Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 24/2019

18-11-2019

Study of TiO2 nanotubes decorated with PbS nanoparticles elaborated by pulsed laser deposition: microstructural, optoelectronic and photoelectrochemical properties

Authors: A. Hajjaji, S. Jemai, K. Trabelsi, A. Kouki, I. Ben Assaker, I. Ka, M. Gaidi, B. Bessais, M. A. El Khakani

Published in: Journal of Materials Science: Materials in Electronics | Issue 24/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Titanium dioxide nanotube arrays (TiO2 NTAs) have been synthesized using the electrochemical anodization procedure. Lead sulfide nanoparticles (PbS NPs) were deposited on TiO2 NTAs (PbS NPs/TiO2 NTAs) using the pulsed laser deposition (PLD) method. The prepared samples (PbS NPs/TiO2 NTAs) were characterized using scanning electron microscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), UV–Vis spectroscopy and photoluminescence. The size of the PbS NPs was controlled by varying the number of laser pulses (NLP) during the PLD process. TEM observations show that the PbS NPs are in the range of 10–20 nm, consistent with the results obtained from XRD. HRTEM and diffuse reflectivity show that, at NLP ≥ 2500, the growth of the PbS NPs occurs on a previously formed PbS layer. Transmission and absorption spectra show that the PbS-NPs have an indirect optical bandgap which is particle size independent. This optical bandgap corresponds to excitonic transitions, which are greatly affected by oxygen defects, off-stoichiometry and other surface state defects, particularly for smaller NPs (NLP < 2500). The absorption spectra of the TiO2 NTAs show that the PbS NPs extend the absorption range of the TiO2-NTAs from the ultraviolet to the visible region, indicating that the PbS NPs/TiO2 NTAs heterojunction facilitates the separation of the photogenerated charge carriers. Photoelectrochemical analyses show that a maximum photocurrent current density of ~1.05 mA/cm2 and a photoelectrochemical conversion efficiency of 2.5% are reached for NLP = 2500 under an illumination of 100 mW/cm2 in the UV–Vis range.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference B. O’Regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991) B. O’Regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991)
2.
go back to reference H. Yu, S. Zhang, H. Zhao, G. Will, P. Liu, An efficient and low-cost TiO2 compact layer for performance improvement of dye-sensitized solar cells. Electrochim. Acta 54, 1319–1324 (2009) H. Yu, S. Zhang, H. Zhao, G. Will, P. Liu, An efficient and low-cost TiO2 compact layer for performance improvement of dye-sensitized solar cells. Electrochim. Acta 54, 1319–1324 (2009)
3.
go back to reference M. Zlamal, J.M. Macak, P. Schmuki, J. Krysa, Elec-trochemically assisted photocatalysis on self-organized TiO2 nanotubes. Electrochem. Commun. 9, 2822–2826 (2007) M. Zlamal, J.M. Macak, P. Schmuki, J. Krysa, Elec-trochemically assisted photocatalysis on self-organized TiO2 nanotubes. Electrochem. Commun. 9, 2822–2826 (2007)
4.
go back to reference K. Nakata, A. Fujishima, TiO2 photocatalysis: design and applications. J. Photochem. Photobiol. C 12, 169–189 (2012) K. Nakata, A. Fujishima, TiO2 photocatalysis: design and applications. J. Photochem. Photobiol. C 12, 169–189 (2012)
5.
go back to reference S. Girish Kumar, L. Gomathi Devi, Review on modified TiO2 photocatalysis under UV/Visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J. Phys. Chem. A 115, 13211–13241 (2011) S. Girish Kumar, L. Gomathi Devi, Review on modified TiO2 photocatalysis under UV/Visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J. Phys. Chem. A 115, 13211–13241 (2011)
6.
go back to reference B.L. He, B. Dong, H.L. Li, Preparation and electrochemical properties of Ag-modified TiO2 nanotube anode material for lithium-ion battery. Electrochem. Commun. 9, 425–430 (2007) B.L. He, B. Dong, H.L. Li, Preparation and electrochemical properties of Ag-modified TiO2 nanotube anode material for lithium-ion battery. Electrochem. Commun. 9, 425–430 (2007)
7.
go back to reference H. Liu, W. Li, D. Shen, D. Zhao, G. Wang, Graphitic carbon conformal coating of mesoporous TiO2 hollow spheres for high-performance lithium ion battery anodes. J. Am. Chem. Soc. 137, 13161–13166 (2015) H. Liu, W. Li, D. Shen, D. Zhao, G. Wang, Graphitic carbon conformal coating of mesoporous TiO2 hollow spheres for high-performance lithium ion battery anodes. J. Am. Chem. Soc. 137, 13161–13166 (2015)
8.
go back to reference X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, Y. Li, Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano-Lett 12, 1690–1696 (2012) X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, Y. Li, Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano-Lett 12, 1690–1696 (2012)
9.
go back to reference H. Wu, D. Li, X. Zhu, C. Yang, D. Liu, X. Chen, Y. Song, L. Lu, High-performance and renewable supercapacitors based on TiO2 nanotube array electrodes treated by an electrochemical doping approach. Electrochim. Acta 116, 129–136 (2014) H. Wu, D. Li, X. Zhu, C. Yang, D. Liu, X. Chen, Y. Song, L. Lu, High-performance and renewable supercapacitors based on TiO2 nanotube array electrodes treated by an electrochemical doping approach. Electrochim. Acta 116, 129–136 (2014)
10.
go back to reference M. Grätzel, Photoelectrochemical cells. Nature 414, 338–344 (2001) M. Grätzel, Photoelectrochemical cells. Nature 414, 338–344 (2001)
11.
go back to reference W.T. Sun, Y. Yu, H.Y. Pan, X.F. Gao, Q. Chen, L.M. Peng, CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. J. Am. Chem. Soc. 130, 1124–1125 (2008) W.T. Sun, Y. Yu, H.Y. Pan, X.F. Gao, Q. Chen, L.M. Peng, CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. J. Am. Chem. Soc. 130, 1124–1125 (2008)
12.
go back to reference K. Zhu, T.B. Vinzant, N.R. Neale, A.J. Frank, Removing structural disorder from oriented TiO2 nanotube arrays: reducing the dimensionality of transport and recombination in dye-sensitized solar cells. Nano Lett. 7, 3739–3746 (2007) K. Zhu, T.B. Vinzant, N.R. Neale, A.J. Frank, Removing structural disorder from oriented TiO2 nanotube arrays: reducing the dimensionality of transport and recombination in dye-sensitized solar cells. Nano Lett. 7, 3739–3746 (2007)
13.
go back to reference O.K. Varghese, D. Gong, M. Paulose, K.G. Ong, E.C. Dickey, C.A. Grimes, Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure. Adv. Mater. 15, 624–627 (2003) O.K. Varghese, D. Gong, M. Paulose, K.G. Ong, E.C. Dickey, C.A. Grimes, Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure. Adv. Mater. 15, 624–627 (2003)
14.
go back to reference B. Karunagaran, P. Uthirakumar, S.J. Chung, S. Velumani, E.K. Suh, TiO2 thin film gas sensor for monitoring ammonia. Mater. Charact. 58, 680–684 (2007) B. Karunagaran, P. Uthirakumar, S.J. Chung, S. Velumani, E.K. Suh, TiO2 thin film gas sensor for monitoring ammonia. Mater. Charact. 58, 680–684 (2007)
15.
go back to reference A. Hajjaji, M. Elabidi, K. Trabelsi, A.A. Assadi, B. Bessais, S. Rtimi, Bacterial adhesion and inactivation on Ag decorated TiO2 Nanotubes under visible light: effect of the nanotubes geometry on the photocatalytic activity. Colloids Surf. B 170, 92–98 (2018) A. Hajjaji, M. Elabidi, K. Trabelsi, A.A. Assadi, B. Bessais, S. Rtimi, Bacterial adhesion and inactivation on Ag decorated TiO2 Nanotubes under visible light: effect of the nanotubes geometry on the photocatalytic activity. Colloids Surf. B 170, 92–98 (2018)
16.
go back to reference M. Gaidi, K. Trabelsi, A. Hajjaji, M.L. Chourou, A.N. Alhazaa, B. Bessais, M.A. El Khakani, Optimizing the photochemical conversion of UV–Vis light of silver Nanoparticles decorated TiO2 nanotubes based photoanodes. Nanotechnology 29, 015703 (2018) M. Gaidi, K. Trabelsi, A. Hajjaji, M.L. Chourou, A.N. Alhazaa, B. Bessais, M.A. El Khakani, Optimizing the photochemical conversion of UV–Vis light of silver Nanoparticles decorated TiO2 nanotubes based photoanodes. Nanotechnology 29, 015703 (2018)
17.
go back to reference M. Horn, C.F. Schwerdtfeger, E.P. Meagher, Refinement of the structure of anatase at several temperatures. Z Kristallogr 136, 273–281 (1972) M. Horn, C.F. Schwerdtfeger, E.P. Meagher, Refinement of the structure of anatase at several temperatures. Z Kristallogr 136, 273–281 (1972)
18.
go back to reference W.H. Baur, A.A. Khan, Rutile-type compounds. IV. SiO2, GeO2 and a comparison with other rutile-type structures. Acta Crystallogr. Sect. B 27, 2133–2139 (1971) W.H. Baur, A.A. Khan, Rutile-type compounds. IV. SiO2, GeO2 and a comparison with other rutile-type structures. Acta Crystallogr. Sect. B 27, 2133–2139 (1971)
19.
go back to reference R.W.G. Wyckoff, Crystal Structures, 2nd edn. (Interscience, New York, 1963), pp. 239–444 R.W.G. Wyckoff, Crystal Structures, 2nd edn. (Interscience, New York, 1963), pp. 239–444
20.
go back to reference W. Wunderlich, T. Oekermann, L. Miao, N.T. Hue, S. Tanemura, M. Tanemura, Electronic properties of nano-porous TiO2- and ZnO-thin films- comparison of simulations and experiments. J. Ceram. Proc. Res 5, 343–354 (2004) W. Wunderlich, T. Oekermann, L. Miao, N.T. Hue, S. Tanemura, M. Tanemura, Electronic properties of nano-porous TiO2- and ZnO-thin films- comparison of simulations and experiments. J. Ceram. Proc. Res 5, 343–354 (2004)
21.
go back to reference B. Chen, J.B. Hou, K. Lu, Formation mechanism of TiO2 nanotubes and their applications in photoelectrochemical water splitting and supercapacitors. Langmuir 29, 5911–5919 (2013) B. Chen, J.B. Hou, K. Lu, Formation mechanism of TiO2 nanotubes and their applications in photoelectrochemical water splitting and supercapacitors. Langmuir 29, 5911–5919 (2013)
22.
go back to reference C.W. Lai, S. Sreekantan, Preparation of hybrid WO3–TiO2 nanotube photoelectrodes using anodization and wet impregnation: improved water- hydrogen Generation performance. Int. J. Hydrog. Energy 38, 2156–2166 (2013) C.W. Lai, S. Sreekantan, Preparation of hybrid WO3–TiO2 nanotube photoelectrodes using anodization and wet impregnation: improved water- hydrogen Generation performance. Int. J. Hydrog. Energy 38, 2156–2166 (2013)
23.
go back to reference Z. Su, L. Jiang, F.J. Prof, M. Hong, Formation of crystalline TiO2 by anodic oxidation of titanium. Prog. Nat. Sci. 23, 294–301 (2013) Z. Su, L. Jiang, F.J. Prof, M. Hong, Formation of crystalline TiO2 by anodic oxidation of titanium. Prog. Nat. Sci. 23, 294–301 (2013)
24.
go back to reference C. Dette, M.A. Pérez-Osorio, C.S. Kley, P. Punke, C.E. Patrick, P. Jacobson, F. Giustino, S.J. Jung, K. Kern, TiO2 anatase with a bandgap in the visible region. Nano Lett. 14, 6533–6538 (2014) C. Dette, M.A. Pérez-Osorio, C.S. Kley, P. Punke, C.E. Patrick, P. Jacobson, F. Giustino, S.J. Jung, K. Kern, TiO2 anatase with a bandgap in the visible region. Nano Lett. 14, 6533–6538 (2014)
25.
go back to reference I.S. Cho, Z.B. Chen, A. Forman, D. Kim, P.M. Rao, T.F. Jaramillo, X. Zheng, Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett. 11, 4978–4984 (2011) I.S. Cho, Z.B. Chen, A. Forman, D. Kim, P.M. Rao, T.F. Jaramillo, X. Zheng, Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett. 11, 4978–4984 (2011)
26.
go back to reference J.H. Park, S. Kim, A.J. Bard, Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett. 6, 24–28 (2006) J.H. Park, S. Kim, A.J. Bard, Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett. 6, 24–28 (2006)
27.
go back to reference H. Weller, Quantized semiconductor particles: a novel state of matter for materials science. Adv. Mater. 5, 88–95 (1993) H. Weller, Quantized semiconductor particles: a novel state of matter for materials science. Adv. Mater. 5, 88–95 (1993)
28.
go back to reference M. Xiao, Y. Wang, X. Wu, Z.Dang Huang, Preparation and characterization of CdS nanoparticles decorated into titanate nanotubes and their photocatalytic properties. Nanotechnology 19, 015706 (2007) M. Xiao, Y. Wang, X. Wu, Z.Dang Huang, Preparation and characterization of CdS nanoparticles decorated into titanate nanotubes and their photocatalytic properties. Nanotechnology 19, 015706 (2007)
29.
go back to reference J.S. Luo, L. Ma, T. He, C.F. Ng, S.H. Wang, H.D. Sun, H.J. Fan, TiO2/(CdS, CdSe, CdSeS) nanorod heterostructures and photoelectrochemical properties. J. Phys. Chem. C 116, 11956–11963 (2012) J.S. Luo, L. Ma, T. He, C.F. Ng, S.H. Wang, H.D. Sun, H.J. Fan, TiO2/(CdS, CdSe, CdSeS) nanorod heterostructures and photoelectrochemical properties. J. Phys. Chem. C 116, 11956–11963 (2012)
30.
go back to reference G. Ai, R. Mo, Q. Chen, H. Xu, S. Yang, H. Li, J. Zhong, TiO2/Bi2S3 core–shell nanowire arrays for photoelectrochemical hydrogen generation. RSC Adv. 5, 13544–13549 (2015) G. Ai, R. Mo, Q. Chen, H. Xu, S. Yang, H. Li, J. Zhong, TiO2/Bi2S3 core–shell nanowire arrays for photoelectrochemical hydrogen generation. RSC Adv. 5, 13544–13549 (2015)
31.
go back to reference Q. Wang, X. Yang, L. Chi, M. Cui, Photoelectrochemical performance of CdTe sensitized TiO2 nanotube array photoelectrodes. Electrochim. Acta 91, 330–336 (2013) Q. Wang, X. Yang, L. Chi, M. Cui, Photoelectrochemical performance of CdTe sensitized TiO2 nanotube array photoelectrodes. Electrochim. Acta 91, 330–336 (2013)
32.
go back to reference C. Ratanatawanate, C. Xiong, K.J. Balkus, Fabrication of PbS quantum dot doped TiO2 nanotubes. ACS Nano 2, 1682–1688 (2008) C. Ratanatawanate, C. Xiong, K.J. Balkus, Fabrication of PbS quantum dot doped TiO2 nanotubes. ACS Nano 2, 1682–1688 (2008)
33.
go back to reference M.H. Patel, T.K. Chaudhuri, V.K. Patel, T. Shripathi, U. Deshpande, N.P. Lallac, Dip-coated PbS/PVP nanocomposite films with tunable bandgap. RSC Adv. 7, 4422–4429 (2017) M.H. Patel, T.K. Chaudhuri, V.K. Patel, T. Shripathi, U. Deshpande, N.P. Lallac, Dip-coated PbS/PVP nanocomposite films with tunable bandgap. RSC Adv. 7, 4422–4429 (2017)
34.
go back to reference I. Ka, V. Le Borgne, D. Ma, M.A. El Khakani, Pulsed laser ablation based direct synthesis of single-wall carbon nanotube/PbS quantum dot nanohybrids exhibiting strong, spectrally wide and fast photoresponse. J. Adv. Mater. 24, 6289 (2012) I. Ka, V. Le Borgne, D. Ma, M.A. El Khakani, Pulsed laser ablation based direct synthesis of single-wall carbon nanotube/PbS quantum dot nanohybrids exhibiting strong, spectrally wide and fast photoresponse. J. Adv. Mater. 24, 6289 (2012)
35.
go back to reference I. Ka, B. Gonfa, V. Le Borgne, D. Ma, M.A. El Khakani, Pulsed laser ablation-based synthesis of PbS-quantum dot-decorated one-dimensional nanostructures and their direct integration into highly efficient nanohybrid heterojunction-based solar cells. Adv. Funct. Mater. 24, 1 (2014) I. Ka, B. Gonfa, V. Le Borgne, D. Ma, M.A. El Khakani, Pulsed laser ablation-based synthesis of PbS-quantum dot-decorated one-dimensional nanostructures and their direct integration into highly efficient nanohybrid heterojunction-based solar cells. Adv. Funct. Mater. 24, 1 (2014)
36.
go back to reference D.V. Talapin, J.S. Lee, M.V. Kovalenko, E.V. Shevchenko, Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev 110, 389–458 (2010) D.V. Talapin, J.S. Lee, M.V. Kovalenko, E.V. Shevchenko, Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev 110, 389–458 (2010)
37.
go back to reference P. Papagiorgis, A. Stavrinadis, A. Othonos, G. Konstantatos, The Influence of doping on the optoelectronic properties of PbS colloidal. Sci. Rep. 6, 18735 (2016) P. Papagiorgis, A. Stavrinadis, A. Othonos, G. Konstantatos, The Influence of doping on the optoelectronic properties of PbS colloidal. Sci. Rep. 6, 18735 (2016)
38.
go back to reference C. Ratanatawanate, Y. Tao, K.J. Balkus, Photocatalytic activity of PbS quantum dot/TiO2 nanotube composites. J. Phys. Chem. C 113, 10755–10760 (2009) C. Ratanatawanate, Y. Tao, K.J. Balkus, Photocatalytic activity of PbS quantum dot/TiO2 nanotube composites. J. Phys. Chem. C 113, 10755–10760 (2009)
39.
go back to reference Y. Luo, C. Dong, X. Li, Y. Tian, A photoelectrochemical sensor for lead ion through electrodeposition of PbS nanoparticles onto TiO2 nanotubes. J. Electroanal. Chem. 759, 51–54 (2015) Y. Luo, C. Dong, X. Li, Y. Tian, A photoelectrochemical sensor for lead ion through electrodeposition of PbS nanoparticles onto TiO2 nanotubes. J. Electroanal. Chem. 759, 51–54 (2015)
40.
go back to reference S. Seghaier, N. Kamoun, R. Brini, A.B. Amara, Structural and optical properties of PbS thin films deposited by chemical bath deposition. Mater. Chem. Phys. 97, 71–80 (2006) S. Seghaier, N. Kamoun, R. Brini, A.B. Amara, Structural and optical properties of PbS thin films deposited by chemical bath deposition. Mater. Chem. Phys. 97, 71–80 (2006)
41.
go back to reference D. Kumar, G. Agarwal, B. Tripathi, D. Vyas, V. Kulshrestha, Characterization of PbS nanoparticles synthesized by chemical bath deposition. J. Alloy. Compd. 484, 463–466 (2009) D. Kumar, G. Agarwal, B. Tripathi, D. Vyas, V. Kulshrestha, Characterization of PbS nanoparticles synthesized by chemical bath deposition. J. Alloy. Compd. 484, 463–466 (2009)
42.
go back to reference L.F. Koao, F.B. Dejene, H.C. Swart, Synthesis of PbS nanostructures by chemical bath deposition method. Int. J. Electrochem. Sci. 9, 1747–1757 (2014) L.F. Koao, F.B. Dejene, H.C. Swart, Synthesis of PbS nanostructures by chemical bath deposition method. Int. J. Electrochem. Sci. 9, 1747–1757 (2014)
43.
go back to reference X. Zhang, B. Wang, Z. Liu, Tuning PbS QDs deposited onto TiO2 nanotube arrays to improve photoelectrochemical performances. J. Colloid Interface Sci. 484, 213–219 (2016) X. Zhang, B. Wang, Z. Liu, Tuning PbS QDs deposited onto TiO2 nanotube arrays to improve photoelectrochemical performances. J. Colloid Interface Sci. 484, 213–219 (2016)
44.
go back to reference J. Puiso, S. Tamulevičius, G. Laukaitis, S. Lindroos, M. Leskelä, V. Snitka, Growth of PbS thin films on silicon substrate by SILAR technique. Thin Solid Films 403, 457–461 (2002) J. Puiso, S. Tamulevičius, G. Laukaitis, S. Lindroos, M. Leskelä, V. Snitka, Growth of PbS thin films on silicon substrate by SILAR technique. Thin Solid Films 403, 457–461 (2002)
45.
go back to reference J. Seo, S.J. Kim, W.J. Kim, R. Singh, M. Samoc, A.N. Cartwright, P.N. Prasad, Enhancement of the photovoltaic performance in PbS nanocrystal: P3HT hybrid composite devices by post-treatment-driven ligand exchange. Nanotechnology 20, 095202 (2009) J. Seo, S.J. Kim, W.J. Kim, R. Singh, M. Samoc, A.N. Cartwright, P.N. Prasad, Enhancement of the photovoltaic performance in PbS nanocrystal: P3HT hybrid composite devices by post-treatment-driven ligand exchange. Nanotechnology 20, 095202 (2009)
46.
go back to reference J. Tang, K. Kemp, S. Hoogland, K.S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K.W. Chou, A. Fischer, A. Amassian, J.B. Asbury, E.H. Sargent, Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat. Mater. 10, 765–771 (2011) J. Tang, K. Kemp, S. Hoogland, K.S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K.W. Chou, A. Fischer, A. Amassian, J.B. Asbury, E.H. Sargent, Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat. Mater. 10, 765–771 (2011)
47.
go back to reference X. Lan, J. Bai, S. Masala, S.M. Thon, Y. Ren, I.J. Kramer, S. Hoogland, A. Simchi, G.I. Koleilat, D. Paz-Soldan, Z. Ning, A.J. Labelle, J.Y. Kim, G. Jabbour, E.H. Sargent, Self-assembled, nanowire network electrodes for depleted bulk heterojunction solar cells. Adv. Mater. 25, 1769–1773 (2013) X. Lan, J. Bai, S. Masala, S.M. Thon, Y. Ren, I.J. Kramer, S. Hoogland, A. Simchi, G.I. Koleilat, D. Paz-Soldan, Z. Ning, A.J. Labelle, J.Y. Kim, G. Jabbour, E.H. Sargent, Self-assembled, nanowire network electrodes for depleted bulk heterojunction solar cells. Adv. Mater. 25, 1769–1773 (2013)
48.
go back to reference Neil P. Dasgupta, HeeJoon Jung, Orlando Trejo, Matthew T. McDowell, Aaron Hryciw, Mark Brongersma, Robert Sinclair, Fritz B. Prinz, Layer deposition of lead sulfide quantum dots on nanowire surfaces. Nano Lett. 11, 934 (2011) Neil P. Dasgupta, HeeJoon Jung, Orlando Trejo, Matthew T. McDowell, Aaron Hryciw, Mark Brongersma, Robert Sinclair, Fritz B. Prinz, Layer deposition of lead sulfide quantum dots on nanowire surfaces. Nano Lett. 11, 934 (2011)
49.
go back to reference K. Trabelsi, A. Hajjaji, M. Gaidi, B. Bessais, M.A. El Khakani, Enhancing the photoelectrochemical response of TiO2 nanotubes through their nanodecoration by pulsed-laser-deposited Ag nanoparticles. J. Appl. Phys. 122, 064503 (2017) K. Trabelsi, A. Hajjaji, M. Gaidi, B. Bessais, M.A. El Khakani, Enhancing the photoelectrochemical response of TiO2 nanotubes through their nanodecoration by pulsed-laser-deposited Ag nanoparticles. J. Appl. Phys. 122, 064503 (2017)
50.
go back to reference Donghun Kim, Dong-Ho Kim, Joo-Hyoung Lee, Jeffrey C. Grossman, Impact of stoichiometry on the electronic structure of PbS quantum dots. Phys. Rev. Lett. 110, 196802 (2013) Donghun Kim, Dong-Ho Kim, Joo-Hyoung Lee, Jeffrey C. Grossman, Impact of stoichiometry on the electronic structure of PbS quantum dots. Phys. Rev. Lett. 110, 196802 (2013)
51.
go back to reference A. Guinier, Théorie et Technique de la Radiocristallographie (Dunod, Paris, 1964) A. Guinier, Théorie et Technique de la Radiocristallographie (Dunod, Paris, 1964)
52.
go back to reference I. Ka, Doctoral dissertation, Université du Québec, Institut national de la recherche scientifique. (2015) I. Ka, Doctoral dissertation, Université du Québec, Institut national de la recherche scientifique. (2015)
53.
go back to reference Iwan Moreels, Karel Lambert, Dries Smeets, David De Muynck, Tom Nollet, José C. Martins, Frank Vanhaecke, André Vantomme, Christophe Delerue, Guy Allan, Zeger Hens, Size-dependent optical properties of colloidal PbS quantum dots. ACS Nano 3, 3023–3030 (2009) Iwan Moreels, Karel Lambert, Dries Smeets, David De Muynck, Tom Nollet, José C. Martins, Frank Vanhaecke, André Vantomme, Christophe Delerue, Guy Allan, Zeger Hens, Size-dependent optical properties of colloidal PbS quantum dots. ACS Nano 3, 3023–3030 (2009)
54.
go back to reference Inuk Kang, Frank W. Wise, Electronic structure and optical properties of PbS and PbSe quantum dots. J. Opt. Soc. Am. 14, 1632–1646 (1997) Inuk Kang, Frank W. Wise, Electronic structure and optical properties of PbS and PbSe quantum dots. J. Opt. Soc. Am. 14, 1632–1646 (1997)
55.
go back to reference P. Kubelka, F. Munk, Zeit. Für Tekn. Physik 12, 593–601 (1931) P. Kubelka, F. Munk, Zeit. Für Tekn. Physik 12, 593–601 (1931)
56.
go back to reference A. Thibert, F. Andrew Frame, E. Busby, M.A. Holmes, F.E. Osterloh, D.S. Larsen, Sequestering high-energy electrons to facilitate photocatalytic hydrogen generation in CdSe/CdS nanocrystals. J. Phys. Chem. Lett. 2, 2688–2694 (2011) A. Thibert, F. Andrew Frame, E. Busby, M.A. Holmes, F.E. Osterloh, D.S. Larsen, Sequestering high-energy electrons to facilitate photocatalytic hydrogen generation in CdSe/CdS nanocrystals. J. Phys. Chem. Lett. 2, 2688–2694 (2011)
57.
go back to reference X.B. Chen, S.H. Shen, L.J. Guo, S.S. Mao, Semiconductor based photocatalytic hydrogen generation. Chem. Rev. 110, 6503–6570 (2010) X.B. Chen, S.H. Shen, L.J. Guo, S.S. Mao, Semiconductor based photocatalytic hydrogen generation. Chem. Rev. 110, 6503–6570 (2010)
58.
go back to reference S.U. Khan, M. Al-Shahry, W.B. Jr, Ingler, Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297, 2243 (2002) S.U. Khan, M. Al-Shahry, W.B. Jr, Ingler, Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297, 2243 (2002)
Metadata
Title
Study of TiO2 nanotubes decorated with PbS nanoparticles elaborated by pulsed laser deposition: microstructural, optoelectronic and photoelectrochemical properties
Authors
A. Hajjaji
S. Jemai
K. Trabelsi
A. Kouki
I. Ben Assaker
I. Ka
M. Gaidi
B. Bessais
M. A. El Khakani
Publication date
18-11-2019
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 24/2019
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-02436-0

Other articles of this Issue 24/2019

Journal of Materials Science: Materials in Electronics 24/2019 Go to the issue