágyi, Characterization of PLD grown WO3 thin films for gas sensing. Appl. Surf. Sci. 417, 218 (2017).CrossRef
29.
go back to reference K. Kazuhiro and S. Shigeo, Physical properties of tungsten oxide films deposited by a reactive sputtering method. Jpn. J. Appl. Phys. 30, 1841 (1991).CrossRef K. Kazuhiro and S. Shigeo, Physical properties of tungsten oxide films deposited by a reactive sputtering method. Jpn. J. Appl. Phys. 30, 1841 (1991).CrossRef
30.
go back to reference J.C. Sit, D. Vick, K. Robbie, and M.J. Brett, Thin film microstructure control using glancing angle deposition by sputtering. J. Mater. Res. 14, 1197 (1999).CrossRef J.C. Sit, D. Vick, K. Robbie, and M.J. Brett, Thin film microstructure control using glancing angle deposition by sputtering. J. Mater. Res. 14, 1197 (1999).CrossRef
31.
go back to reference J. Lintymer, N. Martin, J.M. Chappé, P. Delobelle, and J. Takadoum, Nanoindentation of chromium zigzag thin films sputter deposited. Surf. Coat. Technol. 200, 269 (2005).CrossRef J. Lintymer, N. Martin, J.M. Chappé, P. Delobelle, and J. Takadoum, Nanoindentation of chromium zigzag thin films sputter deposited. Surf. Coat. Technol. 200, 269 (2005).CrossRef
32.
go back to reference N. Maiti, P. Karmakar, U. D. Barve, and A. V. Bapat, in Journal of Physics: Conference Series (2008), p. 012049. N. Maiti, P. Karmakar, U. D. Barve, and A. V. Bapat, in Journal of Physics: Conference Series (2008), p. 012049.
33.
go back to reference D. Işik, M. Ak, and C. Durucan, Structural, electrochemical and optical comparisons of tungsten oxide coatings derived from tungsten powder-based sols. Thin Solid Films 518, 104 (2009).CrossRef D. Işik, M. Ak, and C. Durucan, Structural, electrochemical and optical comparisons of tungsten oxide coatings derived from tungsten powder-based sols. Thin Solid Films 518, 104 (2009).CrossRef
34.
go back to reference D.X. Ye, Y.P. Zhao, G.R. Yang, Y.G. Zhao, G.C. Wang, and T.M. Lu, Manipulating the column tilt angles of nanocolumnar films by glancing-angle deposition. Nanotechnology 13, 615 (2002).CrossRef D.X. Ye, Y.P. Zhao, G.R. Yang, Y.G. Zhao, G.C. Wang, and T.M. Lu, Manipulating the column tilt angles of nanocolumnar films by glancing-angle deposition. Nanotechnology 13, 615 (2002).CrossRef
35.
go back to reference R.N. Tait, T. Smy, and M.J. Brett, Modelling and characterization of columnar growth in evaporated films. Thin Solid Films 226, 196 (1993).CrossRef R.N. Tait, T. Smy, and M.J. Brett, Modelling and characterization of columnar growth in evaporated films. Thin Solid Films 226, 196 (1993).CrossRef
36.
go back to reference A. Zarzycki, K. Dyndał, M. Sitarz, J. Xu, F. Gao, K. Marszałek, and A. Rydosz, Influence of GLAD sputtering configuration on the crystal structure, morphology, and gas-sensing properties of the WO3 films. Coatings 10, 1 (2020).CrossRef A. Zarzycki, K. Dyndał, M. Sitarz, J. Xu, F. Gao, K. Marszałek, and A. Rydosz, Influence of GLAD sputtering configuration on the crystal structure, morphology, and gas-sensing properties of the WO3 films. Coatings 10, 1 (2020).CrossRef
37.
go back to reference K.J. Patel, C.J. Panchal, V.A. Kheraj, and M.S. Desai, Growth, structural, electrical and optical properties of the thermally evaporated tungsten trioxide (WO3) thin films. Mater. Chem. Phys. 114, 475 (2009).CrossRef K.J. Patel, C.J. Panchal, V.A. Kheraj, and M.S. Desai, Growth, structural, electrical and optical properties of the thermally evaporated tungsten trioxide (WO3) thin films. Mater. Chem. Phys. 114, 475 (2009).CrossRef
38.
go back to reference V. Madhavi, P. Kondaiah, O.M. Hussain, and S. Uthanna, Structural, optical and electrochromic properties of RF magnetron sputtered WO3 thin films. Physica B 454, 141 (2014).CrossRef V. Madhavi, P. Kondaiah, O.M. Hussain, and S. Uthanna, Structural, optical and electrochromic properties of RF magnetron sputtered WO3 thin films. Physica B 454, 141 (2014).CrossRef
39.
go back to reference R.S. Vemuri, M.H. Engelhard, and C.V. Ramana, Correlation between surface chemistry, density, and band gap in nanocrystalline WO3 thin films. ACS Appl. Mater. Interfaces. 4, 1371 (2012).CrossRef R.S. Vemuri, M.H. Engelhard, and C.V. Ramana, Correlation between surface chemistry, density, and band gap in nanocrystalline WO3 thin films. ACS Appl. Mater. Interfaces. 4, 1371 (2012).CrossRef
40.
go back to reference P.P. González-Borrero, F. Sato, A.N. Medina, M.L. Baesso, A.C. Bento, G. Baldissera, C. Persson, G.A. Niklasson, C.G. Granqvist, and A. Ferreira Da Silva, Optical band-gap determination of nanostructured WO3 film. Appl. Phys. Lett. 96, 10 (2010).CrossRef P.P. González-Borrero, F. Sato, A.N. Medina, M.L. Baesso, A.C. Bento, G. Baldissera, C. Persson, G.A. Niklasson, C.G. Granqvist, and A. Ferreira Da Silva, Optical band-gap determination of nanostructured WO3 film. Appl. Phys. Lett. 96, 10 (2010).CrossRef
41.
go back to reference M. Aez et al., A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B 125, 331 (2012).CrossRef M. Aez et al., A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B 125, 331 (2012).CrossRef
42.
go back to reference J. Yuan, B. Wang, H. Wang, Y. Chai, Y. Jin, H. Qi, and J. Shao, Electrochromic behavior of WO3 thin films prepared by GLAD. Appl. Surf. Sci. 447, 471 (2018).CrossRef J. Yuan, B. Wang, H. Wang, Y. Chai, Y. Jin, H. Qi, and J. Shao, Electrochromic behavior of WO3 thin films prepared by GLAD. Appl. Surf. Sci. 447, 471 (2018).CrossRef
43.
go back to reference V. R. Buch, A. K. Chawla, and S. K. Rawal, in Materials Today: Proceedings (2016), p. 1429. V. R. Buch, A. K. Chawla, and S. K. Rawal, in Materials Today: Proceedings (2016), p. 1429.
44.
go back to reference B.S. Lee, R. Deshpande, P.A. Parilla, K.M. Jones, B. To, A.H. Mahan, and A.C. Dillon, Crystalline WO3 nanoparticles for highly improved electrochromic applications. Adv. Mater. 80401, 763 (2006).CrossRef B.S. Lee, R. Deshpande, P.A. Parilla, K.M. Jones, B. To, A.H. Mahan, and A.C. Dillon, Crystalline WO3 nanoparticles for highly improved electrochromic applications. Adv. Mater. 80401, 763 (2006).CrossRef
45.
go back to reference K. Naveen Kumar, H. Shaik, Sathish, V. Madhavi, and S. Abdul Sattar, in IOP Conference Series: Materials Science and Engineering (2020), p. 012147. K. Naveen Kumar, H. Shaik, Sathish, V. Madhavi, and S. Abdul Sattar, in IOP Conference Series: Materials Science and Engineering (2020), p. 012147.
46.
go back to reference A. Dolatshahi-Pirouz, M.B. Hovgaard, K. Rechendorff, J. Chevallier, M. Foss, and F. Besenbacher, Scaling behavior of the surface roughness of platinum films grown by oblique angle deposition. Phys. Rev. B Condens. Matter. Mater. Phys. 77, 1 (2008).CrossRef A. Dolatshahi-Pirouz, M.B. Hovgaard, K. Rechendorff, J. Chevallier, M. Foss, and F. Besenbacher, Scaling behavior of the surface roughness of platinum films grown by oblique angle deposition. Phys. Rev. B Condens. Matter. Mater. Phys. 77, 1 (2008).CrossRef
47.
go back to reference J.N. Sun, Y.F. Hu, W.E. Frieze, and D.W. Gidley, Characterizing porosity in nanoporous thin films using positronium annihilation lifetime spectroscopy. Radiat. Phys. Chem. 68, 345 (2003).CrossRef J.N. Sun, Y.F. Hu, W.E. Frieze, and D.W. Gidley, Characterizing porosity in nanoporous thin films using positronium annihilation lifetime spectroscopy. Radiat. Phys. Chem. 68, 345 (2003).CrossRef
48.
go back to reference A. Barranco, A. Borras, A.R. Gonzalez-Elipe, and A. Palmero, Perspectives on oblique angle deposition of thin films: from fundamentals to devices. Prog. Mater Sci. 76, 59 (2016).CrossRef A. Barranco, A. Borras, A.R. Gonzalez-Elipe, and A. Palmero, Perspectives on oblique angle deposition of thin films: from fundamentals to devices. Prog. Mater Sci. 76, 59 (2016).CrossRef
49.
go back to reference A. H. Jayatissa and S. Te Cheng, in Proceedings of the IEEE Conference on Nanotechnology (2002), p. 25. A. H. Jayatissa and S. Te Cheng, in Proceedings of the IEEE Conference on Nanotechnology (2002), p. 25.
Metadata
Title
Optimization of GLAD Angle for E-Beam-Fabricated Tungsten Oxide (WO3) Thin Films Towards Novel Electrochromic Behavior
Authors
Jyothi Gutpa
Habibuddin Shaik
K. Naveen Kumar
Sheik Abdul Sattar
Publication date
05-11-2022
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 1/2023
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-022-10036-8

Other articles of this Issue 1/2023

Journal of Electronic Materials 1/2023 Go to the issue