Skip to main content
Top
Published in: Archive of Applied Mechanics 5/2021

23-01-2021 | Original

The analysis and design of nonlinear vibration isolators under both displacement and force excitations

Authors: Yue Qiu, Yunpeng Zhu, Zhong Luo, Yi Gao, Yuqi Li

Published in: Archive of Applied Mechanics | Issue 5/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, a novel criterion known as the comprehensive transmissibility is proposed to estimate the isolation performance of nonlinear isolation systems under complex loading excitations. A combined quasi-zero-stiffness (QZS) isolator is enumerated, and the comprehensive performance of other common isolator systems and the existing QZS system is analyzed. Based on the normalized differential equations of the isolation system, the isolation performances of different isolation systems are studied by using the comprehensive transmissibility criterion, showing that the combined QZS isolator has better isolation performance than others. In addition, the output frequency response function (OFRF) representation of the comprehensive transmissibility is derived, and the optimal design of the QZS isolation system is developed by using the OFRF. The simulation results demonstrate that the design can meet the requirements of the vibration isolator with both the force and displacement excitations and is promised to be applied to the design of nonlinear isolation systems in engineering practice.

Graphic abstract

To solve the issue of the analysis and design of nonlinear vibration isolation systems under multi-excitation, a new criterion known as comprehensive transmissibility is proposed. Based on the comprehensive transmissibility, the isolation performance of the combined vibration isolation system is analyzed, and the output frequency response function (OFRF) method is applied to conduct the design of the isolation system.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Snowdon, J.C.: Vibration isolation: use and characterization. J. Acoust. Soc. Am. 66(5), 1245–1274 (1979)CrossRef Snowdon, J.C.: Vibration isolation: use and characterization. J. Acoust. Soc. Am. 66(5), 1245–1274 (1979)CrossRef
3.
go back to reference Kelly, S.G.: Fundamentals of Mechanical Vibrations Any Text on Mechanical Vibrations. Mcgraw-Hill College, New York (2000) Kelly, S.G.: Fundamentals of Mechanical Vibrations Any Text on Mechanical Vibrations. Mcgraw-Hill College, New York (2000)
4.
go back to reference Rao, S.S.: Mechanical Vibrations (več izdaj). Addison-Wesley Publishing Company, Boston (1990) Rao, S.S.: Mechanical Vibrations (več izdaj). Addison-Wesley Publishing Company, Boston (1990)
5.
go back to reference Ibrahim, R.: Recent advances in nonlinear passive vibration isolators. J. Sound Vib. 314(3–5), 371–452 (2008)CrossRef Ibrahim, R.: Recent advances in nonlinear passive vibration isolators. J. Sound Vib. 314(3–5), 371–452 (2008)CrossRef
6.
go back to reference Graham, D., McRuer, D.T.: Analysis of Nonlinear Control Systems. Wiley, New York (1961)MATH Graham, D., McRuer, D.T.: Analysis of Nonlinear Control Systems. Wiley, New York (1961)MATH
7.
go back to reference Wang, K., Zhou, J.X., Chang, Y.P., Ouyang, H.J., Xu, D., Yang, Y.: A nonlinear ultra-low-frequency vibration isolator with dual quasi-zero-stiffness mechanism. Nonlinear Dyn. 101(2), 755–773 (2020)CrossRef Wang, K., Zhou, J.X., Chang, Y.P., Ouyang, H.J., Xu, D., Yang, Y.: A nonlinear ultra-low-frequency vibration isolator with dual quasi-zero-stiffness mechanism. Nonlinear Dyn. 101(2), 755–773 (2020)CrossRef
8.
go back to reference Wang, Q., Zhou, J.X., Xu, D.L., Ouyang, H.J.: Design and experimental investigation of ultra-low frequency vibration isolation during neonatal transport. Mech. Syst. Signal. Pr. 139, 106633 (2020)CrossRef Wang, Q., Zhou, J.X., Xu, D.L., Ouyang, H.J.: Design and experimental investigation of ultra-low frequency vibration isolation during neonatal transport. Mech. Syst. Signal. Pr. 139, 106633 (2020)CrossRef
9.
go back to reference Kirk, C.: Non-linear random vibration isolators. J. Sound Vib. 124(1), 157–182 (1988)CrossRef Kirk, C.: Non-linear random vibration isolators. J. Sound Vib. 124(1), 157–182 (1988)CrossRef
10.
go back to reference Dutta, S., Chakraborty, G.: Performance analysis of nonlinear vibration isolator with magneto-rheological damper. J. Sound Vib. 333(20), 5097–5114 (2014)CrossRef Dutta, S., Chakraborty, G.: Performance analysis of nonlinear vibration isolator with magneto-rheological damper. J. Sound Vib. 333(20), 5097–5114 (2014)CrossRef
11.
go back to reference Tseng, W.Y., Dugundji, J.: Nonlinear Vibrations of a Beam Under Harmonic Excitation. ASME Press, New York (1970)MATHCrossRef Tseng, W.Y., Dugundji, J.: Nonlinear Vibrations of a Beam Under Harmonic Excitation. ASME Press, New York (1970)MATHCrossRef
12.
go back to reference Alabuzhev, P.: Vibration Protection and Measuring Systems with Quasi-Zero Stiffness. CRC Press, Boca Raton (1989) Alabuzhev, P.: Vibration Protection and Measuring Systems with Quasi-Zero Stiffness. CRC Press, Boca Raton (1989)
13.
go back to reference Carrella, A., Brennan, M., Kovacic, I., Waters, T.: On the force transmissibility of a vibration isolator with quasi-zero-stiffness. J. Sound Vib. 322(4–5), 707–717 (2009)CrossRef Carrella, A., Brennan, M., Kovacic, I., Waters, T.: On the force transmissibility of a vibration isolator with quasi-zero-stiffness. J. Sound Vib. 322(4–5), 707–717 (2009)CrossRef
14.
go back to reference Xu, D.L., Zhang, Y.Y., Zhou, J.X., Lou, J.J.: On the analytical and experimental assessment of the performance of a quasi-zero-stiffness isolator. J. Vib. Control. 20(15), 2314–2325 (2014)CrossRef Xu, D.L., Zhang, Y.Y., Zhou, J.X., Lou, J.J.: On the analytical and experimental assessment of the performance of a quasi-zero-stiffness isolator. J. Vib. Control. 20(15), 2314–2325 (2014)CrossRef
15.
go back to reference Liu, X.T., Huang, X.C., Hua, H.X.: On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector. J. Sound Vib. 332(14), 3359–3376 (2013)CrossRef Liu, X.T., Huang, X.C., Hua, H.X.: On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector. J. Sound Vib. 332(14), 3359–3376 (2013)CrossRef
16.
go back to reference Sun, J.Y., Huang, X.C., Liu, X.T., Xiao, F., Hua, H.X.: Study on the force transmissibility of vibration isolators with geometric nonlinear damping. Nonlinear Dyn. 74(4), 1103–1112 (2013)CrossRef Sun, J.Y., Huang, X.C., Liu, X.T., Xiao, F., Hua, H.X.: Study on the force transmissibility of vibration isolators with geometric nonlinear damping. Nonlinear Dyn. 74(4), 1103–1112 (2013)CrossRef
17.
go back to reference Sun, X.J., Zhang, J.R.: Displacement transmissibility characteristics of harmonically base excited damper isolators with mixed viscous damping. Shock. Vib. 20(5), 921–931 (2013)CrossRef Sun, X.J., Zhang, J.R.: Displacement transmissibility characteristics of harmonically base excited damper isolators with mixed viscous damping. Shock. Vib. 20(5), 921–931 (2013)CrossRef
18.
go back to reference Mokni, L., Belhaq, M., Lakrad, F.: Effect of fast parametric viscous damping excitation on vibration isolation in sdof systems. Commun. Nonlinear. Sci. 16(4), 1720–1724 (2011)MATHCrossRef Mokni, L., Belhaq, M., Lakrad, F.: Effect of fast parametric viscous damping excitation on vibration isolation in sdof systems. Commun. Nonlinear. Sci. 16(4), 1720–1724 (2011)MATHCrossRef
19.
go back to reference Dixon, J.C.: The Shock Absorber Handbook. Wiley, Hoboken (2008) Dixon, J.C.: The Shock Absorber Handbook. Wiley, Hoboken (2008)
20.
go back to reference Peng, Z.K., Meng, G., Lang, Z.Q., Zhang, W.M., Chu, F.L.: Study of the effects of cubic nonlinear damping on vibration isolations using harmonic balance method. Int. J. Nonlinear Mech. 47(10), 1073–1080 (2012)CrossRef Peng, Z.K., Meng, G., Lang, Z.Q., Zhang, W.M., Chu, F.L.: Study of the effects of cubic nonlinear damping on vibration isolations using harmonic balance method. Int. J. Nonlinear Mech. 47(10), 1073–1080 (2012)CrossRef
21.
go back to reference Liu, Y.Q., Xu, L.L., Song, C.F., Gu, H.S., Ji, W.: Dynamic characteristics of a quasi-zero stiffness vibration isolator with nonlinear stiffness and damping. Arch. Appl. Mech. 89(9), 1743–1759 (2019)CrossRef Liu, Y.Q., Xu, L.L., Song, C.F., Gu, H.S., Ji, W.: Dynamic characteristics of a quasi-zero stiffness vibration isolator with nonlinear stiffness and damping. Arch. Appl. Mech. 89(9), 1743–1759 (2019)CrossRef
22.
go back to reference Ho, C., Lang, Z.Q., Billings, S.A.: Design of vibration isolators by exploiting the beneficial effects of stiffness and damping nonlinearities. J. Sound Vib. 333(12), 2489–2504 (2014)CrossRef Ho, C., Lang, Z.Q., Billings, S.A.: Design of vibration isolators by exploiting the beneficial effects of stiffness and damping nonlinearities. J. Sound Vib. 333(12), 2489–2504 (2014)CrossRef
23.
go back to reference Tang, B., Brennan, M.: A comparison of two nonlinear damping mechanisms in a vibration isolator. J. Sound Vib. 332(3), 510–520 (2013)CrossRef Tang, B., Brennan, M.: A comparison of two nonlinear damping mechanisms in a vibration isolator. J. Sound Vib. 332(3), 510–520 (2013)CrossRef
24.
go back to reference Cheng, C., Li, S.M., Wang, Y., Jiang, X.X.: Force and displacement transmissibility of a quasi-zero stiffness vibration isolator with geometric nonlinear damping. Nonlinear Dyn. 87(4), 2267–2279 (2017)CrossRef Cheng, C., Li, S.M., Wang, Y., Jiang, X.X.: Force and displacement transmissibility of a quasi-zero stiffness vibration isolator with geometric nonlinear damping. Nonlinear Dyn. 87(4), 2267–2279 (2017)CrossRef
25.
go back to reference Carrella, A., Brennan, M., Waters, T., Lopes, V., Jr.: Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness. Int. J. Mech. Sci. 55(1), 22–29 (2012)CrossRef Carrella, A., Brennan, M., Waters, T., Lopes, V., Jr.: Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness. Int. J. Mech. Sci. 55(1), 22–29 (2012)CrossRef
26.
go back to reference Lv, Q., Yao, Z.: Analysis of the effects of nonlinear viscous damping on vibration isolator. Nonlinear Dyn. 79(4), 2325–2332 (2015)MathSciNetCrossRef Lv, Q., Yao, Z.: Analysis of the effects of nonlinear viscous damping on vibration isolator. Nonlinear Dyn. 79(4), 2325–2332 (2015)MathSciNetCrossRef
27.
go back to reference Xiao, Z.L., Jing, X.J., Cheng, L.: The transmissibility of vibration isolators with cubic nonlinear damping under both force and base excitations. J. Sound Vib. 332(5), 1335–1354 (2013)CrossRef Xiao, Z.L., Jing, X.J., Cheng, L.: The transmissibility of vibration isolators with cubic nonlinear damping under both force and base excitations. J. Sound Vib. 332(5), 1335–1354 (2013)CrossRef
28.
go back to reference Guo, P.F., Lang, Z.Q., Peng, Z.K.: Analysis and design of the force and displacement transmissibility of nonlinear viscous damper based vibration isolation systems. Nonlinear Dyn. 67(4), 2671–2687 (2012)MathSciNetMATHCrossRef Guo, P.F., Lang, Z.Q., Peng, Z.K.: Analysis and design of the force and displacement transmissibility of nonlinear viscous damper based vibration isolation systems. Nonlinear Dyn. 67(4), 2671–2687 (2012)MathSciNetMATHCrossRef
29.
go back to reference Sun, X.T., Zhang, S., Xu, J.: Parameter design of a multi-delayed isolator with asymmetrical nonlinearity. Int. J. Mech. Sci. 138, 398–408 (2018)CrossRef Sun, X.T., Zhang, S., Xu, J.: Parameter design of a multi-delayed isolator with asymmetrical nonlinearity. Int. J. Mech. Sci. 138, 398–408 (2018)CrossRef
30.
go back to reference Pavlov, A., van de Wouw, N., Nijmeijer, H.: Frequency response functions for nonlinear convergent systems. IEEE Trans. Autom. Control 52(6), 1159–1165 (2007)MathSciNetMATHCrossRef Pavlov, A., van de Wouw, N., Nijmeijer, H.: Frequency response functions for nonlinear convergent systems. IEEE Trans. Autom. Control 52(6), 1159–1165 (2007)MathSciNetMATHCrossRef
31.
go back to reference Garbuio, L., Lallart, M., Guyomar, D., Richard, C., Audigier, D.: Mechanical energy harvester with ultralow threshold rectification based on SSHI nonlinear technique. IEEE Trans. Ind. Electron. 56(4), 1048–1056 (2009)CrossRef Garbuio, L., Lallart, M., Guyomar, D., Richard, C., Audigier, D.: Mechanical energy harvester with ultralow threshold rectification based on SSHI nonlinear technique. IEEE Trans. Ind. Electron. 56(4), 1048–1056 (2009)CrossRef
32.
go back to reference Yang, X.M., Guo, X.L., Ouyang, H.J., Li, D.S.: A new frequency matching technique for FRF-based model updating. J. Phys. Conf. Ser. 842(1), 1–10 (2017) Yang, X.M., Guo, X.L., Ouyang, H.J., Li, D.S.: A new frequency matching technique for FRF-based model updating. J. Phys. Conf. Ser. 842(1), 1–10 (2017)
33.
go back to reference Ran, Q., Xiao, M.L., Hu, Y.X.: Nonlinear vibration with volterra series method used in civil engineering: the bouc-wen hysteresis model of generalized frequency response. Appl. Mech. Mater. 530, 561–566 (2014)CrossRef Ran, Q., Xiao, M.L., Hu, Y.X.: Nonlinear vibration with volterra series method used in civil engineering: the bouc-wen hysteresis model of generalized frequency response. Appl. Mech. Mater. 530, 561–566 (2014)CrossRef
34.
go back to reference Zhang, J.L., Cao, J.F.: Nonlinear circuit fault diagnosis based on simplified estimation of generalized frequency response function. In: 32th CCDC, pp. 698–702 (2020) Zhang, J.L., Cao, J.F.: Nonlinear circuit fault diagnosis based on simplified estimation of generalized frequency response function. In: 32th CCDC, pp. 698–702 (2020)
35.
go back to reference Peng, Z.K., Lang, Z.Q., Billings, S.A., Tomlinson, G.: Comparisons between harmonic balance and nonlinear output frequency response function in nonlinear system analysis. J. Sound Vib. 311(1–2), 56–73 (2008)CrossRef Peng, Z.K., Lang, Z.Q., Billings, S.A., Tomlinson, G.: Comparisons between harmonic balance and nonlinear output frequency response function in nonlinear system analysis. J. Sound Vib. 311(1–2), 56–73 (2008)CrossRef
36.
go back to reference Lang, Z.Q., Billings, S.A., Yue, R., Li, J.: Output frequency response function of nonlinear Volterra systems. Automatica. 43(5), 805–816 (2007)MathSciNetMATHCrossRef Lang, Z.Q., Billings, S.A., Yue, R., Li, J.: Output frequency response function of nonlinear Volterra systems. Automatica. 43(5), 805–816 (2007)MathSciNetMATHCrossRef
37.
go back to reference Zhu, Y.P., Lang, Z.Q.: Design of nonlinear systems in the frequency domain: an output frequency response function-based approach. IEEE Trans. Control Syst. Technol. 26(4), 1358–1371 (2017)CrossRef Zhu, Y.P., Lang, Z.Q.: Design of nonlinear systems in the frequency domain: an output frequency response function-based approach. IEEE Trans. Control Syst. Technol. 26(4), 1358–1371 (2017)CrossRef
38.
go back to reference Chang, Y.P., Zhou, J.X., Wang, K., Xu, D.L.: A quasi-zero-stiffness dynamic vibration absorber. J. Sound Vib. 494, 115859 (2021)CrossRef Chang, Y.P., Zhou, J.X., Wang, K., Xu, D.L.: A quasi-zero-stiffness dynamic vibration absorber. J. Sound Vib. 494, 115859 (2021)CrossRef
39.
go back to reference Kuo, C.M., Fu, C.R., Chen, K.Y.: Effects of pavement roughness on rigid pavement stress. J. Mech. 27(1), 1–8 (2011)CrossRef Kuo, C.M., Fu, C.R., Chen, K.Y.: Effects of pavement roughness on rigid pavement stress. J. Mech. 27(1), 1–8 (2011)CrossRef
40.
go back to reference Dong, Y.Y., Han, Y.W., Zhang, Z.J.: On the analysis of nonlinear dynamic behavior of an isolation system with irrational restoring force and fractional damping. Acta. Mech. 230(7), 2563–2579 (2019)MathSciNetMATHCrossRef Dong, Y.Y., Han, Y.W., Zhang, Z.J.: On the analysis of nonlinear dynamic behavior of an isolation system with irrational restoring force and fractional damping. Acta. Mech. 230(7), 2563–2579 (2019)MathSciNetMATHCrossRef
41.
go back to reference Worden, K., Tomlinson, G.R.: Nonlinearity in structural dynamics detection, identification and modelling. Institute of Physics Publishing, Bristol and Philadelphia (2001)MATHCrossRef Worden, K., Tomlinson, G.R.: Nonlinearity in structural dynamics detection, identification and modelling. Institute of Physics Publishing, Bristol and Philadelphia (2001)MATHCrossRef
Metadata
Title
The analysis and design of nonlinear vibration isolators under both displacement and force excitations
Authors
Yue Qiu
Yunpeng Zhu
Zhong Luo
Yi Gao
Yuqi Li
Publication date
23-01-2021
Publisher
Springer Berlin Heidelberg
Published in
Archive of Applied Mechanics / Issue 5/2021
Print ISSN: 0939-1533
Electronic ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-020-01875-0

Other articles of this Issue 5/2021

Archive of Applied Mechanics 5/2021 Go to the issue

Premium Partners