Skip to main content
Top
Published in: Cellulose 9/2021

08-05-2021 | Original Research

Terahertz time-domain spectroscopy as a novel tool for crystallographic analysis in cellulose: the potentiality of being a new standard for evaluating crystallinity

Authors: Han Wang, Satoru Tsuchikawa, Tetsuya Inagaki

Published in: Cellulose | Issue 9/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Given that terahertz (THz) radiation responds to intermolecular forces such as hydrogen bonds, THz time-domain spectroscopy (THz-TDS) has expanded possibilities in cellulose research. In this study, THz-TDS was used to investigate the crystallinity of three types of cellulose-based materials. Microcrystalline cellulose (MCC) and wood were ball milled at different times, and pseudo-wood was a mixture of MCC and lignin of different mass fractions. All the samples showed peaks at 3.04 THz in the THz mass absorption coefficient spectra. Further, the spectra from 2.79 THz to 3.32 THz were cut out and detrended by subtraction from a baseline. The integrated intensity of the detrended spectra showed a correlation with the mass fraction of lignin of the pseudo-wood samples, and ball milling time of the MCC and wood samples. The correlation was similar with the crystallinity index calculated from X-ray powder diffraction. Moreover, the original wood sample without ball milling had an integrated intensity that was about 30% that of the original MCC sample, matching with the cellulose concentration of the wood (about 30% to 40%). We normalized the integrated intensity of 2.79 THz to 3.32 THz into 1 to 0 by a min–max algorithm and proposed a new “index” for evaluating crystallinity.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Braly LB, Liu K, Brown MG et al (2000) Terahertz laser spectroscopy of the water dimer intermolecular vibrations. II. (H2O)2. J Chem Phys 112:10314–10326CrossRef Braly LB, Liu K, Brown MG et al (2000) Terahertz laser spectroscopy of the water dimer intermolecular vibrations. II. (H2O)2. J Chem Phys 112:10314–10326CrossRef
go back to reference de Keijser T, Mittemeijer EJ, Rozendaal HCF (1983) The determination of crystallite-size and lattice-strain parameters in conjunction with the profile-refinement method for the determination of crystal structures. J Appl Crystallogr 16:309–316CrossRef de Keijser T, Mittemeijer EJ, Rozendaal HCF (1983) The determination of crystallite-size and lattice-strain parameters in conjunction with the profile-refinement method for the determination of crystal structures. J Appl Crystallogr 16:309–316CrossRef
go back to reference del Cerro DR, Koso TV, Kakko T et al (2020) Crystallinity reduction and enhancement in the chemical reactivity of cellulose by non-dissolving pre-treatment with tetrabutylphosphonium acetate. Cellulose 27:5545–5562CrossRef del Cerro DR, Koso TV, Kakko T et al (2020) Crystallinity reduction and enhancement in the chemical reactivity of cellulose by non-dissolving pre-treatment with tetrabutylphosphonium acetate. Cellulose 27:5545–5562CrossRef
go back to reference Density ANDC, Kellogg RM, Sastr CBR, Ivellwood RW (1975) Relationships between Cell-Wall Composition 7:170–177 Density ANDC, Kellogg RM, Sastr CBR, Ivellwood RW (1975) Relationships between Cell-Wall Composition 7:170–177
go back to reference Duvillaret L, Garet F, Coutaz JL (1996) A reliable method for extraction of material parameters in terahertz time-domain spectroscopy. IEEE J Sel Top Quantum Electron 2:739–745CrossRef Duvillaret L, Garet F, Coutaz JL (1996) A reliable method for extraction of material parameters in terahertz time-domain spectroscopy. IEEE J Sel Top Quantum Electron 2:739–745CrossRef
go back to reference French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRef French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRef
go back to reference French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index. Cellulose 20:583–588CrossRef French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index. Cellulose 20:583–588CrossRef
go back to reference Hall M, Bansal P, Lee JH et al (2010) Cellulose crystallinity - A key predictor of the enzymatic hydrolysis rate. FEBS J 277:1571–1582CrossRef Hall M, Bansal P, Lee JH et al (2010) Cellulose crystallinity - A key predictor of the enzymatic hydrolysis rate. FEBS J 277:1571–1582CrossRef
go back to reference Hermans PH, Weidinger A (1948) Quantitative x-ray investigations on the crystallinity of cellulose fibers. A Background Analysis J Appl Phys 19:491–506 Hermans PH, Weidinger A (1948) Quantitative x-ray investigations on the crystallinity of cellulose fibers. A Background Analysis J Appl Phys 19:491–506
go back to reference Himmel ME, Ding S, Johnson DK, et al. (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804–807.CrossRef Himmel ME, Ding S, Johnson DK, et al. (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804–807.CrossRef
go back to reference Hindeleh AM, Johnson DJ (1972) Crystallinity and crystallite size measurement in cellulose fibres: 1. Ramie and Fortisan Polymer (guildf) 13:423–430CrossRef Hindeleh AM, Johnson DJ (1972) Crystallinity and crystallite size measurement in cellulose fibres: 1. Ramie and Fortisan Polymer (guildf) 13:423–430CrossRef
go back to reference Inagaki T, Ahmed B, Hartley ID et al (2014a) Simultaneous prediction of density and moisture content of wood by terahertz time domain spectroscopy. J Infrared, Millimeter, Terahertz Waves 35:949–961CrossRef Inagaki T, Ahmed B, Hartley ID et al (2014a) Simultaneous prediction of density and moisture content of wood by terahertz time domain spectroscopy. J Infrared, Millimeter, Terahertz Waves 35:949–961CrossRef
go back to reference Inagaki T, Hartley ID, Tsuchikawa S, Reid M (2014b) Prediction of oven-dry density of wood by time-domain terahertz spectroscopy. Holzforschung 68:61–68CrossRef Inagaki T, Hartley ID, Tsuchikawa S, Reid M (2014b) Prediction of oven-dry density of wood by time-domain terahertz spectroscopy. Holzforschung 68:61–68CrossRef
go back to reference Inagaki T, Siesler HW, Mitsui K, Tsuchikawa S (2010) Difference of the crystal structure of cellulose in wood after hydrothermal and aging degradation: a NIR spectroscopy and XRD study. Biomacromol 11:2300–2305CrossRef Inagaki T, Siesler HW, Mitsui K, Tsuchikawa S (2010) Difference of the crystal structure of cellulose in wood after hydrothermal and aging degradation: a NIR spectroscopy and XRD study. Biomacromol 11:2300–2305CrossRef
go back to reference Jörgensen L, Kiessling R, Lindstedt G, Kinell P-O (1950) Swelling and heterogeneous hydrolysis of cotton linters and wood pulp fibers related to their fine structure. Acta Chem Scand 4:185–199CrossRef Jörgensen L, Kiessling R, Lindstedt G, Kinell P-O (1950) Swelling and heterogeneous hydrolysis of cotton linters and wood pulp fibers related to their fine structure. Acta Chem Scand 4:185–199CrossRef
go back to reference Kataoka Y, Kondo T (1998) FT-IR microscopic analysis of changing cellulose crystalline structure during wood cell wall formation. Macromolecules 31:760–764CrossRef Kataoka Y, Kondo T (1998) FT-IR microscopic analysis of changing cellulose crystalline structure during wood cell wall formation. Macromolecules 31:760–764CrossRef
go back to reference Kim SH, Lee CM, Kafle K (2013) Characterization of crystalline cellulose in biomass: Basic principles, applications, and limitations of XRD, NMR, IR, Raman, and SFG. Korean J Chem Eng 30:2127–2141CrossRef Kim SH, Lee CM, Kafle K (2013) Characterization of crystalline cellulose in biomass: Basic principles, applications, and limitations of XRD, NMR, IR, Raman, and SFG. Korean J Chem Eng 30:2127–2141CrossRef
go back to reference Kore PS, Pawar PP (2014) Measurements of mass attenuation coefficient, effective atomic number and electron density of some amino acids. Radiat Phys Chem 98:86–91CrossRef Kore PS, Pawar PP (2014) Measurements of mass attenuation coefficient, effective atomic number and electron density of some amino acids. Radiat Phys Chem 98:86–91CrossRef
go back to reference Langan P, Sukumar N, Nishiyama Y, Chanzy H (2005) Synchrotron X-ray structures of cellulose Iβ and regenerated cellulose II at ambient temperature and 100 K. Cellulose 12:551–562CrossRef Langan P, Sukumar N, Nishiyama Y, Chanzy H (2005) Synchrotron X-ray structures of cellulose Iβ and regenerated cellulose II at ambient temperature and 100 K. Cellulose 12:551–562CrossRef
go back to reference Ling Z, Wang T, Makarem M et al (2019) Effects of ball milling on the structure of cotton cellulose. Cellulose 26:305–328CrossRef Ling Z, Wang T, Makarem M et al (2019) Effects of ball milling on the structure of cotton cellulose. Cellulose 26:305–328CrossRef
go back to reference Markelz AG (2008) Terahertz dielectric sensitivity to biomolecular structure and function. IEEE J Sel Top Quantum Electron 14:180–190CrossRef Markelz AG (2008) Terahertz dielectric sensitivity to biomolecular structure and function. IEEE J Sel Top Quantum Electron 14:180–190CrossRef
go back to reference Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55:241–249CrossRef Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55:241–249CrossRef
go back to reference Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRef Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRef
go back to reference Parthasarathi R, Bellesia G, Chundawat SPS et al (2011) Insights into hydrogen bonding and stacking interactions in cellulose. J Phys Chem A 115:14191–14202CrossRef Parthasarathi R, Bellesia G, Chundawat SPS et al (2011) Insights into hydrogen bonding and stacking interactions in cellulose. J Phys Chem A 115:14191–14202CrossRef
go back to reference Peccianti M, Fastampa R, Mosca Conte A et al (2017) Terahertz absorption by cellulose: applicationto ancient paper artifacts. Phys Rev Appl 7:1–7CrossRef Peccianti M, Fastampa R, Mosca Conte A et al (2017) Terahertz absorption by cellulose: applicationto ancient paper artifacts. Phys Rev Appl 7:1–7CrossRef
go back to reference PETTERSEN RC (1984) The chemical composition of wood. The chemistry of solid wood, 57–126.CrossRef PETTERSEN RC (1984) The chemical composition of wood. The chemistry of solid wood, 57–126.CrossRef
go back to reference Plusquellic DF, Siegrist K, Heilweil EJ, Esenturk O (2007) Applications of terahertz spectroscopy in biosystems. ChemPhysChem 8:2412–2431CrossRef Plusquellic DF, Siegrist K, Heilweil EJ, Esenturk O (2007) Applications of terahertz spectroscopy in biosystems. ChemPhysChem 8:2412–2431CrossRef
go back to reference Poletto M, Zattera AJ, Forte MMC, Santana RMC (2012) Thermal decomposition of wood: Influence of wood components and cellulose crystallite size. Bioresour Technol 109:148–153CrossRef Poletto M, Zattera AJ, Forte MMC, Santana RMC (2012) Thermal decomposition of wood: Influence of wood components and cellulose crystallite size. Bioresour Technol 109:148–153CrossRef
go back to reference Segal L, Creely JJ, Martin AE, Conrad CM (1959) An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Text Res J 29(10): 786–794CrossRef Segal L, Creely JJ, Martin AE, Conrad CM (1959) An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Text Res J 29(10): 786–794CrossRef
go back to reference Teeäär R, Serimaa R, Paakkarl T (1987) Crystallinity of cellulose, as determined by CP/MAS NMR and XRD methods. Polym Bull 17:231–237CrossRef Teeäär R, Serimaa R, Paakkarl T (1987) Crystallinity of cellulose, as determined by CP/MAS NMR and XRD methods. Polym Bull 17:231–237CrossRef
go back to reference Thygesen A, Oddershede J, Lilholt H et al (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12:563–576CrossRef Thygesen A, Oddershede J, Lilholt H et al (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12:563–576CrossRef
go back to reference Updegraff DM (1969) Semimicro determination of cellulose inbiological materials. Anal Biochem 32:420–424CrossRef Updegraff DM (1969) Semimicro determination of cellulose inbiological materials. Anal Biochem 32:420–424CrossRef
go back to reference Vieira FS, Pasquini C (2014) Determination of cellulose crystallinity by terahertz-time domain spectroscopy. Anal Chem 86:3780–3786CrossRef Vieira FS, Pasquini C (2014) Determination of cellulose crystallinity by terahertz-time domain spectroscopy. Anal Chem 86:3780–3786CrossRef
go back to reference Wada M, Okano T, Sugiyama J (1997) Synchrotron-radiated X-ray and neutron diffraction study of native cellulose. Cellulose 4:221–232CrossRef Wada M, Okano T, Sugiyama J (1997) Synchrotron-radiated X-ray and neutron diffraction study of native cellulose. Cellulose 4:221–232CrossRef
go back to reference Wang H, Horikawa Y, Tsuchikawa S, Inagaki T (2020) Terahertz time-domain spectroscopy as a novel tool for crystallographic analysis in cellulose. Cellulose 27:9767–9777CrossRef Wang H, Horikawa Y, Tsuchikawa S, Inagaki T (2020) Terahertz time-domain spectroscopy as a novel tool for crystallographic analysis in cellulose. Cellulose 27:9767–9777CrossRef
go back to reference Wang H, Inagaki T, Hartley ID et al (2019) Determination of dielectric function of water in THz region in wood cell wall result in an accurate prediction of moisture content. J Infrared, Millimeter, Terahertz Waves 40:673–687CrossRef Wang H, Inagaki T, Hartley ID et al (2019) Determination of dielectric function of water in THz region in wood cell wall result in an accurate prediction of moisture content. J Infrared, Millimeter, Terahertz Waves 40:673–687CrossRef
go back to reference Xie L, Yao Y, Ying Y (2014) The application of terahertz spectroscopy to protein detection: a review. Appl Spectrosc Rev 49:448–461CrossRef Xie L, Yao Y, Ying Y (2014) The application of terahertz spectroscopy to protein detection: a review. Appl Spectrosc Rev 49:448–461CrossRef
go back to reference Yao W, Weng Y, Catchmark JM (2020) Improved cellulose X-ray diffraction analysis using Fourier series modeling. Cellulose 27:5563–5579CrossRef Yao W, Weng Y, Catchmark JM (2020) Improved cellulose X-ray diffraction analysis using Fourier series modeling. Cellulose 27:5563–5579CrossRef
Metadata
Title
Terahertz time-domain spectroscopy as a novel tool for crystallographic analysis in cellulose: the potentiality of being a new standard for evaluating crystallinity
Authors
Han Wang
Satoru Tsuchikawa
Tetsuya Inagaki
Publication date
08-05-2021
Publisher
Springer Netherlands
Published in
Cellulose / Issue 9/2021
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-021-03902-x

Other articles of this Issue 9/2021

Cellulose 9/2021 Go to the issue