Skip to main content
Top
Published in: Numerical Algorithms 3/2020

18-05-2019 | Original Paper

Sharp H1-norm error estimate of a cosine pseudo-spectral scheme for 2D reaction-subdiffusion equations

Authors: Xin Li, Luming Zhang, Hong-lin Liao

Published in: Numerical Algorithms | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A finite difference cosine pseudo-spectral scheme is presented for solving a linear reaction-subdiffusion problem with Neumann boundary conditions. The nonuniform version of L1 formula is employed for approximating the Caputo fractional derivative, and a cosine pseudo-spectral approximation is utilized in spatial discretization. With the help of discrete fractional Grönwall inequality and global consistency analysis, sharp H1-norm error estimate reflecting the regularity of solution is verified for the proposed method. A fast algorithm is implemented in computation and numerical results confirm the sharpness of our analysis.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)MATH Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)MATH
2.
go back to reference Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific (2000) Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific (2000)
3.
go back to reference Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)MathSciNetCrossRef Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)MathSciNetCrossRef
4.
go back to reference Meerschaert, M.M., Benson, D., Baeumer, B.: Operator Lévy motion and multiscaling anomalous diffusion. Phys. Rev. E 63, 1112–1117 (2001)CrossRef Meerschaert, M.M., Benson, D., Baeumer, B.: Operator Lévy motion and multiscaling anomalous diffusion. Phys. Rev. E 63, 1112–1117 (2001)CrossRef
5.
go back to reference Schumer, R., Benson, D.A., Meerschaert, M.M., Baeumer, B.: Multiscaling fractional advection-dispersion equations and their solutions. Water Resour. Res. 39, 1022–1032 (2003) Schumer, R., Benson, D.A., Meerschaert, M.M., Baeumer, B.: Multiscaling fractional advection-dispersion equations and their solutions. Water Resour. Res. 39, 1022–1032 (2003)
6.
go back to reference Sun, Z.Z., Wu, X.N.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)MathSciNetCrossRef Sun, Z.Z., Wu, X.N.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)MathSciNetCrossRef
7.
go back to reference Lin, Y.M., Xu, C.J.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)MathSciNetCrossRef Lin, Y.M., Xu, C.J.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)MathSciNetCrossRef
8.
go back to reference Gao, G.H., Sun, Z.Z., Zhang, H.W.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)MathSciNetCrossRef Gao, G.H., Sun, Z.Z., Zhang, H.W.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)MathSciNetCrossRef
9.
go back to reference Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)MathSciNetCrossRef Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)MathSciNetCrossRef
10.
go back to reference Brunner, H., Ling, L., Yamamoto, M.: Numerical simulations of 2D frational subdiffusion problems. J. Comput. Phys. 229, 6613–6622 (2010)MathSciNetCrossRef Brunner, H., Ling, L., Yamamoto, M.: Numerical simulations of 2D frational subdiffusion problems. J. Comput. Phys. 229, 6613–6622 (2010)MathSciNetCrossRef
11.
12.
go back to reference Jin, B.T., Lazarov, R., Zhou, Z.: An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 36(1), 197–221 (2016)MathSciNetMATH Jin, B.T., Lazarov, R., Zhou, Z.: An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 36(1), 197–221 (2016)MathSciNetMATH
13.
go back to reference Sakamoto, K., Yamamoto, M.: Initial value/boundary value prolems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382, 426–447 (2011)MathSciNetCrossRef Sakamoto, K., Yamamoto, M.: Initial value/boundary value prolems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382, 426–447 (2011)MathSciNetCrossRef
14.
go back to reference Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)MathSciNetCrossRef Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)MathSciNetCrossRef
15.
go back to reference Zhang, Y.N., Sun, Z.Z., Liao, H. -L.: Finite difference methods for the time fractional diffusion equation on nonuniform meshes. J. Comput. Phys. 265, 195–210 (2014)MathSciNetCrossRef Zhang, Y.N., Sun, Z.Z., Liao, H. -L.: Finite difference methods for the time fractional diffusion equation on nonuniform meshes. J. Comput. Phys. 265, 195–210 (2014)MathSciNetCrossRef
16.
go back to reference Liao, H.-L., Li, D.F., Zhang, J.W.: Sharp error estimate of the nonuniform L1 formula for linear reaction-subdiffusion equations. SIAM J. Numer. Anal. 56, 1112–1133 (2018)MathSciNetCrossRef Liao, H.-L., Li, D.F., Zhang, J.W.: Sharp error estimate of the nonuniform L1 formula for linear reaction-subdiffusion equations. SIAM J. Numer. Anal. 56, 1112–1133 (2018)MathSciNetCrossRef
17.
go back to reference Liao, H.-L., McLean, W., Zhang, J.W.: A discrete Grönwall inequality with application to numerical schemes for subdiffusion problems. SIAM J. Numer. Anal. 57, 218–237 (2019)MathSciNetCrossRef Liao, H.-L., McLean, W., Zhang, J.W.: A discrete Grönwall inequality with application to numerical schemes for subdiffusion problems. SIAM J. Numer. Anal. 57, 218–237 (2019)MathSciNetCrossRef
19.
go back to reference Liao, H.-L., McLean, W., Zhang, J.W.: A second-order scheme with nonuniform time steps for a linear reaction-subdiffusion problem. (2018) arXiv:1803.09873v2 Liao, H.-L., McLean, W., Zhang, J.W.: A second-order scheme with nonuniform time steps for a linear reaction-subdiffusion problem. (2018) arXiv:1803.​09873v2
20.
go back to reference Povstenko, Y.: Signaling problem for time-fractional diffusion-wave equation in a half-space in the case of angular symmetry. Nonlinear Dyn. 59, 593–605 (2010)CrossRef Povstenko, Y.: Signaling problem for time-fractional diffusion-wave equation in a half-space in the case of angular symmetry. Nonlinear Dyn. 59, 593–605 (2010)CrossRef
21.
go back to reference Langlands, T.A.M., Henry, B.I.: The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 205, 719–736 (2005)MathSciNetCrossRef Langlands, T.A.M., Henry, B.I.: The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 205, 719–736 (2005)MathSciNetCrossRef
22.
go back to reference Zhao, X., Sun, Z.Z.: A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions. J. Comput. Phys. 230, 6601–6074 (2011)MathSciNet Zhao, X., Sun, Z.Z.: A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions. J. Comput. Phys. 230, 6601–6074 (2011)MathSciNet
23.
go back to reference Ren, J.C., Sun, Z.Z., Zhao, X.: Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions. J. Comput. Phys. 232, 456–467 (2013)MathSciNetCrossRef Ren, J.C., Sun, Z.Z., Zhao, X.: Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions. J. Comput. Phys. 232, 456–467 (2013)MathSciNetCrossRef
24.
go back to reference Cao, J.X., Li, C.P., Chen, Y.Q.: Compact difference method for solving the fractional reaction subdiffusion equation with Neumann boundary value condition. Int. J. Comput. Math. 92, 167–180 (2015)MathSciNetCrossRef Cao, J.X., Li, C.P., Chen, Y.Q.: Compact difference method for solving the fractional reaction subdiffusion equation with Neumann boundary value condition. Int. J. Comput. Math. 92, 167–180 (2015)MathSciNetCrossRef
25.
go back to reference Chen, C.M., Liu, F., Turner, I., Anh, V.: A Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. 227, 886–897 (2007)MathSciNetCrossRef Chen, C.M., Liu, F., Turner, I., Anh, V.: A Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. 227, 886–897 (2007)MathSciNetCrossRef
26.
go back to reference Li, X.J., Xu, C.J.: A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47, 2108–2131 (2009)MathSciNetCrossRef Li, X.J., Xu, C.J.: A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47, 2108–2131 (2009)MathSciNetCrossRef
27.
go back to reference Lv, C.W., Xu, C.J.: Error analysis of a high order method for time-fractional diffusion equations. SIAM J. Sci. Comput. 38, A2699–A2724 (2016)MathSciNetCrossRef Lv, C.W., Xu, C.J.: Error analysis of a high order method for time-fractional diffusion equations. SIAM J. Sci. Comput. 38, A2699–A2724 (2016)MathSciNetCrossRef
28.
go back to reference Bhrawy, A.H.: A Jacobi spectral collocation method for solving multi-dimensional nonlinear fractional sub-diffusion equations. Numer. Algo. 73, 91–113 (2016)MathSciNetCrossRef Bhrawy, A.H.: A Jacobi spectral collocation method for solving multi-dimensional nonlinear fractional sub-diffusion equations. Numer. Algo. 73, 91–113 (2016)MathSciNetCrossRef
29.
go back to reference Gong, Y.Z., Cai, J.X., Wang, Y.S.: Multi-symplectic Fourier pseudospectral method for the Kawahara equation. Commun. Comput. Phys. 16, 35–55 (2014)MathSciNetCrossRef Gong, Y.Z., Cai, J.X., Wang, Y.S.: Multi-symplectic Fourier pseudospectral method for the Kawahara equation. Commun. Comput. Phys. 16, 35–55 (2014)MathSciNetCrossRef
30.
go back to reference Gong, Y.Z., Wang, Q., Wang, Y.S., Cai, J.X.: A conservative Fourier pseudo-spectral method for the nonlinear Schrödinger equation. J. Comput. Phys. 328, 354–370 (2017)MathSciNetCrossRef Gong, Y.Z., Wang, Q., Wang, Y.S., Cai, J.X.: A conservative Fourier pseudo-spectral method for the nonlinear Schrödinger equation. J. Comput. Phys. 328, 354–370 (2017)MathSciNetCrossRef
31.
go back to reference Jiang, S.D., Zhang, J.W., Zhang, Q., Zhang, Z.M.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21, 650–678 (2017)MathSciNetCrossRef Jiang, S.D., Zhang, J.W., Zhang, Q., Zhang, Z.M.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21, 650–678 (2017)MathSciNetCrossRef
32.
go back to reference Ren, J.C., Liao, H.-L., Zhang, J.W., Zhang, Z.M.: Sharp H1-norm error estimates of two time-stepping schemes for reaction-subdiffusion problems. (2018) arXiv:1811.08059v1 Ren, J.C., Liao, H.-L., Zhang, J.W., Zhang, Z.M.: Sharp H1-norm error estimates of two time-stepping schemes for reaction-subdiffusion problems. (2018) arXiv:1811.​08059v1
33.
go back to reference Canuto, C., Quarteroni, A.: Approximation results for orthogonal polynomials in Sobolev spaces. Math. Comput. 38, 67–86 (1982)MathSciNetCrossRef Canuto, C., Quarteroni, A.: Approximation results for orthogonal polynomials in Sobolev spaces. Math. Comput. 38, 67–86 (1982)MathSciNetCrossRef
Metadata
Title
Sharp H1-norm error estimate of a cosine pseudo-spectral scheme for 2D reaction-subdiffusion equations
Authors
Xin Li
Luming Zhang
Hong-lin Liao
Publication date
18-05-2019
Publisher
Springer US
Published in
Numerical Algorithms / Issue 3/2020
Print ISSN: 1017-1398
Electronic ISSN: 1572-9265
DOI
https://doi.org/10.1007/s11075-019-00722-w

Other articles of this Issue 3/2020

Numerical Algorithms 3/2020 Go to the issue

Premium Partner