Skip to main content
Erschienen in: Archive of Applied Mechanics 5/2021

23.01.2021 | Original

The analysis and design of nonlinear vibration isolators under both displacement and force excitations

verfasst von: Yue Qiu, Yunpeng Zhu, Zhong Luo, Yi Gao, Yuqi Li

Erschienen in: Archive of Applied Mechanics | Ausgabe 5/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, a novel criterion known as the comprehensive transmissibility is proposed to estimate the isolation performance of nonlinear isolation systems under complex loading excitations. A combined quasi-zero-stiffness (QZS) isolator is enumerated, and the comprehensive performance of other common isolator systems and the existing QZS system is analyzed. Based on the normalized differential equations of the isolation system, the isolation performances of different isolation systems are studied by using the comprehensive transmissibility criterion, showing that the combined QZS isolator has better isolation performance than others. In addition, the output frequency response function (OFRF) representation of the comprehensive transmissibility is derived, and the optimal design of the QZS isolation system is developed by using the OFRF. The simulation results demonstrate that the design can meet the requirements of the vibration isolator with both the force and displacement excitations and is promised to be applied to the design of nonlinear isolation systems in engineering practice.

Graphic abstract

To solve the issue of the analysis and design of nonlinear vibration isolation systems under multi-excitation, a new criterion known as comprehensive transmissibility is proposed. Based on the comprehensive transmissibility, the isolation performance of the combined vibration isolation system is analyzed, and the output frequency response function (OFRF) method is applied to conduct the design of the isolation system.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Rivin, E.I.: Passive Vibration Isolation. ASME Press, New York (2003)CrossRef Rivin, E.I.: Passive Vibration Isolation. ASME Press, New York (2003)CrossRef
2.
Zurück zum Zitat Snowdon, J.C.: Vibration isolation: use and characterization. J. Acoust. Soc. Am. 66(5), 1245–1274 (1979)CrossRef Snowdon, J.C.: Vibration isolation: use and characterization. J. Acoust. Soc. Am. 66(5), 1245–1274 (1979)CrossRef
3.
Zurück zum Zitat Kelly, S.G.: Fundamentals of Mechanical Vibrations Any Text on Mechanical Vibrations. Mcgraw-Hill College, New York (2000) Kelly, S.G.: Fundamentals of Mechanical Vibrations Any Text on Mechanical Vibrations. Mcgraw-Hill College, New York (2000)
4.
Zurück zum Zitat Rao, S.S.: Mechanical Vibrations (več izdaj). Addison-Wesley Publishing Company, Boston (1990) Rao, S.S.: Mechanical Vibrations (več izdaj). Addison-Wesley Publishing Company, Boston (1990)
5.
Zurück zum Zitat Ibrahim, R.: Recent advances in nonlinear passive vibration isolators. J. Sound Vib. 314(3–5), 371–452 (2008)CrossRef Ibrahim, R.: Recent advances in nonlinear passive vibration isolators. J. Sound Vib. 314(3–5), 371–452 (2008)CrossRef
6.
Zurück zum Zitat Graham, D., McRuer, D.T.: Analysis of Nonlinear Control Systems. Wiley, New York (1961)MATH Graham, D., McRuer, D.T.: Analysis of Nonlinear Control Systems. Wiley, New York (1961)MATH
7.
Zurück zum Zitat Wang, K., Zhou, J.X., Chang, Y.P., Ouyang, H.J., Xu, D., Yang, Y.: A nonlinear ultra-low-frequency vibration isolator with dual quasi-zero-stiffness mechanism. Nonlinear Dyn. 101(2), 755–773 (2020)CrossRef Wang, K., Zhou, J.X., Chang, Y.P., Ouyang, H.J., Xu, D., Yang, Y.: A nonlinear ultra-low-frequency vibration isolator with dual quasi-zero-stiffness mechanism. Nonlinear Dyn. 101(2), 755–773 (2020)CrossRef
8.
Zurück zum Zitat Wang, Q., Zhou, J.X., Xu, D.L., Ouyang, H.J.: Design and experimental investigation of ultra-low frequency vibration isolation during neonatal transport. Mech. Syst. Signal. Pr. 139, 106633 (2020)CrossRef Wang, Q., Zhou, J.X., Xu, D.L., Ouyang, H.J.: Design and experimental investigation of ultra-low frequency vibration isolation during neonatal transport. Mech. Syst. Signal. Pr. 139, 106633 (2020)CrossRef
9.
Zurück zum Zitat Kirk, C.: Non-linear random vibration isolators. J. Sound Vib. 124(1), 157–182 (1988)CrossRef Kirk, C.: Non-linear random vibration isolators. J. Sound Vib. 124(1), 157–182 (1988)CrossRef
10.
Zurück zum Zitat Dutta, S., Chakraborty, G.: Performance analysis of nonlinear vibration isolator with magneto-rheological damper. J. Sound Vib. 333(20), 5097–5114 (2014)CrossRef Dutta, S., Chakraborty, G.: Performance analysis of nonlinear vibration isolator with magneto-rheological damper. J. Sound Vib. 333(20), 5097–5114 (2014)CrossRef
11.
Zurück zum Zitat Tseng, W.Y., Dugundji, J.: Nonlinear Vibrations of a Beam Under Harmonic Excitation. ASME Press, New York (1970)MATHCrossRef Tseng, W.Y., Dugundji, J.: Nonlinear Vibrations of a Beam Under Harmonic Excitation. ASME Press, New York (1970)MATHCrossRef
12.
Zurück zum Zitat Alabuzhev, P.: Vibration Protection and Measuring Systems with Quasi-Zero Stiffness. CRC Press, Boca Raton (1989) Alabuzhev, P.: Vibration Protection and Measuring Systems with Quasi-Zero Stiffness. CRC Press, Boca Raton (1989)
13.
Zurück zum Zitat Carrella, A., Brennan, M., Kovacic, I., Waters, T.: On the force transmissibility of a vibration isolator with quasi-zero-stiffness. J. Sound Vib. 322(4–5), 707–717 (2009)CrossRef Carrella, A., Brennan, M., Kovacic, I., Waters, T.: On the force transmissibility of a vibration isolator with quasi-zero-stiffness. J. Sound Vib. 322(4–5), 707–717 (2009)CrossRef
14.
Zurück zum Zitat Xu, D.L., Zhang, Y.Y., Zhou, J.X., Lou, J.J.: On the analytical and experimental assessment of the performance of a quasi-zero-stiffness isolator. J. Vib. Control. 20(15), 2314–2325 (2014)CrossRef Xu, D.L., Zhang, Y.Y., Zhou, J.X., Lou, J.J.: On the analytical and experimental assessment of the performance of a quasi-zero-stiffness isolator. J. Vib. Control. 20(15), 2314–2325 (2014)CrossRef
15.
Zurück zum Zitat Liu, X.T., Huang, X.C., Hua, H.X.: On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector. J. Sound Vib. 332(14), 3359–3376 (2013)CrossRef Liu, X.T., Huang, X.C., Hua, H.X.: On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector. J. Sound Vib. 332(14), 3359–3376 (2013)CrossRef
16.
Zurück zum Zitat Sun, J.Y., Huang, X.C., Liu, X.T., Xiao, F., Hua, H.X.: Study on the force transmissibility of vibration isolators with geometric nonlinear damping. Nonlinear Dyn. 74(4), 1103–1112 (2013)CrossRef Sun, J.Y., Huang, X.C., Liu, X.T., Xiao, F., Hua, H.X.: Study on the force transmissibility of vibration isolators with geometric nonlinear damping. Nonlinear Dyn. 74(4), 1103–1112 (2013)CrossRef
17.
Zurück zum Zitat Sun, X.J., Zhang, J.R.: Displacement transmissibility characteristics of harmonically base excited damper isolators with mixed viscous damping. Shock. Vib. 20(5), 921–931 (2013)CrossRef Sun, X.J., Zhang, J.R.: Displacement transmissibility characteristics of harmonically base excited damper isolators with mixed viscous damping. Shock. Vib. 20(5), 921–931 (2013)CrossRef
18.
Zurück zum Zitat Mokni, L., Belhaq, M., Lakrad, F.: Effect of fast parametric viscous damping excitation on vibration isolation in sdof systems. Commun. Nonlinear. Sci. 16(4), 1720–1724 (2011)MATHCrossRef Mokni, L., Belhaq, M., Lakrad, F.: Effect of fast parametric viscous damping excitation on vibration isolation in sdof systems. Commun. Nonlinear. Sci. 16(4), 1720–1724 (2011)MATHCrossRef
19.
Zurück zum Zitat Dixon, J.C.: The Shock Absorber Handbook. Wiley, Hoboken (2008) Dixon, J.C.: The Shock Absorber Handbook. Wiley, Hoboken (2008)
20.
Zurück zum Zitat Peng, Z.K., Meng, G., Lang, Z.Q., Zhang, W.M., Chu, F.L.: Study of the effects of cubic nonlinear damping on vibration isolations using harmonic balance method. Int. J. Nonlinear Mech. 47(10), 1073–1080 (2012)CrossRef Peng, Z.K., Meng, G., Lang, Z.Q., Zhang, W.M., Chu, F.L.: Study of the effects of cubic nonlinear damping on vibration isolations using harmonic balance method. Int. J. Nonlinear Mech. 47(10), 1073–1080 (2012)CrossRef
21.
Zurück zum Zitat Liu, Y.Q., Xu, L.L., Song, C.F., Gu, H.S., Ji, W.: Dynamic characteristics of a quasi-zero stiffness vibration isolator with nonlinear stiffness and damping. Arch. Appl. Mech. 89(9), 1743–1759 (2019)CrossRef Liu, Y.Q., Xu, L.L., Song, C.F., Gu, H.S., Ji, W.: Dynamic characteristics of a quasi-zero stiffness vibration isolator with nonlinear stiffness and damping. Arch. Appl. Mech. 89(9), 1743–1759 (2019)CrossRef
22.
Zurück zum Zitat Ho, C., Lang, Z.Q., Billings, S.A.: Design of vibration isolators by exploiting the beneficial effects of stiffness and damping nonlinearities. J. Sound Vib. 333(12), 2489–2504 (2014)CrossRef Ho, C., Lang, Z.Q., Billings, S.A.: Design of vibration isolators by exploiting the beneficial effects of stiffness and damping nonlinearities. J. Sound Vib. 333(12), 2489–2504 (2014)CrossRef
23.
Zurück zum Zitat Tang, B., Brennan, M.: A comparison of two nonlinear damping mechanisms in a vibration isolator. J. Sound Vib. 332(3), 510–520 (2013)CrossRef Tang, B., Brennan, M.: A comparison of two nonlinear damping mechanisms in a vibration isolator. J. Sound Vib. 332(3), 510–520 (2013)CrossRef
24.
Zurück zum Zitat Cheng, C., Li, S.M., Wang, Y., Jiang, X.X.: Force and displacement transmissibility of a quasi-zero stiffness vibration isolator with geometric nonlinear damping. Nonlinear Dyn. 87(4), 2267–2279 (2017)CrossRef Cheng, C., Li, S.M., Wang, Y., Jiang, X.X.: Force and displacement transmissibility of a quasi-zero stiffness vibration isolator with geometric nonlinear damping. Nonlinear Dyn. 87(4), 2267–2279 (2017)CrossRef
25.
Zurück zum Zitat Carrella, A., Brennan, M., Waters, T., Lopes, V., Jr.: Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness. Int. J. Mech. Sci. 55(1), 22–29 (2012)CrossRef Carrella, A., Brennan, M., Waters, T., Lopes, V., Jr.: Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness. Int. J. Mech. Sci. 55(1), 22–29 (2012)CrossRef
26.
Zurück zum Zitat Lv, Q., Yao, Z.: Analysis of the effects of nonlinear viscous damping on vibration isolator. Nonlinear Dyn. 79(4), 2325–2332 (2015)MathSciNetCrossRef Lv, Q., Yao, Z.: Analysis of the effects of nonlinear viscous damping on vibration isolator. Nonlinear Dyn. 79(4), 2325–2332 (2015)MathSciNetCrossRef
27.
Zurück zum Zitat Xiao, Z.L., Jing, X.J., Cheng, L.: The transmissibility of vibration isolators with cubic nonlinear damping under both force and base excitations. J. Sound Vib. 332(5), 1335–1354 (2013)CrossRef Xiao, Z.L., Jing, X.J., Cheng, L.: The transmissibility of vibration isolators with cubic nonlinear damping under both force and base excitations. J. Sound Vib. 332(5), 1335–1354 (2013)CrossRef
28.
Zurück zum Zitat Guo, P.F., Lang, Z.Q., Peng, Z.K.: Analysis and design of the force and displacement transmissibility of nonlinear viscous damper based vibration isolation systems. Nonlinear Dyn. 67(4), 2671–2687 (2012)MathSciNetMATHCrossRef Guo, P.F., Lang, Z.Q., Peng, Z.K.: Analysis and design of the force and displacement transmissibility of nonlinear viscous damper based vibration isolation systems. Nonlinear Dyn. 67(4), 2671–2687 (2012)MathSciNetMATHCrossRef
29.
Zurück zum Zitat Sun, X.T., Zhang, S., Xu, J.: Parameter design of a multi-delayed isolator with asymmetrical nonlinearity. Int. J. Mech. Sci. 138, 398–408 (2018)CrossRef Sun, X.T., Zhang, S., Xu, J.: Parameter design of a multi-delayed isolator with asymmetrical nonlinearity. Int. J. Mech. Sci. 138, 398–408 (2018)CrossRef
30.
Zurück zum Zitat Pavlov, A., van de Wouw, N., Nijmeijer, H.: Frequency response functions for nonlinear convergent systems. IEEE Trans. Autom. Control 52(6), 1159–1165 (2007)MathSciNetMATHCrossRef Pavlov, A., van de Wouw, N., Nijmeijer, H.: Frequency response functions for nonlinear convergent systems. IEEE Trans. Autom. Control 52(6), 1159–1165 (2007)MathSciNetMATHCrossRef
31.
Zurück zum Zitat Garbuio, L., Lallart, M., Guyomar, D., Richard, C., Audigier, D.: Mechanical energy harvester with ultralow threshold rectification based on SSHI nonlinear technique. IEEE Trans. Ind. Electron. 56(4), 1048–1056 (2009)CrossRef Garbuio, L., Lallart, M., Guyomar, D., Richard, C., Audigier, D.: Mechanical energy harvester with ultralow threshold rectification based on SSHI nonlinear technique. IEEE Trans. Ind. Electron. 56(4), 1048–1056 (2009)CrossRef
32.
Zurück zum Zitat Yang, X.M., Guo, X.L., Ouyang, H.J., Li, D.S.: A new frequency matching technique for FRF-based model updating. J. Phys. Conf. Ser. 842(1), 1–10 (2017) Yang, X.M., Guo, X.L., Ouyang, H.J., Li, D.S.: A new frequency matching technique for FRF-based model updating. J. Phys. Conf. Ser. 842(1), 1–10 (2017)
33.
Zurück zum Zitat Ran, Q., Xiao, M.L., Hu, Y.X.: Nonlinear vibration with volterra series method used in civil engineering: the bouc-wen hysteresis model of generalized frequency response. Appl. Mech. Mater. 530, 561–566 (2014)CrossRef Ran, Q., Xiao, M.L., Hu, Y.X.: Nonlinear vibration with volterra series method used in civil engineering: the bouc-wen hysteresis model of generalized frequency response. Appl. Mech. Mater. 530, 561–566 (2014)CrossRef
34.
Zurück zum Zitat Zhang, J.L., Cao, J.F.: Nonlinear circuit fault diagnosis based on simplified estimation of generalized frequency response function. In: 32th CCDC, pp. 698–702 (2020) Zhang, J.L., Cao, J.F.: Nonlinear circuit fault diagnosis based on simplified estimation of generalized frequency response function. In: 32th CCDC, pp. 698–702 (2020)
35.
Zurück zum Zitat Peng, Z.K., Lang, Z.Q., Billings, S.A., Tomlinson, G.: Comparisons between harmonic balance and nonlinear output frequency response function in nonlinear system analysis. J. Sound Vib. 311(1–2), 56–73 (2008)CrossRef Peng, Z.K., Lang, Z.Q., Billings, S.A., Tomlinson, G.: Comparisons between harmonic balance and nonlinear output frequency response function in nonlinear system analysis. J. Sound Vib. 311(1–2), 56–73 (2008)CrossRef
36.
Zurück zum Zitat Lang, Z.Q., Billings, S.A., Yue, R., Li, J.: Output frequency response function of nonlinear Volterra systems. Automatica. 43(5), 805–816 (2007)MathSciNetMATHCrossRef Lang, Z.Q., Billings, S.A., Yue, R., Li, J.: Output frequency response function of nonlinear Volterra systems. Automatica. 43(5), 805–816 (2007)MathSciNetMATHCrossRef
37.
Zurück zum Zitat Zhu, Y.P., Lang, Z.Q.: Design of nonlinear systems in the frequency domain: an output frequency response function-based approach. IEEE Trans. Control Syst. Technol. 26(4), 1358–1371 (2017)CrossRef Zhu, Y.P., Lang, Z.Q.: Design of nonlinear systems in the frequency domain: an output frequency response function-based approach. IEEE Trans. Control Syst. Technol. 26(4), 1358–1371 (2017)CrossRef
38.
Zurück zum Zitat Chang, Y.P., Zhou, J.X., Wang, K., Xu, D.L.: A quasi-zero-stiffness dynamic vibration absorber. J. Sound Vib. 494, 115859 (2021)CrossRef Chang, Y.P., Zhou, J.X., Wang, K., Xu, D.L.: A quasi-zero-stiffness dynamic vibration absorber. J. Sound Vib. 494, 115859 (2021)CrossRef
39.
Zurück zum Zitat Kuo, C.M., Fu, C.R., Chen, K.Y.: Effects of pavement roughness on rigid pavement stress. J. Mech. 27(1), 1–8 (2011)CrossRef Kuo, C.M., Fu, C.R., Chen, K.Y.: Effects of pavement roughness on rigid pavement stress. J. Mech. 27(1), 1–8 (2011)CrossRef
40.
Zurück zum Zitat Dong, Y.Y., Han, Y.W., Zhang, Z.J.: On the analysis of nonlinear dynamic behavior of an isolation system with irrational restoring force and fractional damping. Acta. Mech. 230(7), 2563–2579 (2019)MathSciNetMATHCrossRef Dong, Y.Y., Han, Y.W., Zhang, Z.J.: On the analysis of nonlinear dynamic behavior of an isolation system with irrational restoring force and fractional damping. Acta. Mech. 230(7), 2563–2579 (2019)MathSciNetMATHCrossRef
41.
Zurück zum Zitat Worden, K., Tomlinson, G.R.: Nonlinearity in structural dynamics detection, identification and modelling. Institute of Physics Publishing, Bristol and Philadelphia (2001)MATHCrossRef Worden, K., Tomlinson, G.R.: Nonlinearity in structural dynamics detection, identification and modelling. Institute of Physics Publishing, Bristol and Philadelphia (2001)MATHCrossRef
Metadaten
Titel
The analysis and design of nonlinear vibration isolators under both displacement and force excitations
verfasst von
Yue Qiu
Yunpeng Zhu
Zhong Luo
Yi Gao
Yuqi Li
Publikationsdatum
23.01.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Archive of Applied Mechanics / Ausgabe 5/2021
Print ISSN: 0939-1533
Elektronische ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-020-01875-0

Weitere Artikel der Ausgabe 5/2021

Archive of Applied Mechanics 5/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.