Skip to main content
Top
Published in: Journal of Materials Science 19/2018

09-03-2018 | Mechanochemical Synthesis

Phase formation under non-equilibrium processing conditions: rapid solidification processing and mechanical alloying

Author: C. Suryanarayana

Published in: Journal of Materials Science | Issue 19/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Rapid solidification processing (RSP) of metallic alloys, involving solidification of liquid metals at very high rates, results in the formation of a variety of metastable phases such as supersaturated solid solutions, crystalline intermetallic compounds, quasicrystalline phases, and metallic glasses. Additionally, significant refinement of the grain sizes and segregation patterns also occurs. Mechanical alloying (MA), another powerful non-equilibrium processing technique, utilizes repeated cold welding, fracturing, and rewelding of powder particles in a high-energy ball mill. MA also results in the formation of metastable phases and microstructural refinement similar to what happens during RSP. Consequently, comparisons are frequently made between the phases produced by RSP and MA and the general understanding is that they both result in similar metastable effects. A detailed analysis of the metastable phases produced by RSP and MA is made in the present work, and it is shown that even though the effects may appear similar, the mechanisms of formation and the composition ranges in which particular phases form are quite different. These two methods also have some unique features and produce different phases. The differences have been ascribed to the fact that RSP involves solidification from the melt while MA is a completely solid-state process that is not restricted by the phase diagram.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Suryanarayana C (ed) (1999) Non-equilibrium processing of materials. Pergamon, Oxford Suryanarayana C (ed) (1999) Non-equilibrium processing of materials. Pergamon, Oxford
2.
3.
go back to reference Liebermann HH (ed) (1993) Rapidly solidified alloys: processes, structures, properties, applications. Marcel Dekker, New York Liebermann HH (ed) (1993) Rapidly solidified alloys: processes, structures, properties, applications. Marcel Dekker, New York
4.
go back to reference Suryanarayana C, Inoue A (2018) Bulk metallic glasses, 2nd edn. CRC Press, Boca Raton Suryanarayana C, Inoue A (2018) Bulk metallic glasses, 2nd edn. CRC Press, Boca Raton
5.
go back to reference Suryanarayana C, Jones H (1988) Formation and characteristics of quasicrystalline phases: a review. Int J Rapid Solidif 3:253–293 Suryanarayana C, Jones H (1988) Formation and characteristics of quasicrystalline phases: a review. Int J Rapid Solidif 3:253–293
6.
go back to reference Trebin HR (ed) (2003) Quasicrystals: structure and physical properties. Wiley-VCH, Weinheim Trebin HR (ed) (2003) Quasicrystals: structure and physical properties. Wiley-VCH, Weinheim
7.
8.
go back to reference Gleiter H (2000) Nanostructured materials: basic concepts and microstructure. Acta Mater 48:1–29CrossRef Gleiter H (2000) Nanostructured materials: basic concepts and microstructure. Acta Mater 48:1–29CrossRef
9.
go back to reference Suryanarayana C (2005) Recent developments in nanostructured materials. Adv Eng Mater 7:983–992CrossRef Suryanarayana C (2005) Recent developments in nanostructured materials. Adv Eng Mater 7:983–992CrossRef
10.
go back to reference Turnbull D (1981) Metastable structures in metallurgy. Metall Trans A 12:695–708CrossRef Turnbull D (1981) Metastable structures in metallurgy. Metall Trans A 12:695–708CrossRef
11.
12.
go back to reference Duwez P, Willens RH, Klement W Jr (1960) Continuous series of metastable solid solutions in Ag–Cu alloys. J Appl Phys 31:1136–1137CrossRef Duwez P, Willens RH, Klement W Jr (1960) Continuous series of metastable solid solutions in Ag–Cu alloys. J Appl Phys 31:1136–1137CrossRef
13.
go back to reference Duwez P, Willens RH, Klement W Jr (1960) Metastable electron compound in Ag–Ge alloys. J Appl Phys 31:1137CrossRef Duwez P, Willens RH, Klement W Jr (1960) Metastable electron compound in Ag–Ge alloys. J Appl Phys 31:1137CrossRef
14.
go back to reference Klement W Jr, Willens RH, Duwez (1960) Non-crystalline structure in solidified gold–silicon alloys. Nature 187:869–870CrossRef Klement W Jr, Willens RH, Duwez (1960) Non-crystalline structure in solidified gold–silicon alloys. Nature 187:869–870CrossRef
15.
go back to reference Duwez P (1967) Structure and properties of alloys rapidly quenched from the liquid state. Trans ASM Q 60:607–633 Duwez P (1967) Structure and properties of alloys rapidly quenched from the liquid state. Trans ASM Q 60:607–633
16.
go back to reference Suryanarayana C (1991) In: Cahn RW (ed) Processing of metals and alloys. Materials science and technology: a comprehensive treatment, vol 15. VCH, Weinheim, pp 57–110 Suryanarayana C (1991) In: Cahn RW (ed) Processing of metals and alloys. Materials science and technology: a comprehensive treatment, vol 15. VCH, Weinheim, pp 57–110
17.
go back to reference Jones H (2001) A perspective on the development of rapid solidification and nonequilibrium processing and its future. Mater Sci Eng A304(306):11–19CrossRef Jones H (2001) A perspective on the development of rapid solidification and nonequilibrium processing and its future. Mater Sci Eng A304(306):11–19CrossRef
18.
go back to reference Nishiyama N, Takenaka K, Miura H, Saido N, Zeng YQ, Inoue A (2012) The world’s biggest glassy alloy ever made. Intermetallics 30:19–24CrossRef Nishiyama N, Takenaka K, Miura H, Saido N, Zeng YQ, Inoue A (2012) The world’s biggest glassy alloy ever made. Intermetallics 30:19–24CrossRef
19.
go back to reference Suryanarayana C, Inoue A (2013) Iron-based bulk metallic glasses. Int Mater Rev 58:131–166CrossRef Suryanarayana C, Inoue A (2013) Iron-based bulk metallic glasses. Int Mater Rev 58:131–166CrossRef
20.
go back to reference Suryanarayana C (2002) Rapid solidification processing. In: Buschow KHJ, Cahn RW, Flemings MC, Kramer EJ, Mahajan S (eds) Encyclopedia of materials: science and technology—updates. Pergamon Press, Oxford, pp 1–10 Suryanarayana C (2002) Rapid solidification processing. In: Buschow KHJ, Cahn RW, Flemings MC, Kramer EJ, Mahajan S (eds) Encyclopedia of materials: science and technology—updates. Pergamon Press, Oxford, pp 1–10
21.
go back to reference Benjamin JS (1990) Mechanical alloying: a perspective. Metal Powder Rep 45:122–127CrossRef Benjamin JS (1990) Mechanical alloying: a perspective. Metal Powder Rep 45:122–127CrossRef
23.
go back to reference Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46:1–184CrossRef Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46:1–184CrossRef
24.
go back to reference Suryanarayana C (2004) Mechanical alloying and milling. Marcel Dekker, New YorkCrossRef Suryanarayana C (2004) Mechanical alloying and milling. Marcel Dekker, New YorkCrossRef
25.
go back to reference Takacs L (2002) Self-sustaining reactions induced by ball milling. Prog Mater Sci 47:355–414CrossRef Takacs L (2002) Self-sustaining reactions induced by ball milling. Prog Mater Sci 47:355–414CrossRef
26.
go back to reference Suryanarayana C, Al-Aqeeli N (2013) Mechanically alloyed nanocomposites. Prog Mater Sci 58:383–502CrossRef Suryanarayana C, Al-Aqeeli N (2013) Mechanically alloyed nanocomposites. Prog Mater Sci 58:383–502CrossRef
28.
go back to reference Jones H (1982) Rapid solidification of metals and alloys. The Institution of Metallurgists, London Jones H (1982) Rapid solidification of metals and alloys. The Institution of Metallurgists, London
29.
go back to reference Uenishi K, Kobayashi KF, Ishihara KN, Shingu PH (1991) Formation of supersaturated solid solution in the Ag–Cu system by mechanical alloying. Mater Sci Eng A134:1342–1345CrossRef Uenishi K, Kobayashi KF, Ishihara KN, Shingu PH (1991) Formation of supersaturated solid solution in the Ag–Cu system by mechanical alloying. Mater Sci Eng A134:1342–1345CrossRef
30.
go back to reference Linde RK (1966) Lattice parameters of metastable silver–copper alloys. J Appl Phys 37:934CrossRef Linde RK (1966) Lattice parameters of metastable silver–copper alloys. J Appl Phys 37:934CrossRef
31.
go back to reference Suryanarayana C, Froes FH (1990) Nanocrystalline titanium–magnesium alloys through mechanical alloying. J Mater Res 5:1880–1886CrossRef Suryanarayana C, Froes FH (1990) Nanocrystalline titanium–magnesium alloys through mechanical alloying. J Mater Res 5:1880–1886CrossRef
32.
go back to reference Suryanarayana C, Liu JL (2012) Processing and characterization of mechanically alloyed immiscible metals. Int J Mater Res 103:1125–1129CrossRef Suryanarayana C, Liu JL (2012) Processing and characterization of mechanically alloyed immiscible metals. Int J Mater Res 103:1125–1129CrossRef
33.
go back to reference Pochet P, Tominez E, Chaffron L, Martin G (1995) Order-disorder transformation in Fe–Al under ball milling. Phys Rev B 52:4006–4016CrossRef Pochet P, Tominez E, Chaffron L, Martin G (1995) Order-disorder transformation in Fe–Al under ball milling. Phys Rev B 52:4006–4016CrossRef
34.
go back to reference Darken LS, Gurry RW (1954) Physical chemistry of metals. McGraw-Hill, New York Darken LS, Gurry RW (1954) Physical chemistry of metals. McGraw-Hill, New York
35.
go back to reference Froes FH, Suryanarayana C, Russell K, Li C-G (1995) Synthesis of intermetallics by mechanical alloying. Mater Sci Eng A192(193):612–623 Froes FH, Suryanarayana C, Russell K, Li C-G (1995) Synthesis of intermetallics by mechanical alloying. Mater Sci Eng A192(193):612–623
36.
go back to reference Al-Joubori A, Suryanarayana C (2015) Synthesis of metastable NiGe2 by mechanical alloying. Mater Des 87:520–526CrossRef Al-Joubori A, Suryanarayana C (2015) Synthesis of metastable NiGe2 by mechanical alloying. Mater Des 87:520–526CrossRef
37.
go back to reference Singh D, Suryanarayana C, Mertus L, Chen R-H (2003) Extended homogeneity range of intermetallic phases in mechanically alloyed Mg–Al alloys. Intermetallics 11:373–376CrossRef Singh D, Suryanarayana C, Mertus L, Chen R-H (2003) Extended homogeneity range of intermetallic phases in mechanically alloyed Mg–Al alloys. Intermetallics 11:373–376CrossRef
38.
go back to reference Al-Joubori A, Suryanarayana C (2016) Synthesis of stable and metastable phases in the Ni–Si system by mechanical alloying. Powder Technol 302:8–14CrossRef Al-Joubori A, Suryanarayana C (2016) Synthesis of stable and metastable phases in the Ni–Si system by mechanical alloying. Powder Technol 302:8–14CrossRef
39.
go back to reference Suryanarayana C, Al-Joubori A (2018) Effect of initial composition on phase selection in Ni–Si powder blends processed by mechanical alloying. Mater Manufactur Proc 33:840–848CrossRef Suryanarayana C, Al-Joubori A (2018) Effect of initial composition on phase selection in Ni–Si powder blends processed by mechanical alloying. Mater Manufactur Proc 33:840–848CrossRef
40.
go back to reference Datta MK, Pabi SK, Murty BS (2000) Phase fields of nickel silicides obtained by mechanical alloying in the nanocrystalline state. J Appl Phys 87:8393–8400CrossRef Datta MK, Pabi SK, Murty BS (2000) Phase fields of nickel silicides obtained by mechanical alloying in the nanocrystalline state. J Appl Phys 87:8393–8400CrossRef
41.
go back to reference Zhou AJ, Zhao XB, Zhu TJ, Dasgupta T, Stiewe C, Hassdorf R, Mueller E (2010) Mechanochemical decomposition of higher manganese silicides in the ball milling process. Intermetallics 18:2051–2056CrossRef Zhou AJ, Zhao XB, Zhu TJ, Dasgupta T, Stiewe C, Hassdorf R, Mueller E (2010) Mechanochemical decomposition of higher manganese silicides in the ball milling process. Intermetallics 18:2051–2056CrossRef
42.
go back to reference Suryanarayana C (1995) Does a disordered γ-TiAl phase exist in mechanically alloyed Ti–Al powders? Intermetallics 3:153–160CrossRef Suryanarayana C (1995) Does a disordered γ-TiAl phase exist in mechanically alloyed Ti–Al powders? Intermetallics 3:153–160CrossRef
43.
go back to reference Sato K, Ishizaki K, Chen GH, Frefer A, Suryanarayana C, Froes FH (1993) Fine structure analysis of mechanically alloyed titanium aluminides. In: Moore JJ, Lavernia EJ, Froes FH (eds) Proceedings of the international conference on advanced synthesis of engineered structural materials, August 31–September 2, 1992. ASM International, Materials Park, pp 221–225 Sato K, Ishizaki K, Chen GH, Frefer A, Suryanarayana C, Froes FH (1993) Fine structure analysis of mechanically alloyed titanium aluminides. In: Moore JJ, Lavernia EJ, Froes FH (eds) Proceedings of the international conference on advanced synthesis of engineered structural materials, August 31–September 2, 1992. ASM International, Materials Park, pp 221–225
44.
go back to reference Seelam UMR, Barkhordarian G, Suryanarayana C (2009) Is there a hexagonal close-packed (hcp) → face-centered cubic (fcc) allotropic transformation in mechanically milled Group IVB elements? J Mater Res 24:3454–3461CrossRef Seelam UMR, Barkhordarian G, Suryanarayana C (2009) Is there a hexagonal close-packed (hcp) → face-centered cubic (fcc) allotropic transformation in mechanically milled Group IVB elements? J Mater Res 24:3454–3461CrossRef
45.
go back to reference Patil U, Hong SJ, Suryanarayana C (2005) An unusual phase transformation during mechanical alloying of an Fe-based bulk metallic glass composition. J Alloy Compd 389:121–126CrossRef Patil U, Hong SJ, Suryanarayana C (2005) An unusual phase transformation during mechanical alloying of an Fe-based bulk metallic glass composition. J Alloy Compd 389:121–126CrossRef
46.
go back to reference Sharma S, Suryanarayana C (2007) Mechanical crystallization of Fe-based amorphous alloys. J Appl Phys 102:083544-1–083544-7 Sharma S, Suryanarayana C (2007) Mechanical crystallization of Fe-based amorphous alloys. J Appl Phys 102:083544-1–083544-7
47.
go back to reference Sharma S, Suryanarayana C (2008) Effect of carbon addition on the glass-forming ability of mechanically alloyed Fe-based alloys. J Appl Phys 103:013504-1–013504-5 Sharma S, Suryanarayana C (2008) Effect of carbon addition on the glass-forming ability of mechanically alloyed Fe-based alloys. J Appl Phys 103:013504-1–013504-5
48.
go back to reference Suryanarayana C, Wang WK, Iwasaki H, Masumoto T (1980) High pressure synthesis of A15 Nb3Si phase from amorphous titanium-silicon alloys. Solid State Commun 34:861–863CrossRef Suryanarayana C, Wang WK, Iwasaki H, Masumoto T (1980) High pressure synthesis of A15 Nb3Si phase from amorphous titanium-silicon alloys. Solid State Commun 34:861–863CrossRef
49.
go back to reference Trudeau ML, Schulz R, Dussault D, Van Neste A (1990) Structural changes during high-energy ball milling of iron-based amorphous alloys: is high-energy ball milling equivalent to a thermal process? Phys Rev Lett 64:99–102CrossRef Trudeau ML, Schulz R, Dussault D, Van Neste A (1990) Structural changes during high-energy ball milling of iron-based amorphous alloys: is high-energy ball milling equivalent to a thermal process? Phys Rev Lett 64:99–102CrossRef
50.
go back to reference Guo FQ, Lu K (1997) Ball-milling-induced crystallization and ball-milling effect on thermal crystallization kinetics in an amorphous FeMoSiB alloy. Metall Mater Trans A28:1123–1131CrossRef Guo FQ, Lu K (1997) Ball-milling-induced crystallization and ball-milling effect on thermal crystallization kinetics in an amorphous FeMoSiB alloy. Metall Mater Trans A28:1123–1131CrossRef
51.
go back to reference Yermakov AE, Yurchikov EE, Barinov VA (1981) The magnetic properties of amorphous Y–Co alloy powders obtained by mechanical comminution. Phys Met Metallogr 52(6):50–58 Yermakov AE, Yurchikov EE, Barinov VA (1981) The magnetic properties of amorphous Y–Co alloy powders obtained by mechanical comminution. Phys Met Metallogr 52(6):50–58
52.
go back to reference Yermakov AE, Barinov VA, Yurchikov EE (1982) The change in the magnetic properties of Gd–Co alloy powders during their amorphization by comminution. Phys Met Metallogr 54(5):90–96 Yermakov AE, Barinov VA, Yurchikov EE (1982) The change in the magnetic properties of Gd–Co alloy powders during their amorphization by comminution. Phys Met Metallogr 54(5):90–96
53.
go back to reference Massalski TB, Okamoto H, Subramanian PR, Kacprzak L (eds) (1990) Binary alloy phase diagrams, 2nd edn. ASM International, Materials Park Massalski TB, Okamoto H, Subramanian PR, Kacprzak L (eds) (1990) Binary alloy phase diagrams, 2nd edn. ASM International, Materials Park
54.
go back to reference Omuro K, Miura H (1995) Amorphization of mechanically alloyed Fe–C and Fe–N materials with additive elements and their concentration dependence. Mater Sci Forum 179–181:273–280CrossRef Omuro K, Miura H (1995) Amorphization of mechanically alloyed Fe–C and Fe–N materials with additive elements and their concentration dependence. Mater Sci Forum 179–181:273–280CrossRef
55.
go back to reference Ruhl RC, Giessen BC, Cohen M, Grant NJ (1967) New microcrystalline phases in the Nb–Ni and Ta–Ni systems. Acta Metall 15:1693–1702CrossRef Ruhl RC, Giessen BC, Cohen M, Grant NJ (1967) New microcrystalline phases in the Nb–Ni and Ta–Ni systems. Acta Metall 15:1693–1702CrossRef
56.
go back to reference Petzoldt F (1988) Synthesis and process characterization of mechanically alloyed amorphous Ni–Nb powders. J Less Common Metals 140:85–92CrossRef Petzoldt F (1988) Synthesis and process characterization of mechanically alloyed amorphous Ni–Nb powders. J Less Common Metals 140:85–92CrossRef
57.
go back to reference Giessen BC, Madhava M, Polk DE, Vander Sande J (1976) Refractory amorphous inter-transition metal alloys. Mater Sci Eng 23:145–150CrossRef Giessen BC, Madhava M, Polk DE, Vander Sande J (1976) Refractory amorphous inter-transition metal alloys. Mater Sci Eng 23:145–150CrossRef
58.
go back to reference Rohr L, Reimann P, Richmond T, Güntherodt HJ (1991) Refractory metallic glasses. Mater Sci Eng A133:715–717CrossRef Rohr L, Reimann P, Richmond T, Güntherodt HJ (1991) Refractory metallic glasses. Mater Sci Eng A133:715–717CrossRef
59.
go back to reference Lee PY, Chen TR (1994) Formation of amorphous Ni–Ta alloy powders by mechanical alloying. J Mater Sci Lett 13:888–890CrossRef Lee PY, Chen TR (1994) Formation of amorphous Ni–Ta alloy powders by mechanical alloying. J Mater Sci Lett 13:888–890CrossRef
61.
go back to reference Sakata M, Cowlam N, Davies HA (1982) In: Masumoto T, Suzuki K (eds) Proceedings of the international conference on rapidly quenched metals IV (RQ4). Japan Inst Metals, Sendai, pp 327–330 Sakata M, Cowlam N, Davies HA (1982) In: Masumoto T, Suzuki K (eds) Proceedings of the international conference on rapidly quenched metals IV (RQ4). Japan Inst Metals, Sendai, pp 327–330
62.
go back to reference Rabinkin A, Liebermann H, Pounds S, Taylor T, Reidinger F, Lui SC (1991) Amorphous TiZr; base Metglas brazing filler metals. Scripta Metall Mater 25:399–404CrossRef Rabinkin A, Liebermann H, Pounds S, Taylor T, Reidinger F, Lui SC (1991) Amorphous TiZr; base Metglas brazing filler metals. Scripta Metall Mater 25:399–404CrossRef
63.
go back to reference Murty BS, Ranganathan S, Mohan Rao M (1992) Solid state amorphization in binary Ti–Ni, Ti–Cu and ternary Ti–Ni–Cu system by mechanical alloying. Mater Sci Eng A149:231–240CrossRef Murty BS, Ranganathan S, Mohan Rao M (1992) Solid state amorphization in binary Ti–Ni, Ti–Cu and ternary Ti–Ni–Cu system by mechanical alloying. Mater Sci Eng A149:231–240CrossRef
64.
go back to reference Krauss W, Politis C, Weimar P (1988) Preparation and compaction of mechanically alloyed amorphous materials. Metal Powder Rep 43:231–238 Krauss W, Politis C, Weimar P (1988) Preparation and compaction of mechanically alloyed amorphous materials. Metal Powder Rep 43:231–238
65.
go back to reference Buschow KHJ (1984) Stability and electrical transport properties of amorphous Ti1−xNix alloys. J Phys F Metal Phys 13:563–571CrossRef Buschow KHJ (1984) Stability and electrical transport properties of amorphous Ti1−xNix alloys. J Phys F Metal Phys 13:563–571CrossRef
66.
go back to reference Altounian Z, Shank RJ, Strom-Olsen JO (1985) Crystallization characteristics of Co–Zr metallic glasses from Co52Zr48 to Co20Zr80. J Appl Phys 58:1192–1195CrossRef Altounian Z, Shank RJ, Strom-Olsen JO (1985) Crystallization characteristics of Co–Zr metallic glasses from Co52Zr48 to Co20Zr80. J Appl Phys 58:1192–1195CrossRef
67.
go back to reference Eckert J, Schultz L, Urban K (1988) Glass-forming ranges in transition metal-Zr alloys prepared by mechanical alloying. J Less Common Metals 145:283–291CrossRef Eckert J, Schultz L, Urban K (1988) Glass-forming ranges in transition metal-Zr alloys prepared by mechanical alloying. J Less Common Metals 145:283–291CrossRef
68.
go back to reference Altounian Z, Volkert CA, Strom-Olsen JO (1985) Crystallization characteristics of Fe–Zr metallic glasses from Fe43Zr57 to Fe20Zr80. J Appl Phys 57:1777–1782CrossRef Altounian Z, Volkert CA, Strom-Olsen JO (1985) Crystallization characteristics of Fe–Zr metallic glasses from Fe43Zr57 to Fe20Zr80. J Appl Phys 57:1777–1782CrossRef
69.
go back to reference Altounian Z, Guo-hua T, Strom-Olsen JO (1983) Crystallization characteristics of Ni–Zr metallic glasses from Ni20Zr80 to Ni70Zr30. J Appl Phys 54:3111–3116CrossRef Altounian Z, Guo-hua T, Strom-Olsen JO (1983) Crystallization characteristics of Ni–Zr metallic glasses from Ni20Zr80 to Ni70Zr30. J Appl Phys 54:3111–3116CrossRef
70.
go back to reference Eckert J, Schultz L, Hellstern E, Urban K (1988) Glass-forming range in mechanically alloyed Ni–Zr and the influence of the milling intensity. J Appl Phys 64:3224–3228CrossRef Eckert J, Schultz L, Hellstern E, Urban K (1988) Glass-forming range in mechanically alloyed Ni–Zr and the influence of the milling intensity. J Appl Phys 64:3224–3228CrossRef
71.
go back to reference Turnbull D (1969) Under what conditions can a glass be formed? Contemp Phys 10:473–488CrossRef Turnbull D (1969) Under what conditions can a glass be formed? Contemp Phys 10:473–488CrossRef
72.
go back to reference Inoue A (2000) Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater 48:279–306CrossRef Inoue A (2000) Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater 48:279–306CrossRef
73.
go back to reference Bazlov AI, Tsarkov AA, Ketov SV, Suryanarayana C, Louzguine-Luzgin DV (2018) Effect of multiple alloying elements on the glass-forming ability, thermal stability, and crystallization behavior of Zr-based alloys. Metall Mater Trans A49:644–651CrossRef Bazlov AI, Tsarkov AA, Ketov SV, Suryanarayana C, Louzguine-Luzgin DV (2018) Effect of multiple alloying elements on the glass-forming ability, thermal stability, and crystallization behavior of Zr-based alloys. Metall Mater Trans A49:644–651CrossRef
74.
go back to reference Suryanarayana C, Seki I, Inoue A (2009) A critical analysis of the glass-forming ability of alloys. J Non Cryst Solids 355:355–360CrossRef Suryanarayana C, Seki I, Inoue A (2009) A critical analysis of the glass-forming ability of alloys. J Non Cryst Solids 355:355–360CrossRef
75.
go back to reference Sharma S, Vaidyanathan R, Suryanarayana C (2007) Criterion for predicting the glass-forming ability of alloys. Appl Phys Lett 90:111915CrossRef Sharma S, Vaidyanathan R, Suryanarayana C (2007) Criterion for predicting the glass-forming ability of alloys. Appl Phys Lett 90:111915CrossRef
Metadata
Title
Phase formation under non-equilibrium processing conditions: rapid solidification processing and mechanical alloying
Author
C. Suryanarayana
Publication date
09-03-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 19/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2197-4

Other articles of this Issue 19/2018

Journal of Materials Science 19/2018 Go to the issue

Premium Partners